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1 Nate Broaddus (Braids and Links)

I’m glad to be here to honor my teacher Joan. Today we’re going to be talking about braids,
which are nice because they have a very intuitive picture. Think of them as strings that
always move to the right. I can multiply two braids together (if they have the same number
of strands).

This was the definition that Artin gave, which dates back to 1925. The group Bn is the
group of braids on n strands.

Now, just pictorially, if I reflect a braid through the vertical axis at the end, you can see that
each braid has an inverse, because you can flatten out to the identity in Bn.

An actual definition is given by looking at configuration space. The configuration space on
n points in C is Cn̂ = {(z1, · · · , zn) ∈ C|zi 6= zj for i 6= j}. So this is Cn −

(
n
2

)
hyperplanes

given by zi = zj . So now the pure braid group is π1(Cn̂).

The configuration space of n unordered points is Cn = Cn̂/Σn, where Σn is the symmetric
group acting on the Cn by permuting coordinates [?]

Definition 1 Bn = π1(Cn, ∗), and often we choose the basepoint to have all the points on a
line, but that’s arbitrary.

How do we get from this definition back to the picture we started off with? A loop inside this
configuration space allows the points to trace out paths, and in the end we have to return
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to the picture with our points in a nice straight line, and the points trace out paths which
never touch. This gives us a picture of a braid.

Artin gave, again, early on, in 1925, a presentation for the braid group, with generators σi

where σi is going to be a braid where the i strand crosses over the i + 1 strand. So the
generators will be σ1 through σn−1.

There are two types of relations. There are commuting relations σiσj = σjσi if i and j are
not adjacent, |i− j| ≥ 2. There are also braid relations, σiσi+1σi = σi+1σiσi+1.
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There is a very important representation of the braid group onto the symmetric group
Bn → Σn by only remembering an ordering on the starting and ending points. Another
representation which can be thought of as a deformation of this representation is the Burau
representation.

The braid group acts on the n-times punctured disk Dn up to isotopy. Now we have the
Hurewicz map from π1(Dn) → H1(Dn) ∼= Zn, and we can map this to the integers by sending
(a1, · · · , an) →

∑
ai. I’m going to call the map π1(Dn) → Z the winding number.

Now the kernel of this map w corresponds to a cover D̃n. Remember that Bn acts on the
disk. If I wrap around a puncture n times, then after doing the isotopy the winding number
isn’t going to change, so Bn fixes the kernel of w. Then Bn acts on D̃n. That tells us that
it acts H1(D̃n). Now, D̃n looks like a crazy parking garage. It has Z levels, and we’ll slit it
between the points. If I wind around k points and cross a slit, I emerge k levels up. This is
a picture suggesting what D̃n should be.

The covering transformations are generated by shifting everything upwards once. That makes
H1(D̃n) a Z[t, t−1]-module. It turns out to be a free module of rank n− 1. The n− 1 comes
from the fact that, you get rid of one, if you had one pucture this thing would correspond to a
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straight line. So if we fix generators for H1(D̃n) as a Z[t, t−1]-module, we can get matrices for
Bn, (n−1)× (n−1) matrices. Then those matrices are going to look almost exactly like the
matrices for the representation of Bn into Σn, where this is the set of permutation matrices.

The only difference is that σi, instead of going to the permutation matrix


I

0 1
1 0

I


it goes to the matrix


I

1− t t
1 0

I

 . Actually, when you reduce the dimension by one,

you get slightly different matrices, but I wanted to show that when t = 1 you get Bn → Σn,
these representations agree.

Now let’s talk about the Lawrence-Kramer representation. We have Dn again, and now
C = {{x, y}|x 6= y and both are in Dn}. Now Φ : π1(C) → 〈q〉〈t〉 ∼= Z2. If we ignore
punctures of Dn, then we get a 2-braid α = σb

i .

If we include the puctures of Dn then α gives a n + 2-braid. Writing this as a word in
σ1, · · · , σn+1 and summing exponents we get b′ where Φ(α) = qatb, where a = 1

2 (b + b′).
Acting on Dn by the praid group will produce an action on H2(C), which is a Z[q, t, q−1, t−1]-
module. This action gives the Lawrence-Kramer representation, and Bigelow showed, and
also Kramer, that the representation is faithful, i.e., has trivial kernel. Bigelow also showed
that for n > 5, it had been shown before him, but the Burau representation isn’t faithful.

I want to move on to closed braids. Connecting the two ends of the braid with noncrossing
arcs gives a link in S3. We usually choose an S1 ⊂ S3 as the braid axis, and we have to
continually move, in this case, counterclockwise around the braid axis.

So Markov came up with some nice simple moves, a simple set of moves which take any
closed braid representing a link L to any other braid representing L.

The moves allowed are braid isotopies where you sent the braid b to cbc−1, which doesn’t
change the knot type, and the other moves are stabilization and destabilization. Stabilization
is going to increase the braid index:

??
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??
?
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Destabilization is the reverse.
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For computational algorithms involving braids, increasing the braid index causes slowdown.
So Joan Birman and Bill Manescu showed that given any link, there are a different set of
moves, a larger set, we can take any link to one with minimal braid index by taking these
moves and not increase the braid index along the way.

I’m running out of time. [He is out of time, over by two minutes.] Some very important
combinatorial problems are the word problem and conjugacy problem. Artin solved the word
problem. Garside solved it in a better way. He found a structure in the braid group that has
been generalized quite a bit to a set of axioms.

The word problem is, given a word in the generators, decide if it is the trivial element. I
think I’d better stop. The conjugacy problem has been solved but solutions are pretty slow.
The word problem, the solution is very fast. The conjugacy problem is to find if two words
are conjugate in the group.

[Are there any questions for Nate, who is from Cornell, I forgot to say. The next talk is in
twenty minutes. Bathrooms are downstairs, up one flight, and up two flights.]

2 Dan Margalit (Mapping Class Groups)

[A few announcements before the next talk. In the back of the book is a list of a few
restaurants and some bars. You should probably go to the restaurants first and not the bars.
I’d like to introduce Dan Margalit.]

I want to get through a lot of stuff, today I’ll introduce things and tomorrow get you ready
for the conference. Here are some references. The first one is “Braids, Links, and Mapping
Class Groups,” it’s not just a conference, it’s a book that Joan wrote, mid 70s, Princeton
Press. It’s important. The second one is called “Mapping Class Groups,” and is Nikolai
Ivanov (at Michigan State). Look at his webpage. It’s “A primer on mapping class groups,”
Farb and Margalit. Email me for a copy in draft form, margalit@math.utah.edu.

I’m going to define the mapping class group in five or six different ways. For today I’ll think
about oriented surfaces. Let S be an orientable surface.

Definition 2 Mod(S) = π0(Homeo+(S)), path connected components of orientation- pre-
serving homeomorphisms in the compact open topology.
This is Homeo+(S)/isotopy. This is Homeo+(S)/Homeo0(S), where these are isotopic to
the identity.

You should be able to see that these are all basically the same thing. Now I’m going to write
down a theorem. I can write diffeomorphism instead of homeomorphism and homotopy or
isotopy to get the same group. This is not true for some low exceptions.

This is a theorem of Baer. Why is this a group? Homeo+(S) is a topological group, and
so π0 is a group. Multiplication is composition up to isotopy class. You can multiply and
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things are nice.

I’m going to say in a second why you would want to think about this group, but first let me
tell you about related groups.

Mod±S = π0(Homeo(S)), so the extended mapping class group includes orientation reversing
homeomorphism. Or you can look at Mod(S, ∂S) = π0(Homeo+(S), ∂S).

Why look at this?

• If you’re studying three-manifolds, take a surface, cross it with the interval and glue
the ends together; the type of the manifold depends only on the isotopy class of the
gluing map.

You can glue together two solid handlebodies along the boundary. This is called a
Hegaard splitting.

• There are connections to Braid and Artin groups

• If you’re interested in Teichm uller and moduli space. I’m not going to talk about this.

• This is related to arithmetic groups, Out(Fn). This is not an arithmetic group.

At the end of the day you study a group because you think it’s fun.

• Mod(D2) = Mod(S2) = 1. This is a non-example.

• A is the cylinder. Now Mod(A) is Z2. The relative mapping class group Mod(A, ∂A)
is more interesting. I can twist one or the other end through 360◦ and get something
nontrivial.

To get this back to the identity you’d need to pass through something not the identity
on the boundary.

This is easy to understand, and is in every surface. It’s just Z. This is called a Dehn
twist. We’ll see that the mapping class group is finitely generated by these. It’s kind
of the goal of the day.

• I’m only talking about orientable, but a cool example is that the twice punctured
projective plane has mapping class group the dihedral group with 8 elements. This was
proven by Mustafa right here.

• Mod(T 2) = SL2Z. This gets harder very quickly. If you want, as an exercise work out
the pair of pants.

Let’s do the torus. Define a map, there is a natural map Mod(T 2) → SL2Z where you think
of this as kind of like Aut(Z2). We’ll call it Aut+(Z2), and secretly know what that means.

In higher genus surfaces, you don’t get a nice action on the fundamental group, but here
conjugation is trivial, which is why I can put Aut and not Out.
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So for surjectivity, you get SL2Z action on R2 desceding to T 2. I should probably put here
that this is a theorem of Alexander. What does injectivity mean? I have an element of the
mapping class group of the torus, and this gives me a trivial action of SL2Z. We pick a
representative that fixes a base point. The things are isotopic to where you started. First,
you have to show that you have an ambient isotopy to straighten the first guy, and then
you have an ambient isotopy that fixes the first guy and straightens the second guy. Then
anything you’re doing on the complement is just in Mod(D2), which is trivial. We need to
show that if f takes (1, 0) and (0, 1) to curves isotopic to them, then f is isotopic to the
identity.

More generally, the Alexander trick is, if C is a collection of isotopy classes of curves and
arcs on S (an arc is an embedding of the interval with endpoints on the boundary) and S\C
is a union of disks and once-punctured disks (with no bigons) [!?] and if f(C) = C then
f = id ∈ Mod(S).

What are the generators? We kow the generators of SL2Z, they’re
(

1 1
0 1

)
and

(
1 0
1 1

)
.

These are Dehn twists, and in general this is generated by Dehn twists. Think in your head
about how what I’m defining gives you these matrices.

Let C be an isotopy class of simple closed curves in S. Choose a representative of C and take
an annular neighborhood A. I can act by my generator of Mod(A, ∂A) on that neighborhood
and act identically everywhere else. Call this TC . If I have another curve passing through,
then I twist that curve around the annulus. We’re going to see that these things generate
the mapping class group.

Is the definition of a Dehn twist okay?

I have to tell a little story, last night I got to my hotel, which is very nice, but I had a little
trouble because it was cold and I wanted to turn the heat up, and to figure out how to turn
the heat on, there was a knob on the top. It had CLOSE and OPEN written on it, but both
arrows pointed from OPEN. So it was hard to tell which was which, but I started thinking
about lefty-loosy, righty-tighty. You might think that the orientation of C would matter for
TC , but it depends only on the orientation of S. This is an important thing to understand.

By the way, the only thing weirder than that in my hotel room was the combination tele-
phone/toilet paper dispenser. Anyway, this is an important thing to understand.

We’ll show, seeing the future, that

Theorem 1 (Dehm, 1920s)
Mod(S) is (finitely) generated by Dehn twists around nonseparating curves.

One of the fun things in mapping class groups is looking at the relations between Dehn twists.

Well, I can start with a pretty easy relation, relation zero

0. Ta = Tb is equivalent to a = b.
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1. i(a, b) = 0 implies TaTb = TbTa, where i is the geometric intersection number.

2. i(a, b) = 1 implies a neighborhood looks like a punctured torus, so TaTbTa = TbTaTb. If
anyone here was at Nate’s talk, this is the “braid relation.” It’s not a coincidence that
this is showing up. If you put parentheses here and move this over you’ll see that Ta

and Tb are conjugate to one another by TaTb so that H1(Mod(S)) is a quotient of Z.

3. The lantern relation relates three particular curves intersecting one another on a four
times punctured sphere, TxTyTz =

∏
Tdi where the di are the twists around the bound-

aries, and this implies that H1(Mod(S)) = 1 for g ≥ 3.

I’m going to leave as an exercise that the matrices represent the twists around the torus.

Okay, so we’ll do a proof of finite generation after Birman.

[Oh, I didn’t do that.]

Joan doesn’t like her name up here. I’m using the Birman exact sequence.

[Dehn did it.]

But I’m using the Birman exact sequence. This is the proof of finite generation after, well, I
read it in Joan’s survey. I’ll say following Lickorish. There are two main ingredients.

Ingredient #1 The Birman exact sequence says that if Sg,n is a surface with genus g and n punctures,
then there is an exact sequence. There’s a map Mod(Sg,n+1) → Mod(Sg,n) by forget-
ting a puncture. The sequence is 1 → π1(Sg,n) → Mod(Sg,n+1) → Mod(Sg,n) → 1.

Ingredient #2 Let a and b be any two isotopy classes of simple closed curves. Here’s an amazing thing.
I can find a sequence of nonseperating curves so that every one is disjoint from the next
one, and I get from a to b. So there exists a = c1, . . . , ck = b where these are isotopy
classes of simple closed curves, such that i(cj , cj+1) = 0.

Let me give the sketch of how this all pieces together.

Embedded in here is Elia’s questions about punctures, I just don’t have time to get to it.
Let f ∈ Mod(S). I want to write it as a finite product of Dehn twists. Let a be an isotopy
class of nonseperating simple closed curves on S. Consider f(a). Now f takes isotopy classes
of curves to isotopy classes of curves. Now construct the sequence from ingredient two. The
idea, say, is let’s say the sequence is very short, a and f(a) are disjoint. Then using the
braid relation, I can connect these two with something intersecting each of them once. So I
can take f times a product of Dehn twists that fixes a. The idea is to apply induction plus
ingredient number one. This isn’t really a proof. You can piece it together and sit down for
a much longer time and write down a proof.

[Any questions?]

[Relations zero and one are if and only if. What about the others?]
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Two is, from fTaf−1 = Tf(a) and t(Tab, b) = u(a, b)2. For three, that’s something I did for
my thesis, thanks for asking, and you can move backward to the picture like this.

[What about intersection number two?]

If two curves intersect more than once they generate a free group, that’s an if and only if,
that’s what Joan is aiming toward.

[Here’s a question, how come the kernel comes from Dehn twists?]

That’s a great question. If I push a curve around this path, it’s the product of these two
Dehn twists.

There are many other relations, I left off two relations. There are some other cool relations
about squares of Dehn twists.

3 Nancy Wrinkle (Contact Structures)

Can you hear me okay? Can you hear me okay?

Introduction to contact structures

Example: α = dz + xdy, ξ = kerα

Idea: A plane field ξ that twists somuch that ist is nowhere, not even in a neighborhood of
a point, the tangent plane to a surface.

More precisely, a contact structure on a 3-manifold is a nowhere integrable plane field that
can be described by ker α, where α is a 1-form and α ∧ dα 6= 0.

Theorem 2 Martinet, 1971
Every 3-manifold supports a contact structure.

I heard some of you saying that contact structures are kind of like foliations, but this is
more of an anti-foliation. With a foliation, I think α ∧ dα = 0. This is a nice handy way of
visualizing. I have drawn a ray through the origin on the x axis. This is invariant on the
y and z direction. The kernel of the form α is x = − dz

dy . The coordinates y and z in this
description are irrelevant. So the picture in this example totally describes it.

Now I’ll come up with one with r, θ, z, in cylindrical coordinates. So take this picture and
rotate it, like a propeller. So α = dz + r2dθ. You can play the game; locally along a line this
will look the same, but along a ray. It’s rotationally invariant and is the same if you go up
or down. The interesting thing is that these two contact structures are actually the same.

A nice theorem is this theorem of Martinet which says that every (closed oriented) manifold
supports a contact structure. This means that you can fill the 3-manifold with such 2-plane
fields and it’s described by this one-form.

8



The sphere has a nice contact structure given by dz + r2dθ if you add the point at infinity
so that your z axis comes around.

Theorem 3 Darboux’s theorem: Locally all contact structures look alike.

The implication is that all the interesting stuff is of a global nature, i.e., is related to the
global topology of the manifold supporting the structure. So we think slightly bigger.

Contact structures and Surfaces.

The characteristicd foliation of a surface Σ ⊂ (M3, ξ) denoted Σξ is, for all x ∈ Σ, look at

ξx ∩ TxΣ ∆= `x.

Another thing we’ll be talking about later is a smaller set of curves, recently developed, called
dividing curves. These are places where the planes of ξ are orthogonal to the surface. More
details later. You want the plane field to be oriented so that you have a normal.

So this is where the normal of the plane is tangent to the surface.

He asked how quickly the things rotate. I don’t have the words to talk about this yet. You’re
psychic, the next thing is the fundamental dichotomy of contact structures, overtwisted versus
tight. If you have an embedded disk and the contact planes are tangent to its boundary.

This dichotomy is not obviously useful, but Eliashberg showed, I think, in 1989, that:

Theorem 4 Eliashberg
Isotopy classes of overtwisted contact structures on M3 is in bijection with homotopy classes
of oriented plane fields on M3.

So homotopy classes of plane fields are understood, I think it’s a plane field. So we’re
interested in tight ones. So any time you hear a talk about plane fields it’s about classifying
tight ones or recognizing tight versus overtwisted.

I wanted to show what is known. What is classified? Which to we know about the contact
structures on?

• B3, R3, S3, S2 × S1 (Eliashberg)

• T 3 (Kanda)

• solid torus (Maken,Limarov)

• lens spaces (Etnyre, Giroux, Honda)

• torus bundles over S1 (Giroux, Honda)

• circle bundles over Σ (Giroux, Honda)
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• Σ× I/ϕ [with restrictions on genus, Euler characteristic] (Hond, Hazez, Matic, Cofe)

What is open?

• Handlebodies (higher genus)

• Σ× I (higher genus, and without restrictions.

• Seifert fibered spaces as a category

• hyperbolic manifolds as a category

• all Haken manifolds as a category

• There are some manifolds with no tight contact structures; others have infinitely or
finitely many; if the manifold is atoroidal then there are only finitely many tight contact
structures.

What methods do we have?

• Symplectic methods

• Haken Decomposition methods

• Open book decompositions and foliations

I get agoraphobic so I stay in three dimensions, but an easy and common way to construct
them symplectically is, if ω is a closed 2-form on X4 with ω ∧ ω 6= 0.

Definition 3 A closed compact symplectic 4-manifold (X, ω) fills a contact manifold (M, ξ)
if
δX = M as oriented manifolds
and ω|M is an area form on M.

Theorem 5 (Eliashberg-Gromov)
If (M, ξ) can be filled by a contact symplectic manifold then ξ is tight.

Contact Haken Decompositions

Haken decomposition is a decomposition of M into a disjoint union of 3-balls achieved by
cutting along incompressible surfaces. The idea is that we understand these on B3. We have
som tools for understanding them in a neighborhood of a surface. Glue it back up and we
can figure out the contact structure. The problem is what if we lose an overtwisted disk.

The partial solutions are gluing theorems, understanding isotopies of the cutting surfaces.
First, how do we cut, how to analyze the cut-up pieces?
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A vector field is contact if its flow preserves the contact structure. A surface is convex if
there exists a contact vector field transverse to it. Equivalently, if you have a neighborhood
of your surface homeomorphic to Σ × I such that ξ on the neighborhood is invariant in the
I direction. Any closed surface is C∞ close to one; this is Giroux’s perturbation lemma.

Definition 4 Dividing curves ΓΣ = {x ∈ Σ : v(x) ∈ ξx}. ΓΣ is transverse to the character-
istic foliation and they divide the surface into positive and negative regions.

So the idea is another long slide, convex surfaces and tight contact structures

We have a convex surface and that’s what we cut along.

Giroux’s flexibility.

Given a convex surface Σ, it is the dividing curves that carry the essential information about
the contact structure in a neighborhood of Σ, not the specific characteristic foliation.

(The corollary to) Legendrian Realization is:
Suppose a closed curve C on a convex surface Σ is transverse to ΓΣ and nontrivially intersects
ΓS . Then C can be realized as a Legendrian curve, i.e., tangent to ξ (Kanda)

The main main things are Eliashberg’s uniqueness theorem: If ξ is a contact structure in a
neighborhood of δB3 that makes δB3 convex and the dividing set on δB3 is a single closed
curve, then there is a unique extension of the contact structure to a tight contact structure
on B3.

Giroux’s criterion is Σ 6= S2 is convex; then there exists a tight contact structure on a
neighborhood of Σ if and only if ΓΣ contains no homotopically trivial closed curves. (Σ = S2

then there exists a unique contact structure if and only if your dividing number is one.

That’s an idea of the tools people use. Now, gluing it all back together

Theorem 6 Gluing Theorem (Colim)
If:
(M, ξ) is irreducible, δM is nonempty and convex.
Σ ⊂ M is a surface which is properly embedded, compact, convex, incompressible.
δΣ is Legendrian, nonempty, and each component intersects ΓδM nontrivially.
ΓΣ is boundary parallel, so they cut off a half disk.
ξ is universally tight on MΣ, meaning it persists along covers.

If all of these are satisfied, then the contact structure is universally tight on M.

This is at the end of its usefulness. Well, I shouldn’t say that, it needs to be extended. Tanya
Kofer proved a generalization of this in her thesis.

Another gluing theorem:
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Theorem 7 (Honda)
Suppose (M, ξ) is overtwisted; take a convex decomposition of M. Look at all the nontrivial
isotopies of the cutting surfaces. Eventually we can find a decomposition that does not cut
through the overtwisted disk.

This would be a very long check. Honda describes, in this theorem, a “minimal” isotopy, a
bypass disk. You have a surface with a disk like a flap in a neighborhood of the surface or in
the whole 3-manifold. This is a little like stabilization in terms of braids. The idea is that
we can push the surface out past this bypass disk. Then what happens is that you get rid of
some singularities in the foliation. Imagine I’m looking down at the bypass disk. Then you
lift the surface over the bypass disk and this changes the structure of the dividing curves.

That’s the idea of a Haken decomposition. Another 3-manifold idea about contact structures
is open book decompositions.

An open book decomposition of M3 is a pair B, π where

• B is an oriented link, called the binding, and

• π : M\B → S1 is a fibration, and π−1(θ) is the interior of Σθ, a compact surface, and
δΣθ = B for all θ ∈ S1. Then Σ = Σθ are pages.

An abstact open book is a pair (Σ, ϕ) where Σ is a (compact) surface with nonempty boundary
and ϕ : Σ → Σ is a diffeomorphism such that ϕ|(N(δΣ) = id (monodromy)

Then Birman-Menasco did a huge work on braids in the context of the open book decompo-
sition on R3.

So, for S3, two solid tori, You can take the union of the disks and the annuli, and get two
pages of the open book decomposition for S3.

A theorem of Alexander, 1920, is that every closed oriented M3 has an open book decompo-
sition.

Here’s a theorem of Giroux, 2000. Isotopy classes of contact structures on M3 are in bijection
with open book decompositions of M3 up to stabilization.

What are the connections to contact structures? A contact structure ξ is supported by an
open book decomposition (B, π) if there exists a contact 1-form α such that dα is an area
form on the pages of the open book decomposition and α > 0 on B. Equivalently and more
visually, ξ can be isotoped to be close on comact subsets of pages to tangent planes of the
open book decomposition in such a way that the planes end up transverse to B and the pages
of an open book in a fixed neighborhood of B.

You push all of your twisting inside a given radius, and then outside it’s close enough to the
open book decomposition.

I’ll start up tomorrow, talk more about this tomorrow.
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Noah Goodman, last year, came up with a necessary and sufficient condition on an open book
decomposition to support an overtwisted contact structure. That’s the only result I know of
so far that uses the classification. The relation between them have been really well-explored.

I’d like to give you a reference. All of this stuff is based on a survey article. There is no
source, but if you go to John Etnyre’s homepage at UPenn (for now), he’s written a whole
series of articles on contact structures. He’s a geometer but he writes so that a topologist
can understand.

[The next talk is at 3:30.]

4 Abhijit Champanerkar (Invariants of links)

Thank you for inviting me. My time at Columbia was very nice. Joan was always very
inspiring and helpful.

Today I will talk about polynomial invariants, tomorrow I will talk about hyperbolic invari-
ants.

If you have a knot or a link, which we will denote by K, you can always represent this as a
closed braid. This is Alexander’s theorem, that any knot or link in S3 can be represented as
a closed braid.

The next question is, how many ways are there to do this? The answer, again stated by
Nate, is that b1 and b2, which represent the same knot, by which I mean isotopic, knot or
link, are related by Markov moves.

What are Markov moves? The first one is conjugation, and the second is stabilization and
destabilization.

So what we can do, if we have a representation of the braid group in GLn(C). Since trace
is conjugation invariant, if a trace is invariant under Markov moves, then we can get knot
and link invariants by using Markov traces, that is, those invariant under the second Markov
move.

There were very few representations known before Jones. One was the Burau representation
that Nate talked about. Jones generalized this to classify all representations of Bn. This
is very historic with respect to this conference; the work was done at Columbia and Joan
contributed. With Markov traces he defined the Jones polynomial and also explained the
Alexander polynomial in terms of the new theory.

[He didn’t classify representations, he just found a family of them.]

A huge family. I’m not going to talk about representations, I’m just going to talk about the
two more famous polynomial invariants, the Alexander and Jones polynomials.

The Alexander polynomial ∆k(t) was introduced by Alexander in 1928. It’s kind of ideal
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because it is very well understood. Let me give you the topological definition.

1. Topological definition: Let X = S3 −K. Then π1(X) → H1(X) → Z = 〈t|〉 (last step
needed for a link). Then X̃ is an infinite cyclic cover corresponding to the kernel of the
above map. Then Z acts on X̃, and in particular on H1(X̃).

Take a Seifert surface for the knot complement and cut it along the surface. Then take
a loop in the cut version, and Z just acts by translation. So H1(X̃) is a Z[t±]-module,
so is ZΓ, the group ring of Z = Γ. This is called the Alexander module of the knot.

When you have a polynomial, you have a presentation matrix of H1(X̃). Then the
Alexander polynomial ∆K(t) is the gcd of m ×m minors of M, that is, the generator
of the first elementary ideal.

There’s a number of definitions, like Seifert’s with Seifert matrices. Seifert and Alexan-
der finished most things in this in a few years.

2. Let me give you a definition using Fox differential calculus.

If π1(X) = {x1, · · · , xn|y1, · · · , ym}, then ∂xi

∂xj
= δij and ∂uv

∂xj
= ∂u

∂xj
+ u ∂v

∂xj
, which tells

us ∂x−1
i

∂xj
= −δijx

−1
j

The Jacobian A is (Φ( ∂γi

∂xj
)). This is a funny product rule, that’s why it’s called calculus.

Here Φ : π1(X) → Z.

Theorem 8 (Fox) A is a presentation matrix for H1(X̃) as a Z[t±1]-module.

For the trefoil, since knot theory is the study of one knot, the trefoil, well, until
Thurston, then it was the study of two knots, the trefoil and the figure eight.

So π1(X) = 〈x, y, z|yxy−1z, xzx−1y−1〉 and

∂γ1

∂x

=
∂y

∂x
+ y

∂

∂x
(xy−1z−1) = 0 + y(

∂x

∂x
+ x

∂y−1z−1

∂x
) = y.

Now A = Φ
(

y 1− yxy−1 −yxy−1z−1

1− xzx−1 −xzx−1y−1 x

)
, which, under the map taking

x, y, z, to t is
(

t 1− t −1
1− t −1 t

)
so that ∆K(t) = −t− (1− t)2 = t2 − t− 1.

3. Theorem 9 (Conway). If L+, L−, L0 are locally

��?
??

??
??

���

??��� ??
?

��?
??

??�������

//

//

then the conditions
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(a) ∆0(t) = 1

(b) ∆L+ −∆L− = (t−1/2 − t1/2)∆L0

characterize the Conway normalized ∆L(t) ∈ Z[t±1/2].

Theorem 10 ∆K(t) = ∆K(1/t);
∆K(t) = 1

Theorem 11 Any polynomial which satisfies these two conditions is the Alexander polyno-
mial of K for some K.

Theorem 12 There exist nontrivial knots with ∆K(t) = 1, for example the Kinoshita-
Tenaka knot or the Whitehead double of any knot.

I think the Whitehead construction was probably known to Seifert. The main theorem is
that the span of the Alexander polynomial gives a lower bound on the genus of the knot,
that is, span(∆K(t)) ≤ 2g where g, the genus of K, is the minimal genus of an orientable
surface bounded by K. If K is alternating then this is an equality.

Now let me go to the Jones polynomial VK(t), introduced in 1984.

I’m going to give you a very combinatorial description of this by the Kauffman bracket. It
was in representations of the braid group that this originally arose.

If you have an unoriented link diagram D of K then 〈D〉 ∈ Z[A±1] is defined as satisfying

1. 〈O〉 = 1

2. 〈D tO〉 = (−A2 −A−2)〈D〉

3. 〈DK〉 = A〈D0〉+ A−1〈D∞〉, where these differ locally as

??
?

??
?

�������

.

This is not invariant under the first Reidemeister move, so you multiply by a factor depending
on the writhe w(D) =

∑
c wc, where wc is one or negative one according as the crossing c

looks like the respective of the following:

��?
??

??
??

���

??��� ??
?

��?
??

??�������
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Theorem 13 (Kauffman)
VL(A−4) = (−A)−3w(D)〈D〉.

It’s not obvious if you define a polynomial thusly you don’t know whether it exists. You
can get around this by writing this polynomial in what is called the state sum, which we
will use later. A state s of a diagram is a smoothing (0 or ∞) of all the crossings. Let
σ(s) = #0-smoothings - #∞-smoothings and |s| be the number of loops in s. Then 〈D〉 =∑

s Aσ(s)(−A2 −A−2)|s|−1.

What are the main theorems about the Jones polynomial? Most of the questions answered
about the Alexander polynomial are open for the Jones polynomial.

One of the main theorems is

Theorem 14 (Kauffman, Menasco,Thistlewaite) If D is an alternating reduced diagram
then span(VD(+)) is equal to the crossing number of the diagram.

The crossing number of a knot is defined as the minimal number of crossings over all diagrams.

Also, you can prove Tait’s conjecture, that such a diagram, reduced and alternating, has
minimal crossing number.

What about other questions, like those about the Alexander polynomial? How is VK(t)
related to the topology of S3 −K? No one has any clue. Evidence suggests that it is related
to the geometry of the knot complement. What does it mean by geometry? I’ll talk about it
in my next talk, especially hyperbolic structures on knot complements.

The second question is, does there exist a nontrivial knot with trivial Jones polynomial,
VK(t) = 1? It’s not even clear whether it exists or not. There’s not even a conjecture one
way or the other. There do exist nontrivial links with trivial Jones polynomial. This was a
very recent theorem by Kauffman and someone, in 2000 or 2001.

So how do you compute these polynomials? Not by hand. Some of the programs are

• Knotscape (Hoste,Thistlewaite, Linux).

• Table of Knot Invariants (Livingston). This is a very nice webpage, where you tell it
what you want and it prints it out.

• Knot Theory (Bar-Natan). This has an associated webpage.

In the last two minutes I’ll tell you about categorification. There are bigraded homology
groups which are invariants of a knot whose bigraded Euler characteristic are the Jones or
Alexander [or HOMFLY or colored Jones] polynomial.

We have χ(M) =
∑

i(−1)irank Hi(M), where Hi(M) is a stronger invariant than the ordi-
nary Euler characteristic m.
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Now
∑

ait
i =

∑
(
∑

j(−1)jrank Hi,j(D))ti.

So there exist such homologies with the right hand side equal to the Alexander and Jones
polynomials; these are the Heegaard Floer Homology (Oszvath, Szabo, around 2000), and
the Khovanov homology, around 1998.

I was going to give an idea of these but I’m out of time.

[We’ll have breakfast again tomorrow at 9:00. You’re free for the afternoon. Again, there are
restaurants in your pamphlet. This was left out, but you may notice there’s a nice sculpture
just down the street at 117th. There’s a sculpture down Broadway every block or two so
that’s a nice way to spend the afternoon.]
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