Infinite Dimensional Lie Algebras
 February 14, 2005

Gabriel C. Drummond-Cole

February 21, 2005

Okay, let's see what's going on. We have $\mathscr{H}=\left\langle a_{n}, n \in \mathbb{Z}\right\rangle$, subject to the commutation relations $\left[a_{n}, a_{m}\right]=n \delta_{n,-m}$ and then $a(z)=\sum a_{n} z^{-n-1}$ with relations $[a(z), a(w)]=$ $z^{-1} \delta_{w} \delta(w / z)$.
[something about vector fields on S^{1}]
Then there are L_{n} with $\left[L_{n}, a_{k}\right]=-k a_{n+k}$ and $L(z)=\sum L_{n} z^{-n-2}=\frac{1}{2}: a^{2}(z):$ and then we have $\left[L(z), a(w)=z^{-1} a(w) \delta_{w} \delta(w / z)\right.$.

We want to be able to think of $a(z), L(z)$ as operator valued functions, i.e., $a(z)$ as a function on \mathbb{C}^{\times}with values in $\operatorname{End}(\mathscr{F})$.

So $a(z)|0\rangle=\sum a_{n}|0\rangle z^{-n-1}=\sum_{n<0} a_{n}|0\rangle z^{-n-1}$. This is bad because it's not in \mathscr{F}. We have $\mathscr{F}=\mathbb{C}\left[a_{-1}, a_{-2}, \cdots\right]|0\rangle$. We want to work with $\overline{\mathscr{F}}=\mathbb{C}\left[\left[a_{-1}, a_{-2}, \cdots\right]\right]|0\rangle$, that is, infinite linear combinations. So this is $\sum v_{k}$ where the degree of v_{k} goes to negative infinity. So $a(z)$ is a function on \mathbb{C}^{\times}with values in $\operatorname{Hom}(\mathscr{F}, \overline{\mathscr{F}})$.

There is a problem, as usual. Such operators cannot be multiplied. E.g., can $a(z) a(w)|0\rangle \in \mathscr{\mathscr { F }}$ be defined? So $a(z) a(w)|0\rangle=a(z) \sum a_{-n} w^{n-1}=\sum_{n>0} n z^{-n-1} w^{n-1}|0\rangle$ plus other terms. This last part can be written $z^{-1} w^{-1} \sum n\left(\frac{w}{z}\right)^{n}$. Recall that $a_{n} a_{-n}|0\rangle=n|0\rangle$ for $n>0$.

Theorem 1 1. For $|w|<|z| a(z) a(w)=: a(z) a(w):+\frac{1}{(z-w)^{2}}$ where the fraction is expanded in a power series in w / z.
2. : $a(z) a(w):$ is a well-defined operator $\mathscr{F} \rightarrow$ mathscr F for any $z, w \in \mathbb{C}^{*}$.

Corollary $1 a(z) a(w)$ can be defined as a function of $z, w \in \mathbb{C}^{*}$ for $|w|<|z|$ with values in $\operatorname{Hom}(\mathscr{F}, \overline{\mathscr{F}})$.

So for the proof of the theorem, for the first part we have

$$
a(z) a(w)=\sum a_{n} a_{m} z^{-n-1} w^{-m-1}
$$

$$
: a(z) a(w):=\sum: a_{n} a_{m}: z^{-n-1} w^{-m-1}
$$

The only places these differ are when the first has $a_{n} a_{-n} z^{-n-1} w^{n-1}$ and the second $a_{-n} a_{n} z^{-n-1} w^{n-1}$. So

$$
\begin{aligned}
& a(z) a(w)-: a(z) a(w):=\sum_{n>0} n z^{-n-1} w^{n-1} \\
& =z^{-1} \sum_{n \geq 0} \frac{n w^{n-1}}{z^{n}}=z^{-1} \delta_{w}\left(\sum_{n \geq 0}\left(\frac{w}{z}\right)^{n}\right) \\
& =z^{-1} \delta_{w}\left(\frac{1}{1-\frac{w}{z}}\right)=\delta_{w} \frac{1}{z-w}=\frac{1}{(z-w)^{2}} .
\end{aligned}
$$

Corollary 2 Matrix coefficients of $a(z) a(w)$ can be analytically continued to $\left(\mathbb{C}^{*}\right)^{2} \backslash$ diagonal and they will have a second order pole at $z=w$. Physicists write this as a(z)a(w) $\sim \frac{1}{(z-w)^{2}}$.

So this is $a(w) a(z)=: a(w) a(z):+\frac{1}{(z-w)^{2}}$ for $|z|<|w|$ and $a(z) a(w)=: a(z) a(w):+\frac{1}{(z-w)^{2}}$ for $|z|>|w|$. Now, this means that $a(z) a(w)-a(w) a(z)$ is nowhere defined. As formal power series this would be the expansion of $\frac{1}{(z-w)^{2}}$ for $|z|<|w|$ less the expansion of the same function for $|w|>|z|$.

So without analytic continuation $[a(z), a(w)]$ is nowhere convergent; with analytic continuation $[a(z), a(w)]=0$. The moral is that all information about $\left[a_{n}, a_{k}\right]$ can be obtained from the polar part of $a(z) a(w) \sim \frac{1}{(z-w)^{2}}$.

Example $1 a(z) L(w)=: a(z) L(w):+\frac{a(w)}{(z-w)^{2}}$ for $|w|<|z|$.

Definition 1 $: a_{n} L_{k}:=a_{n} L_{k}$ for $n<0, L_{k} a_{n}$ for $n \geq 0$.

So

$$
\begin{gathered}
a(z) L(w)-: a(z) L(w):=\sum_{n \geq 0, k \in \mathbb{Z}}\left[a_{n}, L_{k}\right] z^{-n-1} w^{-k-2} \\
=\sum n a_{n+k} z^{-n-1} w^{-k-2}=\sum n z^{-n-1} w^{n-1} a_{n+k} w^{-n-k-1} \\
=\left(z^{-1} \sum_{n \geq 0} \frac{n w^{n-1}}{z^{n}}\right)\left(\sum a_{l} w^{-l-1}\right)=\frac{1}{(z-w)^{2}} a(w) .
\end{gathered}
$$

So $a(z) L(w)=: a(z) L(w):+\frac{a(w)}{(z-w)^{2}}$ for $|w|<|z|$ and $L(w) a(z)=: a(z) L(w): \frac{a(w)}{(z-w)^{2}}$ for $|w|>|z|$. Then $a(z) L(w) \sim \frac{a(w)}{(z-w)^{2}}$.

