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I’m going to talk about cohomology operations, and give the sort of basic example of them,
which is Steenrod squares, and then I’ll find the Wu class and the Stiefel-Witten classes, and
on Monday I’ll talk about Thom; his Fields medal in 1958 was for showing that a mnanifold
was a boundary basically only if these things all vanish.

1 cohomology operations

Definition 1 A cohomology operation is a natural transformation of functors Θ : Hm(·, G) →
Hm(·, G′) so that the appropriate diagram commutes:

Hm(X, G) Θ // Hn(X, G′)

Hm(Y, G)

f∗

OO

// Hn(Y,G′)

.

There are a few obvious ones and they’re actually the only obvious ones.

Example 1 • a group homomorphism φ : G → G′.

• δ : Hn → Hn+1

• x 7→ x ∪ x.

Note that as in the last case, these need not be ring homomorphisms.

Now I want to give a more concrete example. Those who took Dusa’s class last spring will
remember that we had this as the definition of cohomology.
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Hn(X, G) is set-isomorphic to [X, K(G, n)] where πn(K(G, n)) = G and the other homotopy
groups are zero. G is a finitely generated Abelian group. This space is unique up to homotopy
type. The only example I’m interested in is G = Z/2. Brackets denote homotopy classes of
maps from the first to second argument. I’ll give the correspondence but will not prove it to
be a bijection.

We have the Hurewicz homomorphism h : G = πn(K(G, n)) → Hn(K(G, n)), which is
an isomorphism because there is no other homotopy, i.e., it’s n − 1-connected. Since this
an isomorphism its inverse h−1 ∈ Hom(Hn(H(G, n), G)) ∼= Hn(K(G, n), G). Now if I call
ω = [h−1] then f corresponds to [f∗ω].

So now I claim I don’t have to define this operation for all spaces and all coefficients, I just
have to define it for ω on K(G, n). That is, there exists a bijection between cohomology
operations and Hn(K(G, n), G′).

How do I want to prove this? If I have a cohomology operation Θ it acts on ω to give Θ(ω).
I claim that this is a bijection, and well-defined. Suppose α ∈ Hm(X, G), that’s the same
as having fα : X → K(G, m), and Θω ∈ Hn(K(G, m), G′) so Θω : K(G, m) → K(G′, n).
Composing these gives me the map I want.

The next claim is that every cohomology operation arises in this way, and that is because of
naturality.

If I have a cohomology operation Hm(·, G) → Hn(·, G′), and β ∈ Hm(X, G) then that
corresponds to fβ : X → K(G, m) and Θ(β) = Θ(f∗βω) = f∗β(Θ(ω)).

That characterization tells us something about cohomology operations that we didn’t know.
They can’t lower dimension, and can only fix dimension if they are a group homomorphism
because Hm(K(G, m), G′) = Hom(Hm(K(G, m)), G′) = Hom(G, G′).

Now I’ll define Steenrod squares:
Sqi : Hn(X, Z/2) → Hn+i(X, Z/2)

1. naturality

2. stability: σ : Hn(X) → Hn+1(ΣX)

3. ring homomorphism: Sqi(α+β) = Sqi(α)+Sqi(β); Sqi(α∪β) =
∑

j Sqj(α)∪Sqi−j(β)

A few of these are easy. Sqi(x) = x if i = 0; Sqi(x) ∼ δx if i = 1. There is a short exact
sequence 0 → Z2 → Z4 → Z2 → 0 We can take Hom and get

0 → Hom(·, Z2) → Hom(·, Z4), · · ·

[argument ensues.]

It is x2 = x ∪ x for i = dim x. It’s 0 for i > dim x.
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[Keep going, do whatever you want.]

The main thing that I wanted to say was to give some idea of where these things come from.
I’ll draw the picture that Dennis would draw. He’s going to draw that picture.

[A circle with two hemispheres attached?]

[That’s a crappy picture.]

I’ll try to explain that a little bit better. I can think of x ⊗ x ∈ Hn(X) ⊗ Hn(X) so
x⊗ x ∈ H2n(X ×X).

Now T : X ×X → X ×X swaps factors; So x⊗ x corresponds to a homotopy class of maps
from X ×X → K(2n, Z2).

I claim that this is homotopic to (x⊗x) ◦T : X ×X → K(2n, Z2). So then that homotopy is
a map I×X×X → K(2n, Z2). This is a homotopy f and I can also look at f ◦(id×T ) Pieces
these together and get a map from S1 ×X ×X → K(2n, Z2). This is contractible, so I can
fill in the homotopy and extend to D2 ×X ×X → K(2n, Z2). I use this to prescribe a map
on “the other side” by (s, x1, x2) ∼= (−s, x2, x1). This gives me S2 × X × X → K(2n, Z2).
I continue and only run into trouble at 2n. I claim I can get around it and get a map
S∞ ×X ×X → K(2n, Z2).

[How do you get around the obstruction?]

It’s not obvious that you can. The homotopy is only Z/2, so you can’t miss it by a lot. The
original map is injective.

[discussion.]

Now I’ll say how to use such a map to get Steenrod squares. I defined this so that it respects
antipodes so this will pass to the quotient RP∞.

S∞ ×X?� OO

��

S∞ ×X ×X // K(2n, Z2)

RP∞ ×X > @[rru]//

So H∗(RP∞, Z2) ∼= Z2[τ ], τ of degree one.

So α ∈ H2n(RP∞ ×X, Z/2) we can write fα⊗α =
∑

j τ2n−j ⊗ aj ; then Sqj(α) = an+j .

α ⊗ α is in the 2n cohomology of X × X. Then the above diagram shows how to get the
diagonal map of which I take a Kunneth decomposition.

I’m going to write down one thing and then we’ll all leave.

I have the pairing on cohomology of a closed manifold, Hn−i × Hi → Hn(M) ∼= Z2. So
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Sqi ∈ Hom(Hn−i, Z2). Then we can say, there exists Vi such that Vi ∈ Hi with Vi∪x = Sqi(x)
for all x ∈ Hn−i(M).

Then Wk =
∑

i+j=k Sqi(Vj)
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