Dennis Sullivan Course Notes
 March 18, 2005

Gabriel C. Drummond-Cole

April 15, 2005

Actually, you guys should prove this exercise.

Exercise 1 Let $\Lambda=\{\lambda\}$ be any subset. Let L_{λ} be a straight line passing through λ and not vertical; suppose there exists an $\epsilon>0$ such that for $\lambda_{1} \neq \lambda_{2}$ then $L_{\lambda_{1}}$ does not intersect $L_{\lambda_{2}}$ for $-\epsilon<x<\lambda$. Then if $\bar{\Lambda}$ is the closure of Λ, the system of lines for Λ extends uniquely to a system of lines for $\bar{\Lambda}$ with the same ϵ-disjointness property.

All right, so we have these four dimensions, $4 i+2,4 i-1,4 i, 4 i+1$. In the middle dimension we then have F with skew-symmetric \rangle, T with symmetric skew-symmetric \rangle, F with symmetric \rangle, and T with skew symmetric \rangle.

In the last case we have $A \oplus A \oplus \mathbb{Z}_{2}$ or $A \oplus A$. In the first case we have that F has even rank and things pair up canonically as $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$; in the third case we have a symmetric matrix; in the second we had things like $\left(\begin{array}{cc}\epsilon_{1} & 1 \\ 1 & \epsilon_{2}\end{array}\right)$ and in the fourth $\left(\begin{array}{cc}t & 1 \\ 1 & t\end{array}\right)$ for order two $t \bmod 2^{n}$, and lines.

The realization theorem I think is the following. I'm 100% sure it's true, and I have 98% of a proof.

For $4 i+2$ all are realizable by closed manifolds. All $4 i-1$ are realizable as well. This is a little harder. For $4 i$, this is pretty interesting. There's a natural partition in $4 i-1$; type one means some $a_{i i}$ is odd. The other is all $a_{i i}$ are even. It's not so easy to write down a matrix
of determinant one where all the diagonals are even.

$$
\left(\begin{array}{llllllll}
2 & & & 1 & & & & \\
& 2 & 1 & & & & & \\
& 1 & 2 & & & & & \\
1 & & 1 & 2 & 1 & & & \\
& & & 1 & 2 & 1 & & \\
& & & & 1 & 2 & 1 & \\
& & & & & 1 & 2 & 1 \\
& & & & & & 1 & 2
\end{array}\right)
$$

Anyone ever taken a determinant of an 8×8 matrix?
[I've done it on a computer.]
I've done a four by four. There's an eight dimensional manifold related to E_{8} whose boundary is combinatorially equivalent to the sphere, but an exotic seven-sphere. It has this as its intersection matrix.

Show the determinant is one.
So over $4 i$ type two is realizable in all dimensions. Type one is realizable only in dimensions four, eight, or sixteen.

For $4 i+1$ let's call the extra $\mathbb{Z} / 2$ type I and the lack of it type II. Then type one is realizable only for $i=1$ in dimension five. I proved that a realization is diffeomorphic to the manifold $S U(3) / S O(3)$.

The rest later.
I'm not saying, for $4 i$, that you can get these smoothly; I'm only saying it combinatorially. I'm only saying it for topological manifolds. People are still hammering away at dimension four. The K_{3} surface is like the torus, a very simple object. It's a simply connected fourmanifold with second Betti number 22. It has matrix two E_{8} and three of the simple planes. There's a whole school of mathematics that tries to get rid of the plane blocks.

I'll just give you a construction that gives something in dimension four, but not a manifold. I think I gave the construction. Take a $4 i$-ball and glue on $2 i$-handles.
[lost]

