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For those of you who can’t figure it out or don’t know, I’m not Liz Boyland. It is my great
pleasure to welcome you here to this conference in honor of Joan. It’s very nice to see how
many young people there are here. Her dedication to her students has been a constant during
her career here. I think this is a great tribute to her, the number of her old students I see
here. I think we owe her a round of applause.

1 Dale Rolfsen: Are 3-manifold groups virtually order-
able?

I’ve known Joan a little less than thirty years. She wrote her wonderful book and I wrote
a book at almost the same time. Neither of us knew about each other and it’s a shame,
because I should have referred to her book in a number of places.

I was working on the problem that Luis Paris will be talking about, a conjecture of Joan
about a certain map from the singular braid group into the group ring of the braid group.

We were working on this, and when you’re working in a ring and you want to do calculations,
if you have xy = xz and you want y = z then you can’t have zero divisors or you’re in
trouble. No one knew if the group ring of the braid group had zero divisors. One good thing
about left-orderable groups is that we do know that their group rings have no zero divisors.
We never solved this but Luis did. So Joan suggested this, she has a knack for suggesting
exactly the right things.

There are connections between the structure of 3-manifolds and properties of their groups. I
like to talk about questions because that gets people more excited.

I chew my fingernails so I have trouble opening things.
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Suppose G is a group and < is a strict total ordering on the elements of G. Then we say that
G is left ordered if g < h implies fg < fh. We say that G is classically orderable, and this
goes back to the beginning of the century, if also g < h implies gf < hf. The prototype is the
additive integers, additive reals, but lots of other groups are biorderable. Many interesting
nonabelian groups are orderable, and many of them are not, too.

The first observation is that left orderable group implies torsion free. If g > 1 then g2 > g
and inductively gk > 1 for all k.

Orderable implies unique roots, which is a stronger condition. This is because if g < h
and g1 < h1, then you can multiply inequalities in an orderable group; I’ll leave that as an
exercise. Then gg1 < hh1. Therefore g < h implies gn < hn. So powers of distinct things will
never coincide.

This is definitely not true in general in left ordered groups.

Let’s see, what am I going to talk about next?

[Does unique roots and left orderable imply orderable?]

Probably not.

[This depends on <, right?]

Well, this is universalized by talking about orderability. G is left orderable if there exists a
P such that PP = P and G\{1} = P q P−1. G is orderable if and only if the above and
gPg−1 = P for all g.

If G is left orderable you take P to be the elements greater than 1; if you have these semigroups
then f < g if f−1g in P.

Think of the Gaussian integers. You can order them lexicographically, or you can choose any
cone. Choose a line through the origin with irrational slope and take everything on one side
as P. So there are uncountably many of these.

There is a natural topology on the set of orderings, which is in general an uncountable totally
disconnected compact set, like a Cantor set.

Theorem 1 (Farrell)
If X is a space with a universal cover and π1(X) countable, so not Hawaiian earrings or
something like that, then π1(X) is left orderable if and only if you can embed the univer-
sal cover X̃ ↪→e X × R, which is respectful of the projections, i.e., such that the diagram
commutes:

X̃

p

��

e // X × R
π1

{{xx
xx

xx
xx

x

X
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So take a point in x, lift to the cover, and then push across to X × R and order by R. The
other direction is more interesting, but we won’t go into it. I don’t know too much about
applications of this.

[Is there a geometric understanding of this?]

One very nice left orderable group is the space of homeomorphisms of the real line Homeo+(R),
so orientation-preserving. This is left-orderable. One way to see it is to take your favorite
well-ordering of the rationals. Look at the first rational upon which the values of the two
homeomorphisms disagree, and compare their values on that rational. It’s sort of lexico-
graphical.

If you have a group which is countable |G| ≤ ℵ0, then G is left orderable if and only if
G ↪→ Homeo+(R). It’s a very big group; it contains all of the left orderable groups I’m going
to talk about.

Before I get to 3-manifolds, let me talk about surface groups, G = π1(Σ2). By a surface,
I want to assume it’s at least a metric space, I don’t want the product of the long line
with itself. I want everything locally homeomorphic to the plane or half-plane, and let’s say
connected.

If the surface is noncompact or the boundary is nonempty, then π1(Σ) is free, and it turns
out that a free group is not only left orderable but orderable. This is not obvious but I don’t
have time to give a proof.

If it’s compact with no boundary then it is a closed surface and those are classified. For Σ
the sphere you have a trivial group, which is orderable. RP2 is finite so not orderable. The
next nonorientable surface, the Klein bottle 2P2 has K = π1(2P2) = 〈x, y|xyx−1 = y−1〉 =
〈a, b|a2 = b2〉. If you set y = 1 then this maps K → Z. Then the kernel is also freely generated
by y, so you get the exact sequence 1 → Z → K → Z → 1. This property is closed under
extensions, we now see, which is a fancy way of saying that if the kernel and cokernel are left
orderable then so is the thign in the middle.

You use the ordering on x first and if two things agree you use the ordering on y.

So then you can see immediately that K is not orderable, since a2 has a nonunique root.

All other surface groups are O-groups. A paper came out in 1942, the year I was born, in an
Indian journal, that said you could not order nonorientable manifold groups. It was thought
that such groups have this type of relation. Only two years ago, a partner and I came up
with an argument that all such are ordered.

[How to do it for a surface of genus two?]

This problem reduces to ordering π1(3P2), which we all know is T 2#P2. So say you remove
a disk from T 2 and sew in a Mobius band. Clearly anything nonorientabl with higher genus
covers this. So gP2 covers 3P2. So π1(gP2) ↪→ π1(3P2), so if this last is orderable so are all
the others.
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You can also cover with the oriented group, via a double cover, and so this gives all surfaces
of higher genus.

Take the picture of the universal cover of the torus, and put a crosscap at every half-integral
point. So this gives a covering Σ̃ of Σ. This is an infinite surface, so has π1(Σ̃) free and is
generated by xij , where this comes from the ij crosscap.

Then you have a short exact sequence 1 → π1(Σ̃) → π1(Σ) → Z2 → 1. You need to know
that this order is invariant under conjugation.

That was kind of sketchy, I didn’t want to take the time to do it, but since Joan asked I did.

[Are there conditions on a covering space to say that the group of a space is orderable if the
group of the cover is orderable?]

The question I want to ask is whether a 3-manifold group has a finite index subgroup which
is orderable?

So what about 3-manifold groups? Well, it turns out that with two exceptions all surface
groups are totally orderable. But there is a theorem, I’ll call it the fundamental theorem of
orderability for 3-manifold groups.

Theorem 2 Assume M3 is a compact connected 3-manifold, possibly with boundary or
nonorientable. Without loss of generosity, as one of my students once said, assume it’s
irreducible (every tame 2-sphere bounds a ball) or P 2-irreducible if not compact. This is
without loss of generosity because orderability behaves well with respect to free products.

With M as above, π1(M) is left orderable if and only if there exists a nontrivial homomor-
phism π1(M) → some left orderable group.

One direction is obvious; the other is astonishing. This isn’t true for a group in general. The
proof actually uses some real 3-dimensional topology, you need Peter Scott’s compact core
theorem, which says a noncompact manifold with finitely generated π1 has a compact core
carrying the topology.

Corollary 1 If β1M > 0 then π1(M) is left orderable, because you just take the Hurewicz
homomorphism to H1(M). So all irreducible 3-manifolds with positive first Betti number are
left orderable, e.g., all knot groups.

Corollary 2 Suppose M3 is a homology sphere, so that the first Betti number is zero and
there is no torsion, and is Seifert fibred, then either M is the Poincaré manifold Σ(2, 3, 5) or
else π1(M) is left orderable.

The reason is that you take, Seifert fibred means you’re filled with circles. There’s a map
from π1(M) to πORB

1 (B) where B is the base orbifold. This kills the class of a generic fiber.
This latter embeds in PSL2(R). With the exception of Σ(2, 3, 5), the others have hyperbolic
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structures so map accordingly like this:
π1(M) → PSL2(R) nontrivially, and since there is S̃L2(R), the solid torus SL2(R) has a
universal cover and double covers PSL2(R). Because there is some trivial homology the map
lifts

S̃L2(R)

��
π1(M)

t
t

t
t

t
// PSL2(R)

where this universal cover acts on R so that it injects into Homeo+(R). So we have lots of
left orderable 3-manifolds. What isn’t? We’re going to have torsion free irreducible Haken
manifolds.

Let Q be the oriented I-bundle over the Klein bottle. This is also the mapping cylinder of
the double cover cyl(T 2 → K2).

Now the boundary of Q is the boundary torus T 2, and π1(Q) is π1 of the Klein bottle, so is
〈a, b|a2 = b2〉, and π1(∂Q) = 〈a2, ab〉, and let’s call these the meridian and longitude. Then

M3 = Q ∪h Q1, where h : ∂Q → ∂Q1 has matrix
(

p q
r s

)
.

All of these has torsion free fundamental group; it is K ∗Z2 K, and an amalgamated product
of torsion free groups is torsion free. You can use the normal form of words or something
like that.

Suppose p and q are positive but r and s are negative. Then I claim that π1(M) is not left
orderable. Let me write a presentation for π1(M). This is 〈a, b, a1, b1|a2 = b2, a2

1 = b2
1, a

2
1 =

a2p(ab)q, a1b1 = a2r(ab)s〉.

Suppose this is left ordered. I claim a and b have the same sign. a is bigger than the identity
if and only if a2 is. Suppose both are positive; then if p and q are positive, so is a2

1, and
thence a1. But r and s negative implies that they have different sign, a big contradiction.

So we can’t order any of these groups.

Let me just point out that H1(M) is finite, |H1(M)| = 16|p + q − r − s|. These are rational
homology spheres but not homology spheres, there are an infinite number of these guys and
they all have torsion free non-left-orderable fundamental groups. It’s Haken because the torus
is incompressible; this is the JSJ decomposition. It’s nonhyperbolic because of the torus.

Let me just leave you now with this question:

Is π1(M3), say with the same hypotheses as above, virtually orderable. The answer is yes
for Seifert fibred manifolds and others, for seven of the eight geometries. We don’t know for
hyperbolic.

Is π1(M3) virtually left-orderable? Virtually means there is a finite index subgroup with that
property.
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Why are these questions interesting? If you have an orderable group which is finitely gen-
erated then its first homology is nontrivial, in fact infinite. Yes to question one implies the
virtual first Betti number conjecture.

One way of saying that is that an irreducible 3-manifold has a finite cover which is orderable.
And this other conjecture implies yes to question two.

[Can you talk a bit about foliations?]

Suppose you have a taut foliation; there is a closed curve in the manifold intersecting each
leaf once transversally. Then π1(M) is left orderable.

The reason is, look at the universal cover; this inherits a foliation M̃, F̃ , which has leaf space
R. Then π1(M) acts on M̃, F̃ , and therefore R. So π1(M) → Homeo+(R), with kernel a
surface group because if it acts trivially on R it acts on the leaf. The kernel and cokernel are
left-orderable.

Some people produced a family of hyperbolic manifolds whose groups are not left-orderable,
so they don’t support taut foliations. The famous manifold of Jeff Weekes, its group is not
left orderable so it does not support a taut foliation.

[Let’s thank the speaker again and meet down here in fifteen minutes.]
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