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I’m trying to be really gentle on the category theory, within reason. So in
particular, I’m expecting a lot of people won’t have seen a two-category at all. You
guys may know too much to be an ideal practice audience, but if you see anything.

The goal of the talks this week will to be give a precise account of the development
of ∞ dimensional categories. We’ll talk about limits and colimits, adjunctions,
fibrations, modules (profunctors), the Yoneda lemma, and Kan extensions. That
will be the scope of the basic theory.

There will be a number of instantiations of the categories I’ll consider, but this
will be model-independent, it will apply in a number of contexts but will be agnostic
to which context.

I’ll call these ∞-categories, this is a technical term that I’ll explain, they live
in an ∞-cosmos. This won’t be an axiomitization of the ∞-categories, but of the
things we need to prove theorems with them.

This will be optimized for (∞− 1)-categories, which are roughly ∞-dimensional
categories such that morphisms above dimension 1 are invertible. There are many
models of this. Some models include quasicategories (Joyal), complete Segal spaces
(Rezk), Segal categories (Simpson), marked simplicial sets (Verity). We’ll see that
the development of the category theory is preserved and reflected by nice functors
that change models. You won’t need to know what any of these things mean.

The way this works, ∞-categories and the functors between them live in some-
thing called the homotopy 2-category. This will be a strict two-category comprised
of objects called ∞-categories, which I’ll denote A, B, C. A morphism will be an

(∞-)functor which I’ll write A
fÐ→ B. The two-morphisms or 2-cells will be natural

transformations.
One example to keep in mind is categories, functors, and natural transformations.
So what can we do in a 2-category? It has an underlying ordinary 1-category.

We also have composition of 2-cells, which compose in two different directions. If
I’m given a 2-cell α ∶ f → g and β ∶ g → h, then I get β ⋅ α from f → h. So you have
identity two-cells so that the morphisms are the objects of a category themselves.
This is vertical composition. I also have horizontal composition, if I have α ∶ f → g
and γ ∶ h→ k with the targets of the first equal to the sources of the second to get
γα from hf to kg.

This is pasting, I can compose vertically and then horizontally or horizontally
and then vertically, then the compositions agree. More generally, if I have a diagram
with two-cells, all consistently oriented, I get a unique composite.

I claim that this is a good framework to develop our basic category theory.

Definition 0.1. An adjunction between ∞-categories consists of a pair of 1-
categories A,B, a pair of functors u ∶ A → B and f ∶ B → A, and a pair of natural
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transformations η ∶ idB → uf and ϵ ∶ fu→ idA which satisfy
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and similarly for the other composition.

This can be defined internally internally for any kind of ∞-category. So let me
show some of what you can do.

Proposition 0.1. Adjunctions compose. If I have f ′ ∶ C → B and f ∶ B → A then
we can define a 2-cell for f ′f and we can paste together. I get the composite of the
identities from drawing a diagram like this:
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You can also define an equivalence

Definition 0.2. An equivalence consists of a pair of ∞-categories A and B, a pair
of functors u and f , and a pair of natural isomorphisms idB → uf and fu→ idA.

Exercise 0.1. Show that any equivalence can be promoted to an adjoint equivalence
by changing one of the 2-cells.

Corollary 0.1. Any equivalence is both a left and right adjoint.

Proposition 0.2. Given an adjunction between A and B and equivalences A ≅ A′
and B ≅ B′, then there is an adjunction between A′ and B′.

The proof is that we can make A′ and A adjoint in either direction and likewise
for B.

Exercise 0.2. ● If f is left adjoint to u and f ≅ f ′ then f ′ is left adjoint to
u.
● If f and f ′ are adjoint to u then f ≅ f ′, and finally
● f ≅ f ′ and f is an equivalence then so is f ′.
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The homotopy 2-category in which we’ve been working is the quotient of an
∞-cosmos. Let me motivate this a bit. If you want to do the homotopy theory of
something, you might hope that it lives in a simplicial model category. You can say
that two homotopy theories are the same if their model categories are equivalent in
some sense.

I’ll show that a good framework to do our kind of theory is for something enriched
over quasicategories, not Kan complexes. We actually won’t need those details.

Definition 0.3. An ∞-cosmos is a simplicially enriched category, it’s something
that has objects (an object is called an ∞-category), homs between objects which
are quasicategories, a particular sort of simplicial set, and a specified class of maps
called isofibrations. This should satisfy axioms. Let me pause and say that there
are canonical equivalences, that A→ B is an equivalence if and only if map(X,A)→
map(X,B) is an equivalence of quasicategories. Trivial

completeness K has (simplicially enriched) terminal object 1, pullbacks of isofibrations,
cotensors by simplicial sets, meaning that with U a simplicial set and A an
∞-category then AU is my cotensored object.

isofibrations are closed under composition, contain isomorphisms, and are stable under

pullback. Further, if U
iÐ→ V is an inclusion of simplicial sets and E

pÐ→ B
is an isofibration then EV → EU ×BU BV is an isofibration. We call an
isofibration that is a weak equivalence a trivial fibration.

cofibrations there exists a lift

E

��
A
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// B.

There are some consequences

trivial fibrations It follows from the definitions that trivial fibrations are closed under com-
position, contain isomorphisms, are stable under pullbacks, and EV →
EU ×BU BV is a trivial fibration if either p is a trivial fibration or i is
a trivial cofibration in the Joyal model structure.

factorization Another consequence, we can factor any A → X as a section of a trivial
fibration followed by an isofibration. This is what goes into the proof of
Ken Brown’s lemma.

representable isofibrations If p is an isofibration then for allX,map(X,E) is a fibration ontomap(X,B).

We can have the optional axiom of Cartesian closure, thatmap(A×B,C) ≅map(A,CB) ≅
map(B,CA).

Ret me remind you that a quasi-category is a simplicial set A with fillers for
inner horns

Λn,k //
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There is a model category structure on simplicial sets for quasi-categories by Joyal
such that the cofibrations are monomorphisms, fibrant objects are quasi-categories,
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fibrations between quasi-categories are isofibrations (so I have lifting problem solu-
tions as follows)
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Equivalences are simplicial homotopy equivalences using I, it’s given by a pair of
maps f and g so that there exists
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and likewise for B.
How about some examples. We have these for categories, quasicategories, for

complete Segal spaces, Segal categories, naturally marked simplicial sets, each of
which other than the first is a model of (∞,1)-categories. Each has a model category
structure, all of which are equivalent. Taking isofibrations as fibrations, then weak
equivalences are the equivalences in my cosmos.

There are a few other examples. Certain models of (∞−n)-categories are objects
in an ∞-cosmos; similarly higher complete Segal spaces. Finally, if B is in an ∞-
cosmos then K/B is a slice cosmos whose objects are isofibrations with codomain
B.

This axiomatizes what is needed for their basic homotopy theory.
Now we can forget most of this. I want to now tell you about the quotient.

Definition 0.4. The homotopy 2-category K2 of an∞-cosmos K has as its objects
the ∞-categories. The morphisms will be vertices in the mapping quasicategory, so
that the 2-category and the ∞-cosmos have the same underlying category.

A 2-cell between f, g ∶ A→ B is represented by a 1-simplex in the quasicategory.
We say that two parallel 1-simplices represent the same 2-cell if and only if they
are connected by a 2-cell whose third face is degenerate.

There’s a slicker way at this definition. Equivalently, there’s a functor from
quasicategories to categories which takes a quasicategory to its homotopy category.
Then hom are ho(map(A,B)). That’s the sense in which this is a quotient of the
∞-cosmos. Let me now tell you the most important result of today. We have a
priori two distinct notions of equivalence.

Proposition 0.3. If I have a functor f ∶ A → B in an ∞-cosmos K, then the
following are equivalent:



EMILY RIEHL: ∞-CATEGORIES FROM SCRATCH (THE BASIC TWO-CATEGORY THEORY)5

(1) f is an equivalence in the ∞-cosmos K
(2) f is an equivalence in K2.

So we can work 2-categorically and capture the right thing. For 2 to imply 1,
we need that if f is an equivalence in K and f ≅ f ′ in K2 then f ′ is an equivalence.
The proof uses that AI is a path object for A. Now if f has an equivalnec inverse
g, then fg ≅ idB, gf ≅ idA, so then by 2 out of three we know that by 2 out of 3, f
is an equivalence in K.

If i apply the homotopy category functor to the equivalence map(X,A) ∼Ð→
map(X,B), I get an equivalence hom(X,A) ∼Ð→ hom(X,B). Then by the Yoneda
lemma, a representable equivalence is an equivalence in K2.

That’s a good place to stop.


