
Dennis Sullivan Course Notes

May 2, 2005

Gabriel C. Drummond-Cole

May 2, 2005

Okay, this looks like the beginning of our course, right? I got them up to Riemann branched
coverings, but they’re very shaky, these undergraduates.

Let’s discuss applications of this cohomological obstruction theory.

Say we have a Cn bundle over some space, and we’re looking at the 2k-skeleton. We want to
find a nonzero section. We can normalize it to be unit length so it lives on S2n−1. We know we
can build sections up to but not including the 2n-skeleton, because we’ll get an obstruction
on the 2n-cell, this element of π2n−1. If we’re on the 2n−2-skeleton, any two of these sections
are homotopic. You’re going to have a 2n− 2-cell, and sort of by induction, if you have two
sections, if you try to build a homotopy between them, this is in H .(X × I,X × ∂I;π.−1Y ).
But this is just the suspension of X, so the cohomology groups are just shifted. The first
place you meet a problem is again the 2n-skeleton. The homotopy on a 2n−2 skeleton would
be 2n− 1, so there’s no obstruction.

Hello? Hi. Oh, wonderful. Oh.

Let’s just remember that now. Consider the 2k-skeleton where k is fixed, and now vary n,
for n > k.

I want to define ck of a Cn bundle. So cn will be the Euler class in H2n(X,Z = π2n−1S
2n−1 =

π2n−1(Cn\{0}). This is done. Forget it. It’s done. Forget it. Now I want to define ck for
k < n. The statement is, if n > k then 2k ≤ 2n − 2. Okay, so now, given this bundle E I
can find a section on the 2k skeleton unique up to homotopy. I can look at the orthogonal
complement. So I write En as the trivial bundle, direct sum with En−1. Now if this is still
greater than k, I can find a new section and split it off. It’s again unique up to homotopy.
You keep doing this until you can’t any more, and then you take the Euler class of that
bundle. That’s ck.

This argument does not work as is for the real case, which would define Stiefel-Whitney
classes. If you split off a complex line you lose two dimensions so you get this uniqueness.
You have to use an associated frame bundle for that.
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You need to write out the homework to understand, well, unless I explain it better, but that’s
no good either because the things you understand best are the things you learn yourself.

The Stiefel-Whitney classes are cool, but these ones appear all over the place, the Chern
classes.

The mod two classes, some of them are really neat and all that, but somehow not as important
for the gross national product.

[Do you get the same thing in other categories, smooth or holomorphic bundles?]

Not for holomorphic; holomorphic sections are another game, it uses sheaf theory so I’m not
discussing that.

If you can build a continuous section, you can build a smooth section by averaging over a
translation. The proof is something like Sψ(x) =∈ ψ(x + y)φ(y)dy =

∫
ψ(y)φ(y − x)dy.

You have to set up some kind of convexity. So let, you define the total Chern class to be
1 + c1 + c2 + . . . , working in the direct sum of the cohomology groups. If E is a Rn bundle,
you define P (E) = 1 + p1 + p2 + . . .+ pi ∈ H4i(X,Z) by PER = C(ER ⊗R C).

You should be asking questions. In words, the Pontryagin classes of a real bundle are defined
to be the even Chern classes of the complexified bundle, so piE = c2i(E ⊗R C) ∈ H4i(X,Z).

The vector space E ⊗R C has a property. You somehow only care about even terms. The
odd ones have order two for some reason, the full classes are the Pontryagin classes and the
Stiefel-Whitney classes wi ∈ Hi(X,Z/2). Everything else is torsion, I don’t remember. You
can think of i as rotating either way; there’s an isomorphism ER ⊗R C ∼= ER ⊗R C̄.

Exercise 1 The c2i+1(e⊗R C) have order two in H4i+2(X,Z).

[What if you tensor with a nontrivial complex line bundle?]

That’s a good point. Suppose you have a bundle with fiber C, and then forget and say it’s
just an oriented R2-bundle. The first Chern class of a C bundle is the Euler class. But what
is the Pontryagin class? You go to C2 = R2 ∼= C. Now we take c1 and c2 of this. The point
is that R2 ⊗ C ∼= C⊕ C̄.

If you take a secretly complex real vector space and tensor it with C, you have two complex
structures, and the second is isomorphic to VC ⊕ V̄C.

A complex structure is the same as having an operator J which squares to the identity, which

means you can find a basis where the operator looks like blocks of
(

0 −1
1 0

)
. So if you look

at the conjugate complex bundle, C(Ē) = C(E) = 1− c1 + c2 − . . . Then you can work hard
and get the Whitney sum formula, C(E1⊕E2) = C(E1)C(E2). If you apply that here, if you
start from a C-bundle and forget and then complexify, you get EC⊕ C̄, which has Chern class
(1 + c1 + c2 + . . .)(1− c1 + c2 − . . .). When we multiply this out, we get p1(EC) = 2c2 − c21,
so p1 of a complex line bundle is −c21.
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The first Chern class, the extra information is an orientation. ±c1 are going to have the same
square. To take the square root you need the orientation.

There’s a famous formula. If you have a four-manifold, the second homology, if you look
at H2(M4), simply connected maybe, and oriented. The homology is ⊕kZ in the second
place, and zero then Z below and above. Then you have the intersection matrix aij . The
signature is the difference between the number of positive and negative eigenvalues. Now
sig M4 = − (p1(M

4),M4)
3 . Now say this is secretly a complex manifold, e.g., CP2. This has Z

in its middle homology and intersection matrix [1]. So p1/3 = 1 up to a sign, so p1 = ±3. Now,
c2 ∈ H4 and c1 ∈ H2 of the (complex) tangent bundle is the Euler class, which, evaluated
on the fundamental class, is the Euler characteristic, is 3. So c2 = 3. But p1 is going to be
2c2 − c21. So we get that p1 should have been −3 so that c21 = 9 and c1 = ±3.

Now, I never know whether it’s ±3; algebraic geometers have some sort of convention. You
get an interesting condition that, suppose you have a four manifold, and you want to know
if its real tangent bundle is complex. You have to be able to write −3sig = 2χ− c21, so you
get c21 = 3sig + 2χ. This is an integer you can compute given a 4-manifold, and you have to
be able to find a vector whose square (under the quadratic form) is this number. If you can
do it, well, Witten, doing something in quantum field theory, came up with the expression
3σ + 2χ doing some σ-model of string theory or something, I forget. If you can do this,
it’s a cohomology class. It has to have another property, c1 ∈ H2(M,Z) so c1 mod 2 is in
H2(M,Z/2) so c1 ·x = x∪x. Remember the Wu class? c1 has to restrict to this element and
then its square has to be given by this formula. That’s a necessary and sufficient condition.

So I was going to mention some more about that, because there’s a great research problem,
let’s talk about the existence, I’m going to do manifolds of dimension two, four, and six.
When does the tangent bundle have a complex structure?

In two, it’s if and only if the manifold is orientable. If it’s orientable, let rotation by ninety
degrees be the J-operator. This is a specialization of every orientable R2 bundle being
complex. The splitting in higher dimensions has to respect the higher differential.

Now go to four, and suppose you have a four dimensional space, and you consider on R4 all
possible Js, and you make a bundle over the manifold, over each point you put the set of J
applied to the tangent space at that point. You can imagine that we have a metric and J
is orthogonal. Fix a vector in R4, our J takes this into a point on S2 in the complement.
Then an orientation on the remaining two dimensions gives us a complex structure on the
remainder. The set of all J is thus S2.

So this is an S2 bundle over M4. So the first obstruction is in H3(M,π2S
2) = H3(M,Z). If

this is zero, you get a second obstruction in H4(M,π3(S2)). The first Chern class is u, where
δc = 2u.

You have to compute that this is the second obstruction. This is some work. The sixth case
is a magic dimension and everything is easier. There are these Calabi Yaus and these other
manifolds, which are seven dimensional, but seven is close to six. So what is the space of J?
Fix a vector, and then the set of all J maps to S4, and the orthogonal complement is R4.
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So this space is a fibering of S2 over S4. So J2 is a point, J4 is S2, and J6 is a six manifold
fibered over S4. I don’t have time to look at the homotopy groups of this, but as a small
miracle, J6 is diffeomorphic to CP3, complex lines in C4. So C4 is the quaternionic plane H2,
so there’s a map to quaternionic lines which are S4, and that’s the map.

That has to be proven, but each line cuts the unit sphere S7 in a circle. So S1 → S7 fibers
over CP3. Looking at homotopy groups, S1 has one Z and then is zero forever, and soCP2 has
a Z in dimension two and then matches S7 from there on up. The first obstruction is thus
in H4(M6,Z). Can you fine c1 which reduces modulo two to w2, the second Stiefel-Whitney
class.

This is the first obstruction, an element of order two. It’s the obstruction to lifting the second
Stiefel-Whitney class to a Z-class. So if H3(M6) has no 2-torsion, we can go on. We get the
next few for free, and because you go up a dimension you not only get existence, you get
uniqueness. The only question is then the w2 lifting question. So S6 has an almost complex
structure, this is a famous thing. There’s a famous open question of whether it admits an
actual complex structure. Everyone thinks it doesn’t. Chern said he had a proof before he
died, but it wasn’t convincing to Griffiths, I think. When I was a graduate student this was
presented as strange, but any orientable M6 with w2(M6) the reduction of a Z class has one.
Almost all of them do.

Oh, I was a little wrong; you need a choice of components of almost complex structure
corresponding to a choice of first Chern class.

Here’s a whole bunch of problems here; are there any further topological conditions on this
having a complex structure? Having a nondegenerate 2-form is [[unintelligible]] about having
a symplectic structure, but there are more topological invariants.

You have almost complex and almost symplectic, which are the same. It’s a nondegenerate
two form. Whether this is symplectic is the linear question of whether this is closed; the
complex question is dJdJ + JdJd = 0. If both are true and compatible, you have K ahler
manifolds. You discuss mirror symmetry in this part.
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