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1. July 31: Tomoyuki Hisamoto: Stability of a polarized manifold
and coercivity of the K-energy functional

I want to start with some background for the so-called Yau–Tian–Donaldson
conjecture. This is some conjecture for a general smooth projective manifold X
over the complex numbers endowed with a [unintelligible]line bundle, (X,L), this
is sometimes called a polarized complex manifold. We’re interested in the existence
of some standard, ω ∈ c1(L), a Kähler metric.

We can take the curvature of a fiber metric e−φ and get the Kähler metric and
in the other direction we can do something to get the fiber metric up to a constant.
Let me explain a little more. For s ∈H0(X,L), we get ∣s∣2e−φ, and if the line bundle
is tensorized k times, then we get ∣s∣2e−kφ. This is the notation for the fiber metric
today.

So what is the standard metric? Let me define the scalar curvature Sφ ∶=
Trω Ricω, the trace of the Ricci curvature, and we say that the metric has con-
stant scalar curvature if this Sφ, which is a function on the space, is constant,

if Sφ = Ŝ = 1
v ∫X Sφω

n
φ, we call ωφ =

√
−1

2π
∂∂̄φ a constant scalar curvature Kähler

metric and this is what we’re looking for.
Now let me briefly review the variational approach to the existence of this metric.

There actually exists a canonical, well, let me define,

H ∶= {e−φ fiber metrics on L∣ωφ =
√
−1
2π

∂∂̄φ > 0},

and this can be identified with the space of Kähler metrics, and there exists a
canonical energy functional M ∶H → R characterized by

δM(φ) = −∫
X
(Sφ − Ŝ)(δφ)ωnφ.

Some condition ensures that there exists a primitive of this gradient, this energy
functional, which then has this constant scalar curvature metric as a critical point.
We have a more explicit formula:

M(φ) = ∫
X
log

ωnφ

ωnψ
ωnφ

+ 1

n + 1

n−1
∑
i=0
∫
X
(φ − ψ)Ricφ ∧ ωiφ ∧ ωn−i−1ψ

+ Ŝ

n + 1

n

∑
i=0
∫
X
(φ − ψ)ωiφ ∧ ωn−iψ .

1
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This is complicated, this is the K-energy functional. A remarkable fact is thatM is
geodesically convex with respect to the Riemannian metric ∫X u

2ωnφ for any smooth

u ∶ X → R. Again by the d − d̄ lemma, the space of u can be identified with TφH
and so this gives an infinite dimensional Riemannian structure on H.

We want to know about the existence of critical points. Let me restrict to a
fixed geodesic φt for t ∈ [0,∞). The K-stability condition introduced by Tian and
Donaldson is that if

lim
t→∞

M(φt)
t

> 0

for any “algebraic” ray (I’ll explain the meaning later), then there exists a constant
scalar curvature Kähler metric in c1(L). This is the condition.

So then what is the definition of this “algebraic” ray? To define it we pick
some family (X ,L) of polarized manifolds, it’s necessary actually to take a family
of polarized schemes. We have not only the family but thy C∗-action here. We
say, take the family with an action which makes a C∗-equivariant family, which
makes the projection π to C, the family, C∗-equivariant. It means we have some
λ ∶ C∗ → Aut(X ,L). We also fix some metirc e−Φ on L so φt(x) ∶= Φ(λ(e−t)xe−t),
where e−t is τ , the parameter for the underlying C. This actually then defines a
smooth ray (possibly not geodesic) but anyway, this has slope. And we can ask
about the slope of the K-energy. This is a very special ray on the space, on H.

All right. So what is the algebraic description of the slope at ∞? This is some
part of our result, of our joint work with [unintelligible]and [unintelligible]. So let’s

take canonical (or trivial) compactification (X ,L) of (X ,L), this is over P1 but the
C∗-action around ∞ is very trivial. We have only one [unintelligible]configuration
space. We define

Definition 1.1.

MNA(X ,L) ∶=KX /P1L
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
main part

+(n + 1)−1ŜLn+1 + (X0,red −X0)L
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error term from unreduced part

So

Theorem 1.1. (Tian, Phong–Ross–Sturm, Dervan, Bouckson–H.–Jansson)

MNA(X ,L) = lim
t→∞

M(φt)
t

for any φt coming from (X ,L).

So this is still a bit, this is background. The conjecture says that if this MNA

is positive then there exists a constant scalar curvature metric. This is the precise
statement. But note that we are still very far from the existence of the metric as
you know.

[Question about stability versus poly-stability]
Yeah, I wanted to skip that case, the general case is a work in progress, I should

have assumed at the beginning that Aut(X,L) was finite. I think it should be
straightforward, the generalization.

So the question is what we can do to show the existence of the metric.
We’d like to propose some approach, which is about more, not only positivity of

the slope but we will assume a more stronger growth condition for the K-energy,
coercivity. This is a classical notion. The point is that there exists another canonical
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metric J ∶ H → R, I think this was first introduced by Aubin, we call this Aubin’s
J-functional, which is given by

J(φ) = ∫
X
(φ − ψ)ωnφ −

1

n + 1

n

∑
i=0
∫
X
(φ − ψ)ωiφ ∧ ωψn−i

and the sum is the main part and the left part is a normalization. This is different
from the K-energy, this is more easier, in the following sense. First of all it’s non-
negative, and also it’s exhaustive for a certain [unintelligible]on H. This has rather
a role of measuring the space H itself. In fact, this is equivalent to the Finsler
metric ∫X ∣u∣ω

n
φ for u ∈ C∞(X,R) = TφH. This J is equivalent to the L1 norm.

One of the points is that this L1 topology is the right topology for the growth
condition of the K-energy functional. There exists no example, no manifold over
which the K-energy has L2 growth function. We put E1, if this is the space of
singular metrics

E1 = {e−φ ∉ C∞∣J(φ) <∞}
This 1 stands for L1, this finite energy class, this gives the completion of H with
respect to the distance. This is, I think, a result of Dervas, recent. Then the
condition on coercivityM(φ) ≥ ϵJ(φ)−C on H implies the existence of a minimizer
on E1. Not in H. This is the point. So this stronger growth condition assures the
existence of a minimizer on the space of singular fiber metrics. The regularity of
the singular minimizers seems very hard. So the idea is to separate this into two
parts. Existence of a weak solution is one part and regularization is the other part.
This coercivity condition, the point is, can be translated into algebraic geometry
as we explained for K-stability.

At this stage we again pick an algebraic family endowed with a C∗ action and
take a smooth ray and take

JNA(X ,L) ∶= L(ρ∗p∗1L)n − (n + 1)−1L
n+1

The point is that we have some domination [unintelligible]. So we can blow up the
space, and take some [unintelligible]modification and get some ρ ∶ X → X ×C. We

can pull back p∗1L by ρ to take its intersection number against L. These interseciton
numbers precisely compare with the description I gave for the J functional which
was very well-known.

So the conjecture is that

Conjecture 1.1. (“weak” Yau–Tian–Donaldson) MNA(X ,L) ≥ ϵJNA(X ,L) for
HNA, the space of algebraic families, is equivalent to M(φ) ≥ ϵJ(φ) −C on H.

What is known on this conjecture? The original Yau–Tian–Donaldson conjecture
was proved for the Fano case around 2012, and you can see from the result that
the weak version is also true for the Fano case, where L = −KX . This is because
the existence of a constant scalar curvature metric in fact implies the coercivity
property of the energy by Dervas–Rubenstein. Then you can use the result of
Chen–Donaldson–[unintelligible]–Tian to give the equivalence.

Also I’d like to note that there exists a direct proof of the weak version without
Cheeger–Colding theory (work by Boukson–Berman–Jansson). It seems that this
approach is somewhat effective. This is also okay for the toric case. In this case we
have some automorphism group but we can have the modified formulation for the
toric manifolds and then we have this type of equivalence between positivity of the
intersection number and the growth condition for the K-energy functional.
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So, I guess this terminology NA could be familiar to symplectic people, this NA
stands for “non-Archimedean” and these intersection numbers can be identified with
energy functionals on the space of non-Archimedean metrics. I have five minutes.

First, [unintelligible]can be identified with a Lie bundle on Xan, which is [unin-
telligible], and the definition of this metric is given by the following,

φNA(v) = G(v)
a value of the Gauss extension to the function field of the product space of the
line bundle. The Gauss extension of the variation G(v)(∑ fλτλ) is defined by
minλ∈Z{λ+ v(fλ)}, there is some general picture that assures these energies can be
non-Archimedean functionals on a certain space.

Last I’d like to give some sketch of the proof, I should say that, I skipped the

statement. JNA(X ,L) = limt→∞
J(φt)
t

, I’d like to give some sketch of the proof.
The key to it is Deligne pairing. This is some line bundle which corresponds

to the intersection number which appears in the coefficient of [unintelligible], for
example

dimH0(X,L⊗k) = L
n

n!
kn
−KXL

n−1

2(n − 1)!
kn−1 +⋯

and what we want is for

det(π∗H0(X ,L⊗k)) = ⟨L, . . .L⟩
(n + 1)!

kn+1 + ⟨−KXL
n

2n!
kn +⋯

So the ⟨L, . . .L⟩ is the additive notation for the Q-line bundle. So then, we didn’t
give the definition, but if this line bundle can be constructed, then this gives the self-
intersection number of the line bundle, and we can prove the theorem by attaching
some metric on this line bundle and applying the classical [unintelligible]. So what
is the construction.

So L0, . . . ,Ln are Q-line bundles on some family X on the base space B. Then
we have the line bundle ⟨L0, . . . ,Ln⟩X /B over B, and this is constructed by the

following inductive formula. We take some section s of H0(X ,L0) and D ∶= ÷(S),
then the restriction of this bundle to D is equivalent,

⟨L0, . . .Ln⟩X /B = ⟨L1∣D . . .Ln∣D⟩D/B
Then we can also define the metric in a similar inductive formula.

Giver Φ0, . . . ,Φn on L0, . . . ,Ln, then we have

⟨Φ0, . . .Φn⟩X /B = ⟨Φ1∣D . . .Φn∣D⟩D/B + ∫
X /B

log ∣s∣2e−Φ0ωΦ1 ∧⋯ ∧ ωΦn

and this corresponds exactly to what I wrote before. For example,

JNA(X ,L) = L(ρ∗p∗1L)n −
Ln+1

n + 1
= deg(⟨L;ρ∗L . . . ρ∗L⟩ − (n + 1)−1⟨L . . .L⟩)

and Aubin’s J-functional is given (as a consequence of the inductive formula) as

J(φ) = ⟨φ,ψ . . . ψ⟩X − ⟨ψ, . . . , ψ⟩X − (n + 1)−1[⟨φ . . . φ⟩X − ⟨ψ . . . ψ⟩X]
and we get

⟨φt0 . . . φtn⟩ − ⟨ψ . . . ψ⟩ = t(L0, . . . ,Ln) +O(1)
but such equality is for a relation between the [unintelligible]with the intersec-
tion, the degree of the line bundle, so the left hand side is just the growth of the
⟨Φ0 . . .Φn⟩ on ⟨L0, . . .Ln⟩ over C and the right hand side is the degree of the same
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line bundle ⟨L0 . . .Ln⟩ over P1, which is the same as the weight of the C∗-action
on ⟨L0 . . .Ln⟩ on the point zero. Then we conclude by the Kempf–Ness argument
from symplectic geometry.

2. August 2: Dmitry Tonkonog: The wall-crossing formula and
Lagrangian mutations

This is joint work with James Pascaleff. Yesterday we heard from Yoosik about
how to make monotone Lagrangian tori. Today I’ll talk about how to turn such tori
into new tori and calculate their potentials. The outline of the talk, I’ll first state
and prove a general wall-crossing formula in a really quite general setup. Then
I’ll talk about mutations of Lagrangian tori in del Pezzo surfaces in dimension 4,
after Vianna as well as Galkin–Usnich–Cruz Morales and earlier work by Auroux.
This brings together the geometry of Vianna with the algebra of the big group.
Then I’ll talk about higher dimensional toric mutations which give new Lagrangian
tori in toric Fanos. This high dimensional story won’t be as complete as the lower
dimensional one and will pose interesting questions.

The main tool for the wall crossing formula is the LG potential. Recall if I
start with a Lagrangian, monotone, L ⊂ X, I can fix a basis for its first homology,
let’s say integrally modulo torsion for simplicity, and I introduce formal variables
x1, . . . , xm, where m is the rank. Then the Landau–Ginzburg potential WL is a
Laurent polynomial in these variables which is a sum over holomorphic Maslov
two-disks, I compute tho boundary homology class, and write down the homology
class in coordinates (ℓ, . . . , ℓm), and put in the polynomial ±xℓ11 ⋯xℓmm , where the
sign comes from the orientation. Really we should put WL in Z[π1L], but I’ll be
talking about C∗-local systems and there this Laurent polynomial is good enough.

This is the simplest Gromov–Witten invariant for a Lagrangian. For example,
in CP2, I can take the Lagrangian torus and W = x + y = 1

xy
.

Recall that a local system on L is a map ρ ∶ π1L → C∗, a homomorphism. This
is the same (having specified a basis) as a point ρ ∈ (C∗)n, specifying its values on
the basic loops.

Then I can equip L with a local system and it becomes an object of the monotone
Fukaya category L, and another interpretation of WL is that WL(ρ)1 becomes the
curvature m0

L ∈HF (L,L). This is a tautology.
Now I’m ready to state the general wall-crossing formula.

Theorem 2.1. (Pascaleff–T.) Let X be monotone and Σ a smooth Donaldson
divisor (that is, [Σ] is kc1 for k ≥ 1). Let L1 and L2 be monotone Lagrangians
in X which lie away from Σ are are exact in the complement X/Σ. Equip them
with any local systems, Li = (Li, ρi) and assume that HFX∖Σ(L1,L2), computed in
X ∖Σ, is nonzero.

Then the curvature terms m0
L1

and m0
L2

are the same, so that WL1(ρ1) and
WL2(ρ2) are the same.

The idea of how to apply this, we’ll have many local systems on L1 and many
on L2 and we’ll assemble them.

So note that [unintelligible]is a Liouville manifold, so that HFX∖Σ(L1,L2) =
HFM(L1,L2) for any smaller Liouville domainM contained inX∖Σ and containing
both Li. So the idea is to find an M with some nice structure and exploit that.
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Originally the proof of this story was quite involved, used some Hamiltonian
stretching procedures. But Seidel suggested an easy proof, which I’ll give you now.
The proof is, start with constant holomorphic strips between L1 and L2, and glue to
L1 a disk with a point on L1 with an interior point going to Σ. For simplicity assume
Σ is anticanonical and the point is the origin. The count of these configurations
(weighted with a local system) gives me m0

L1
IdHF (L1,L2). This is equivalent to the

moduli space of strips with a point freely moving like this [picture] going to Σ. If
I move it upward it goes to what I described. If I move it downward it becomes
m0

L2
IdHF (L1,L2) and this degeneration tells me that I have a homotopy between

these two. There’s further bubbling so this isn’t true at the chain level but it’s true
in homology.

So now if HF (L1,L2) ≠ 0, then the identity is nonzero, and multiplication of it
by different numbers will never be the same, so the curvatures must be the same.

I’ll explain Vianna’s work from a slightly different point of view.
I start again with a Clifford torus in CP2, and I claim that it bounds three La-

grangian disks whose boundary Floer homology classes are orthoganal to (−1,−1),
(2,−1), and (−1,2). To see this, I draw [pictures].

Let’s study a configuration consisting of a Lagrangian torus with one Lagrangian
disk attached to it, (T,D) ⊂X1. Suppose I have two such configurations in different
symplectic manifolds. There’s a version of the Weinstein neighborhood theorem
that says that the unions T ∪D and T0∪D0 have symplectomorphic neighborhoods.
So we can look for a model of T ∪D, (I should say D is embedded and attached to
T cleanly along a curve which is not contractible), and such a model is the space
M which is an affine conic M = C2 ∖ {xy = 1} and from there I take a projection
ont C ∖ {1}. [pictures]

So why is this model useful to me? In this model I can see a different Lagrangian
torus. In this model, T0 becomes exact and now the same model contains a different
exact torus T1, which using the same pictures as before can be drawn, [pictures].
Then this is the Clifford and Chekanov pair. Combining my local construction
with the Weinstein neighborhood theorem, I can define what it means to mutate
a Lagrangian torus along a Lagrangian disk. Let (T,D) ⊂ X be a monotone La-
grangian torus and Lagrangian disk. Then there is another torus in X, in fact in a
neighborhood of T ∪D which is also monotone and we call this the mutation MDT
the mutation of T along D. Locally this is passing from the Clifford to Chekanov
torus or vice versa in the neighborhood.

Okay so starting from the Clifford torus in CP2, I can mutate in any of three
directions, so I get three more tori, and I happen to get unlucky, these happen to
be isotopic to each other, to the Chekanov torus in CP2. So how do I get infinitely
many tori using this construction? The answer is essentially provided by Shende–
Treumannn–Williams, and in a restated way it says the following. Suppose T ⊂ X
bounds Lagrangian disks Di and I need to do some [unintelligible], denote by vi
the class [∂Di] and these live in Z2, fixing a basis for H1(T ). The boundaries
of these disks have minimal intersections with each other. [pictures] Then, pick a
j ∈ {1, . . .N}, one of the disks along which I want to mutate. The torus mutated
along Dj bounds the same number of Lagrangian disks, which I denote D′i, again
i ∈ {1, . . .N}, and [∂D′i] = v′i ∈ H1(T ′), where T ′ is the mutated torus and I’ve
chosen some basis. So the second thing, that I’ll write down now, is the computation
(slightly nontrivial) of the formula for the boundary classes.
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So v′j = −vj and v′i = µvjvi where µuv is v + max{0, ⟨u, v⟩}u, this is called a
tropical mutation.

Quite mysteriously this works for tori but not for higher dimensional Lagrangians.
The proof I like would be like this (this is not the original proof. I’ll only give a
sketch). [pictures]

This theorem, together with mutation, gives me infinitely many tori in CP2, I
get three neighbors in each case, these are the Vianna tori (pictures).

Now let’s go to wall-crossing.

Theorem 2.2. If I have (T,D) ∈ X4 and T is monotone, then WµDT is obtained
fromWT by substitution where I send x to x(1+x−u2yu1)u1 and y ↦ y(1+x−u2yu1)u2

this is where [∂D] = (−u2, u1) ∈ Z2.

For example, if (u1, u2) = (0,1) then x↦ x and y ↦ y(1 + x)−1.
The corollary is that know we know the potentials of all Vianna’s tori? He

computed only the Newton polytopes of these tori. [pictures]. These come from
triangles with sides of length a2, b2, c2 with sum 3abc.

Some corollaries of this are

Corollary 2.1. We have infinitely many tori in the blowup of CP2 at two points
(This was the missing case after Vianna).

Arguing a bit more, we can now compute (Hori–Vafa) potentials of tori in non-
toric del Pezzos. For example, I can take the cubic surface, it has an almost toric

fibration over the triangle whose potential is (1+x+y)
3

xy
− 6. I don’t think this was

proved (it was expected). We can show that these are the only Laurent polynomials
available after [unintelligible]. So I used the wall-crossing formula without the
knowledge of the original potential. That is, you can prove a lemma, I know the
torus bounds nine Lagrangian disks. I can write down nine mutations under which
the potential stays Laurent. I’m cheating, because µv1 = ⋯ = µv3 . The Lemma is
that U Laurent, in C[x±1y±1], and the ring of Laurent polynomials staying Laurent
is polynomial in one variable, generated by this polynomial. This follows from the
work of [unintelligible]because the ring of functions, this is a well-known notion in
cluster algebra. [something too fast]. Once I know that, I can explicitly check that
this function stays in the ring, and then I have to check that this is the generator.
Then Vianna proves that the potential for the actual torus has Newton polytope
[unintelligible]. Then I check that the coefficients are just units.

I want to use the general wall-crossing formula, I want to avoid multiple covers.

Proof of 4D wall-crossing. I work with a local modelM which is C2∖{xy = 1} that
we discussed. I equip the tori with local systems. Let ρ0 = (x, y) ∈ (C∗)2. Then
Seidel has a lemma saying that

HF ((T0, ρ0), (T1, ρ1)) ≠ 0

if and only if ρ1 = (x, y(1 + x−1)).
This is explicit because you can compute explicitly in the model manifold. [pic-

tures] □

You could have also proven that these have nonvanishing Floer homology et
cetera with a isotopy and computation of the multiple covers, but this avoids that
and gives a direct proof.
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In a general monotone manifold, I use a version of the [unintelligible]theorem to
say that if I have a torus for the disk, I have to compute away from a divisor, and
then that’s the same as computing in the local model.

In five minutes I’ll try to mention something about the higher dimensional situ-
ation. The theorem is,

Theorem 2.3. Let X be toric Fano and F a codimension k ≥ 2 face of the moment
polytope, and fix v ∈ F an interior integral point of. Then X contains a monotone
Lagrangian torus which I denote by µF,vT , where T is the standard fiber, mutated
along my datum, whose potential is obtained from the toric potential by performing
the following substitutions. Let me write them down on monomials xu1

1 ⋯xun
n =∶ xu,

and this goes to xu(1 + xu1 +⋯+ xun)⟨u,v⟩. I have to tell you about ui and w. The
picture is this [picture]. So ui form a basis for Π⊥.

The local model for this mutation, if I can use one more minute, if F is a vertex,
then the local model is that of Cn ∖ {x1⋯xn = 1} projected to C ∖ {1}. [pictures].

3. August 3: Young-Jun Choi: Fiberwise Ricci-flat metrics on
Calabi–Yau fibrations

First of all I’d like to thank the organizers for the invitation. Let me introduce
the setup. So p ∶ X → ∆ is a family, a proper holomorphic map to ∆ the unit disk
in C. Originally it is an arbitrarily complex manifold. I’ll assume the base is the
unit disk for simplicity. Let me start with the submersion case. Then every fiber
Xs = p−1(s) is a complex manifold, assumed compact, and I’ll assume it’s Calabi–
Yau (the first Chern class vanishes) and I’ll give myself a polarization, (X,ω) is
a Kähler manifold. Then by Yau’s theorem there exists a unique Kähler–Einstein
metric ωKE on each fiber, Ricci flat, on [ω∣Xs]. The fiberwise metric is defined this
way.

Definition 3.1. A closed real (1,1)-form ρ is a fiberwise Ricci-flat metric if ρ∣Xs =
ωKE
s on each Xs.

There are many of these, if I take a Kähler form on the base and pull back and
add, this is also fiberwise Ricci-flat, so I need a normalization. But existence is
easy.

These are well-studied, maybe since Vafa and Yau. For example, on each Xs

there is a unique smooth ϕs such that

(ωs + ddc∣Xsϕs)n = eηsωns
where Ric(ωs) = ddcηs and ∫Xs

eηsωn = ∫Xs
ωn. This is not uniquely determined

yet, we have to normalize, and then we do this via

∫
Xs

ϕsω
n
s = 0

and now if you glue these up you get a smooth function on the total space, and
define

ρ = ω + ddcϕ
and this is a fiberwise Ricci-flat metric.

The longstanding conjecture about these fiberwise Ricci-flat metrics is:

Conjecture 3.1. ρ ≥ 0 or ρ > 0 on X.
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This is still open. One way to attack this might be by Schumacher’s method.

Theorem 3.1 (Schumacher). Suppose p̃ ∶ X̃ → ∆ is a family of compact Kähler
manifolds with c1 < 0. In this case, of course, the curvature is negative and not zero.
There is a canonical way in this case to define a fiberwise Kähler–Einstein metric
ρ̃, so that ρ̃ = Θρ̃(KX̃/∆), the curvature of the relative canonical line bundle. In
the polarized case we have a fiberwise Kähler–Einstein metric satsifying this, this
is the most natural case. The theorem says that ρ̃ ≥ 0 on X̃ and ρ > 0 if the family
is not locally trivial.

I want to sketch the proof but let me give some definitions first

Definition 3.2. Let p ∶ X → ∆ be a family of compact Kähler manifolds (no
assumption on the Chern class). If we have τ a d-closed (1,1)-form on X such
that τ ∣Xs > 0. Let me write ∂

∂s
by V for simplicity. [pictures]. We want to lift V

to X. So the horizontal lift Vτ with respect to τ is a vector field on X such that
dp(Vτ) = V and Vτ�Xs with respect to τ . The geodesic curvature c(τ) is ⟨Vτ , Vτ ⟩τ

The reason I introduced this is because

Proposition 3.1.

τn+1 = c(τ)τn ∧
√
−1ds ∧ ds̄.

,

We conclude that if and only if c(τ) > 0 then and only then τ > 0 and similarly
c(τ) ≥ 0 if and only if τ ≥ 0.

This gives another proposition that proves Schumacher’s theorem:

Proposition 3.2.

−∆c(ρ̃) + c(ρ̃) = ∣∂̄Vρ̃∣2

on Xs.

This proves Schumacher’s theorem. By compactness of the fiber, there is x0 on
Xs such that inf c(ρ̃) = c(ρ̃)(x0) which is in turn ∣∂̄Vρ̃∣2 +∆c(ρ̃)(x0) and both of
these are non-negative, so c(ρ̃) ≥ 0. Then [something about nontriviality].

This is all in the negatively curved case.
Now we go back to the Calabi–Yau family p ∶ X → ∆ and ρ is any fiberwise

Ricci-flat metric. Then we can compute the Laplacian of the geodesic curvature of
this form, but unfortunately the shape is quite different:

Proposition 3.3.

−∆c(ρ) = ∣∂̄Vρ −Θss̄

Now we have no minimum anymore, Θ is constant, and we can’t apply the
same argument, both sides will be zero and that’s the worst case for applying the
maximum principle.

Corollary 3.1. p∗ωWP = Θρ

The differences come from:

(ω̃ + ddcϕ̃)n = eϕ̃+η̃ω̃n;(1)

(ω + ddcϕ)n = eηωn(2)
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In the second case we have no zeroth order term in the exponent. And so

ddcη̃Ric([unintelligible]) + ω(3)

ddcη = Ric([unintelligible]).(4)

So let me make an observation. Let (M,ω) be a compact Kähler maniflod. Then

(ω + ddcϕ)n = eϵϕ+ηωn

for 0 < ϵ < 1 which implies that ∣∣ϕϵ∣∣ckα < C, ϕϵ → ϕ.
[missed a little]
So ϕϵ goes to one unique function ϕ given by the condition

∫
X
ϕeηωn = 0

so we have to choose this second normalization condition to get this precise state-
ment.

So let me go back to the equation:

(ωs + ddcϕs)n = eϵϕϵ+ηsωns

with the normalization

∫ ϕse
ηωn = 0

Define ρϵ ∶= ω + ddcϕϵ. This is not a fiberwise Ricci-flat metric. Assume that ρϵ
converges to ρ very well as ϵ→ 0 (this is true but let me skip that argument), then
it converges to a fiberwise Ricci-flat metric.

So we want to compute the geodesic curvature of ρϵ, then the equation looks like
this:

Proposition 3.4.

−∆c(ρϵ) + ϵc(ρϵ) = ∣∂̄Vρϵ ∣2 −Θss̄ + ϵω(Vρϵ V̄ρϵ)

and we have a zeroth order term but we can’t get rid of the Θ which is topological,
but we can obtain

∫ c(ρϵ)ρnϵ =
1

ϵ
∫ ∣∂̄Vρϵ ∣2 −Θss̄ + ∫ ω(Vρϵ V̄ρϵ)ρnϵ

and then as ϵ goes to zero the first term on the right side vanishes and we get

∫ c(ρ)ρn = ∫ ω(Vρ, V̄ρ)ρn.

So then we get

p∗ρ
n+1 = ∫

Xs

ρn+1

= ∫ c(ρ)ρn ∧
√
−1ds ∧ ds̄

= (∫ ω(Vρ, Vρ))
√
−1ds ∧ ds̄ > 0

So the fiberwise Ricci-flat metric satisfying my second normalization satisfies this
condition, but there is bad news. Oh, this is joint work with Braun and Schumacher.

Theorem 3.2 (Braun–C.–Schumacher). p∗ρ
n+1 > 0.
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Remark 3.1. (1) ρ1 (the original fiberwise Ricci-flat metric) and ρ2 (this is
our choice with this normalization) are not uniquely determined in [ω]. So
basically if you have the family and a Kähler form that gives a Kähler class.
Maybe we want unique determination on each Kähler class, but changing
the representative gives us a different fiberwise Ricci-flat metric.

(2) But there is a way to define the fiberwise Ricci-flat metric uniquely. There
is a fiberwise Ricci-flat metric ρ3 such that ∫Xs

ρn+13 = 0. But there is no
chance to show positivity here. If you take the average, it’s zero.

Corollary 3.2. If you add a pullback, ρ3+Cp∗ωWP > 0. But the constant C depends
on the family so this isn’t so satisfying. If the diameter of Xs is bounded by some
constant then C can be chosen uniformly, it’s like related to a Green kernel.

I still have about twenty minutes. Let’s consider extension of (the curvature of)
this metric.

So now we go back to Θρ ∶= Θhρ

X/∆
(KX/∆). Now we consider p ∶ X → ∆ a sur-

jective holomorphic map, maybe it has singularities now, but for now let’s assume
that p ∶X ∖X0 →∆∗ is a submersion, [picture].

Theorem 3.3 (Schumacher, Pǎum). Let p̃ ∶ X̃ → ∆ with the same assumptions.

Then Θρ can be extended to a positive (1,1)-current in X̃.

So Schumacher used the embedding in some projective space. Pǎum generalized,
also considering twisted Kähler–Einstein metrics, and showing that curvature in the
twisted case can also be extended to the total space. In our case we also have this
kind of theorem. We are going back to the Calabi–Yau fibration with singularity.

Theorem 3.4 (C.–Schumacher). Θρ can be extended in this case.

Let me introduce the sketch of the proof. Let ρ be a fiberwise Ricci-flat metric,
so ρn = eηωn, So ddcηs = Ric(ωs) and ∫ eηsωns = ∫ ωn, then the curvature satisfies

Θρ = ddcη +Θω.
The curvature, by definition,

Θρ = ddc log ρn ∧ dVs.
outside X0.

Now you want to extend Θρ. You already know this is positive semi-definite on
the total space. You want to show that the local potential is bounded from above
by a uniform constant. For that let me write, first you have [pictures]. Take some
coordinates z1,⋯, zn+1 on the total space and an open U , and then Us. So in U we
have a local potential σ which is η +ΨU . And by Demailly’s theorem, we have the
approximation on each fiber:

σs(x) = lim sup
m→∞,∣∣f ∣∣2s≤1

1

m
log ∣f(x)∣2

Here we’re considering the space H2
m = {f ∈ O(U)∣ ∫ ∣f ∣2/me−σ(eηωn) <∞} So now

we claim that if if ∣∣f ∣∣2s ≤ 1, then we can extend this function around U by Ohsawa–
Takegoshi extension, which says that when you extend a function, the constant of
the extension is uniform in every case. This is a tedious computation but by the
equations we have, you get

∫
Us

∣f ∣2/m dVz
p∗dVs

< C
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is uniformly bounded. You have to choose this particular norm, which blows up
when you go to the singular fiber where the denominator vanishes. But by the
condition we have, the function with respect to this norm, it’s bounded from above.
So C does not depend on s or m.

So now we apply the extension and get that there is a holomorphic F such that
F ∣Xs is f and ∫U ∣F ∣

2/mdVz ≤ C ∫ ∣f ∣2/m dVz

p∗dVs
. So now σ is bounded from above and

so can be extended. Maybe I’ll stop here.

4. Nuromur Hulya Arguz: Log geometric techniques for open
invariants in mirror symmetry

Thank you very much, I’m glad to get the chance to give a talk here. I want
to talk today about the mirror construction of Gross–Siebert (which is an algebro-
geometric construction) and how this will fit into homological mirror symmetry
(which is symplectic). On the algebraic geometry you have “log Gromov–Witten
invariants” and on the other hand you have some sort of SH∗. I want to talk about
this connection today.

What are log Gromov–Witten invariants? They are some kind of relative Gromov–
Witten invariants. If you have a Calabi–Yau, X, and you want to construct its
mirror, put it in a family X (for simplicity over A1), and they consider toric de-
generations, where the central fiber is a union of toric varieties. For example, if
you consider x0x1x2x3 + txf4 = 0 in P3 × A1, then you get a K3 surface, and the
central fiber is a union of four copies of P2, intersecting each other along coordinate
hyperplanes. The moment cones of each toric component patch together to give
a tetrahedron B. This gives a way, if you consider a toric degeneration, you can
come up with a dual complex, and put combinatorial data onto it to make it an
integral affine manifold. You’re looking, in the central fiber, at some structure, a
log structure, on the singularities, Look at four singular points, which fiber over
twenty-four points on B; I want to think of B as an integral affine manifold with
singularities. I can cover B with affine open sets so that the transition functors
away from the singular locus lie in GL2(Z)⋉Z2. The singular locus in general will
be determined by a singular badly behaving part in the central fiber. The idea is
to take the dual of B, B∨, the discrete log dual.

So the idea fo Gross–Siebert is to rebuild the mirror out of this dual. So the
first step is to build the central fiber X ∨0 . This requires gluing data, if you want
something like B to be the moment polytope of some toric varieties, you need a
symplectic form, this requires gluing data. There’s a moduli space of choices. If
you have a torus orbit in two faces, you want to be able to glue them together. So
that requires this choice of gluing data. Let me advertise that in the paper on the
arXiv, we did this in some situation where we have real structures on each fiber.
If you want a real generating set of real Lagrangians, then you need to restrict to
some conditions. I don’t want to talk about that today. I want to talk about how
you start from this and get the mirror. You’ve made your choice of gluing data,
and the main theorem of Gross–Siebert is that you have a procedure to construct
X ∨, and then your mirror is the general fiber. This requires a wall-crossing like
Kontsevich–Soibelmann.

So you can choose a piecwise linear function ϕ ∶ B → Rn (this is giving an
idea of a construction of the mirror). Around each vertex, you want to further
subdivide and choose a polyhedral decomposition of B∨ so that each singularity lies
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between a vertex of the decomposition. The standard way is to take the barycentric
subdivision. Each singular point lies between a vertex, and you do it in every face
[picture]. You use the choice of a piecewise linear function to build a monoid
around vi. Around this it looks ilke this [picture] under ϕi and you’re taking the
cone around each vertex and taking the integral points inside this cone. This is
the image of ϕ in a neighborhood, and then you obtain a monoid. Then you want
to take Speck[Mvi] and glue together over every vertex. Once we glue all these
together this will be your total space X ∨. The difficult thing is to determine how
to glue all these together.

To determine this, you need to ensure that you can glue compatibly, so you need
a scattering algorithm, so this “gluing” requires wall-crossing.

So far the idea is based on a simple generalization of simple toric geometry.
When you have a toric variety you can reconstruct in this way. In this case you
degenerate your Calabi–Yau to something toric. Unlike in toric varieties, you have
something degenerate, which requires some nontrivial wall-crossing. You put func-
tions (wall-crosssing functions) on rays out of each singularity. The composition of
your functions, going around, give the identity. So how do Gromov–Witten invari-
ants enter? The log Gromov–Witten invariants give an enumerative interpretation
of the formulas for wall-crossing.

So these are the main tools to construct. The correspondence was shown for
Gross–Pandharipande–Sieber, and wasn’t proven for more general cases when you
have singularities. If you look at toric degenerations of toric varieties, you’ll always
have some singularities here. [picture]. You need to generalize log Gromov–Witten
invariants to “punctured” log Gromov–Witten invariants, that’s the right invariants
to define symplectically the, to interpret the symplectic cohomology ring whenever
you have a Calabi–Yau or whatever. There’s some notes on Gross’ webpage, and
theres something else by Abramovich–Chen–Gross–Siebert.

So the difference between the punctured log Gromov–Witten invariants, when-
ever you have a singularity on B, you have a sum 1 + ∑aizi, and the ai are in
some monomial algebra. From the powers of those elements, these have to do with
contact orders of your log Gromov–Witten curves, of log curves. The idea is when
you have a singularity and you try to go around, if you have positive powers on
one end you need negative powers on the other end, so you need to allow negative
contact orders. So these negative contact orders are what they call “punctured.”

Let me talk about simple log Gromov–Witten invariants, which are a special
kind of relative Gromov–Witten invariants (Jun Li). You want to count curves
with special tangency conditions to a divisor D. The idea of Gross–Ziebert is to put
additional data on this. Li makes an accordian picture. But [unintelligible]define
an additional approach by putting an example ofa a sheaf on D. If you define a
morphism [picture] then this encodes the tangency.

The sheaves they’re putting are given by log structures. Let me tell you what a
log structure is.

Definition 4.1. A log structure on X is a structure homomorphism α ∶MX → OX
so that α∣α−1(O∗

X
) is an isomorphism.

Let me give some examples. One is the divisorial log structure. You’re defining,
here, let me take A2, with divisor given by xy = 0. Then you can define M your
sheaf of monoids MA2,D as the sheaf of regular functions on X with zeros on D.
You can take α to be the inclusion. This will define a log structure.
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[picture]
The monoids will look like this, the stalks will look like this, and how does this

relate to the natural numbers from the other picture? One thing you can do is
define another sheaf by getting rid of your invertible functions (we call this the
ghost sheaf) and then map the monomials to their powers. So what you do is, a

log structure has two parts, some discrete data, the ghost sheaf M =M/O∗X which
encodes all the data of your tangency orders. So for instance you can take ya ↦ a
in this picture.

So the discrete data encodes the incidence convolutions of the Gromov–Witten
invariants.

Whenever you have a tropical object, a tropical curve, this totally determines the
discrete data. Whenever you want to define a count of log curves, the morphisms on
the level of ghost sheaves lift to the discrete level. So you can include non-discrete
data, whenever you have κ the quotient morphism M → M = M/O∗, then you
can look at κ−1(m) which is an O∗U -torsor. So you can look at lifts to normal log
structures by counting these torsors.

So let me look at the Tate curve as an example of how we do these counts and
how this relates to symplectic cohomology.

The Tate curve, how we construct this historically, B has no singularities, we
take some decomposition like [picture] and then (this is a standard construction of
Mumford) I take the cone of the integers, and then I get the unfolded Tate curve,
and then when I fold I get the Tate curve. So this has a height function to A1,
and this has a degeneration, which has general fiber, you read this off by looking
at the generic preimage of a point in A1. [rationale]. So this has general fiber C∗,
and then you look at an arbitrary point in the ray and look at the preimage under
the height function, and you see how they’re related to each other, like this, and
so the singular fiber is an infinite chain of P1. So this has a Z-action, so that you
obtain Tt = C∗/z ∼ vz. The translation in the unfolded Tate curve corresponds to
[unintelligible]. The dual of each cone is of the form Spec[x, y]/x, y − u. Then you
can look at how things glue together here. If you shift, the shifting will correspond
to multiplying by u. This corresponds to a Z-action on the total space. You have
to take the quotient This is obviously not properly discontinuous, and what you do
is, you can do one of two things. You can either restrict to the unit disk and look at
an analytic Tate curve, or take some formal completion around zero. This formal
option is better if you want to relate to the Fukaya category. A good reference for
this was written by Mark Gross’ Clay book. So today I will talk only about the
analytic Tate curve for simplicity. After the quotient is just an elliptic curve, and
the central fiber, if you take the quotient, you get a nodal elliptic curve. If you
took, say three shifts, you could get three copies of P1; if you shift only once you
get a nodal elliptic curve.

Okay, so the general fiber elliptic curve T0, the nodal elliptic curve Tt, then the
aim is to understand the symplectic cohomlogy T∖T0, which is the mapping cylinder
of a Dehn twist τ . To understand the symplectic cohomology, our motivation was
to look at the Fukaya category of the elliptic curve, and there’s, if you [pictures].
Then there’s a ring HF (L, τkL), where τ is the Dehn twist, this is supposed to
give motivation, the symplectic cohomology is expected to be isomorphic as a ring
to ⊕HF (L,ZkL), this is joint with Tonkonog and recently Pomerleano. The idea
is to go to the wrapped Fukaya category.
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This isomorphism will respect the ring structures, and we expect this to upgrade
to an A∞ quasi-isomorphism.

What I’d like to talk about is how log Gromov–Witten invariants appear on
HF (L, τkL). There’s work of Abouzaid and Gross and Seibert in terms of tropical
Morse trees. Their tropical Morse category has objects integers, hom spaces 1

ni−nj
Z-

points of S1. If you look at S1 × S1 then the Lagrangians can be characterized by
their slopes, and we look at the Lagrangians which are not good enough to determine
the Fukaya category. We can just take the integers as the objects. The hom spaces
are then given by the [unintelligible]of the Lagrangians. So the hom spaces, if you
have a Lagrangian of slope 2 and 4, this corresponds to, . . . −1

2
,0, 1

2
,1, . . ., all the

intersections. The structure coefficients and product structure is given by tropical
Morse trees. To determine structure coefficients you want to count things bounding
Lagrangians. How do you define such tropical objects? You take some ribbon graph,
a tropical Morse tree is a map from your ribbon graph to S1, let me call it ϕ. The
conditions, you’ll put integers on the areas bounded by the ribbon graph. You put
differences on the edges. Then you put conditions to make this a a triangle. You
need to have positive acceleration on the leaves. You need negative acceleration on
the root. [pictures]

So now you want to use these to write more ordinary tropical objects corre-
sponding to these. What we did so far in trying to understand SH∗ of the mapping
cylinder, that we have the same product structure on Fuk(E), where the product
structure coefficients is given by tropical Morse trees. I lift these to tropical corals,
which are standard curves, and wrote down a relationship to certain punctured log
Gromov–Witten invariants, that’s my thesis works.

Maybe in the last ten minutes I can say how this works.
You have tropical objects. You lift tropical Morse trees in radial directions

[picture]. At the end, the correspondence is not one to one, there’s a one parameter
family, obtaining a tropical object. In general you can have many stops. How do
you write the correspondence, these live on the central fiber of the degeneration of
the Tate curve, because, the whole reason, [missed some], a further degeneration of
the total space, take the truncated cone, and define [unintelligible]by putting this in
R3 and take the cone of the truncated tone, this will define ΣT̃ → A2. The general

fiber T̃t will be the Tate curve. The central fiber T̃0 is T0 × A1. When you define
tropical objects at height one, the main idea is to define some tropical objects at
height one, the height one part determines the central fiber and the tropical objects
deform to the general fiber. The corals give some log curves here. These degenerate
to give solutions [unintelligible]Tate curve itself. These components, these vertices,
correspond to, if you have this tropical curve [picture] and want to find all log curves
with this as the tropicalization, for these you put P1 and for the stops the A1, these
correspond to marked points. Then to define a map to your target [pictures] and
the A1 components map to constants and don’t carry additional information, so you
can contract them and put some extra data, the punctured points. These are the
“punctures” of the Gromov–Witten invariants where you carry negative powers. If
you deform it you have cylinders with positive and negative ends. My main theorem
was to define these invariants for the Tate curve and show that you can define a
count which is finite and can be given in terms similar to the [unintelligible]count.

Theorem 4.1. (A.) The number of log corals = the number of tropical corals.
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[missed some.]

5. Bin Zhou: Optimal regularity of plurisubharmonic envelopes on
compact Hermitian manifolds

It’s a pleasure to speak here and I’d like to thank the organizers for the invitation.
This is a joint work with Jianchun Cho. Essentially it’s a PDE problem. Let me
start with the notion, let me start from the linear theory. The first envelope, the
Perron–Bremerman envelope. If you have Ω a domain in Rn and a function φ then
you can define the envelope as the supremum

uφ ∶= sup{u ∈ SH(Ω)∣u ≤ φ on ∂Ω}.

It’s well known that this satisfies the equations

⎧⎪⎪⎨⎪⎪⎩

∆uφ = 0 Ω

uφ = φ ∂Ω.

You can also consider the subharmonic envelope

uφ ∶= sup{u ∈ SH(Ω)∣u ≤ φ on Ω}.

Now we can do the nonlinear version. Let F (D2u) = f , and we can define

uφ ∶= sup{u is F − subharmonic in viscosity sense∣u ≤ φ on Ω}

and the convex envelope

uφ ∶= sup{u convex,detD2u ≥ f(x)∣u ≤ φ}

For the convex envelope, Caffanelli proved that if φ ∈ C1,1(Ω) and f ∈ C0(Ω) then
uφ ∈ C1,1

loc (Ω). This result plays an important part in the regularity theory for the
real [unintelligible]equation. Here for the envelopes the optimal regularity cannot
be better than C1,1. Let me give an example.

Example 5.1. Let φ(x) = (x2 − 1)2 for x ∈ [−2,2]. The graph looks like this:
[picture]

The envelope looks like this, and it’s not differentiable at the points x = ±1. You
can take φ′(x) = 2(x2 − 1)x and φ′′(x) = 6x2 − 2. So this uφ is not C2.

De philipippis–Figali in 2015, they considered boundary regularity. When Ω is
uniformly convex. The closure of the boundary is [unintelligible]positive and at

least C2. If you have a boundary function which satisfies φ ∈ C3,1(Ω) and f = 0,
then you can prove that uφ = C1,1(Ω). This is for the convex envelope.

In this talk we are mainly concerned with teh pleurisubharmonic envelope. Let
(M,ω) be a Hermitian manifold, and f is a given function. Here I will change a
little the symbols, for Kähler geometry we usually use φ for potential functions.

φf ∶= sup{varphi ∈ PSH(M,ω)∣φ ≤ f}.

Here you can of course study the regularity problems.

(1) The first result is from Berman–Demailly, when ω is Kähler and f ∈ C∞,
then φf is in C1,α(M) for some 0 < α < 1, strictly less than one. A natural
conjecture

Conjecture 5.1. φf ∈ C1,1(M).
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(2) (Berman) When [ω] is an integral class, φf is in C1,1(M). Then Ross–
Nystrom extended this, you can consider envelopes with prescribed singu-
larities, and also have C1,1-regularity outside the singular points. They
needed the integral assumption because of the Bergman kernel which they
used to do this.

You can also treat this problem as a PDE problem, it is an obstacle problem. To
deal with obstacle problems, you have the “penalty method.” A good reference is
given by K. A. Lee, who is from Korea. You can construct a family βϵ(t) a smooth
family of functions which satisfies βϵ(0) = 1, it is always positive, and βϵ(t) → 0 as
ϵ→ 0 for negative t while βϵ(t)→∞ for positive t. Also β′ϵ(t) ≥ 0 and β′′ϵ (t) ≥ 0.

Why is this the “penalty method?” We can consider F (D2uϵ) = βϵuϵ − φ on Ω
and u = φ on ∂Ω. This is the “penalized problem” (equation). The idea is if you
can get a good estimate for this problem, you should get uϵ → uφ as ϵ→ 0.

This becomes a PDE problem now. Berman used this βϵ(t) = e
1
ϵ t.

So if you consider the equation

(5) (w +
√
−1∂∂̄φ)n = e

1
ϵ (φϵ−f), ϵ > 0

(1) Equation (5) is solvable for any ϵ > 0 (Yau–Aubin in the Kähler case and
[unintelligible]in the Hermitian case).

(2) φϵ
C1,α(M)
ÐÐÐÐÐ→ φf (∆φϵ ≤ C)

Theorem 5.1 (Z.–Chu). (M,ω) is Hermitian and f ∈ C1,1(M) then φϵ
C1,1(M)
ÐÐÐÐÐ→

φf ∈ C1,1(M) as ϵ→ 0. This regularity is “optimal.”

Remark 5.1. Tossati proved this at the same time, but just for the Kähler case.
The main ingredient is the a priori estimate for the second derivative. Dinew, earlier
this year, considerd the domain case. This was withdrawn, so maybe there were
problems. So that case may still be open.

Before I give the proof of the theorem, let me first show you some examples to
indicate why it is optimal.

First, you can consider a local example. This is very similar to the real case.
Consider a ball B2(o) ⊂K. Then f = (∣z∣2−1)2 ∈ C∞(B2). Then φf ∈ C1,1(B2(0))∖
C2(B2(0)).

We can also get a global example on P1 with the Fubini–Study metric. So let
[z0, z1] be homogeneous coordinates and let U and V be the coordinate charts,
U = {[1, z1]} and V = {[z0,1]}. We just need to extend the local example to the
global manifold. Here we write

f =
⎧⎪⎪⎨⎪⎪⎩

(∣z1∣2 − 1)2 − log(∣1 + z1∣2) U0/{[1, z1]∣∣z1∣ ≤ 5
4
}

h̃(∣z0∣2) − log(1 + ∣z0∣2)

If you write the first function, the graph looks like this [picture]. You cut this to
get h and modify it to get something smooth. You need to choose the domain
appropriately so that you can glue the two parts together.

Okay, with this construction

Proposition 5.1. φf ∈ C1,1(P2) ∖C2(P2)

because the envelope looks the same as in the local example.
Now we go to the proof.
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In other words, we just need to consider Equation (5). You need the a priori
estimate independent of ϵ. For the first step it will be a C0-estimate. I’ll just
talk about the Kähler case. The Hermitian case the idea is the same but the
computation is more complicated.

Proposition 5.2.

max{φϵ − f} ≤ Cϵ
min{φϵ} ≥min f.

Proof. Easy. Look at φϵ − f . The maximum is at at p means that
√
−1∂∂̄φϵ(p) −

√
−1∂∂̄f(p) ≤ 0

so that

φ − f ≤ ϵ log ω +
√
−1∂∂̄f
ωn

≤ Cϵ.

For the minimum,

φϵ − f = ϵ log
(ω +

√
−1∂∂̄φϵ)n

ωn
≥ 0.

□
Corollary 5.1. Then limϵ→0 φϵ = φf
Proof. For any pleurisubharmonic u ≤ f , define uϵ as (1 − ϵ)u + ϵ(log ϵn +min f).
Then

(ω +
√
−1∂∂̄uϵ)n ≥ e

1
ϵ (uϵ−f)ωn

so

uϵ ≤ φϵ
ϵ→0ÐÐ→ lim

ϵ→0
φϵ ≥ φf .

□
Okay, now for blowup.

Theorem 5.2 (Approximation). For (M,ω) Hermitian, for any φ pleurisubhar-
monic there are {φi} smooth and pleurisubharmonic so that φi ↘ φ.

Let me give names, Demailly, Blocki–Kolodziej, Berman, Kolodziej–Nguyen.
This PDE approach, this idea can also be used for F (D2u,Du) = 0, so if you

have an elliptical operator, then for subharmonics for this operator, you can always
smooth it by this approach. For example,

Hk(u) = Sk[D
⎛
⎝

Du√
1 + ∣Du∣2

⎞
⎠
]

the k-curvature, this is a good place to use it.
Okay, now the second derivative estimate. Write g ∼ ω if g̃ ∼ ω +

√
−1∂∂̄φϵ.

So first Berman gets a Laplacian estimate sup ∣∆φϵ∣ ≤ C. We’ll go further and
show that the real Hessian is bounded.

Proposition 5.3.
sup ∣∇2φϵ∣ ≤ C

with C independent of ϵ.

With this estimate you can get C1,1. Okay, the proof is complicated so let me
focus on some major points.
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Major points. From the Laplacian bound ∆φϵ ≤ C, we get ∣∇2φϵ∣ ≤ Cλ1(∇2φ) +C
where λ1 is the largest eigenvalue of ∇2φ.

So now the proof is to do the computation with Q = logλ1(∇2φ) + hD(∣∂φ∣2g) +
e−Aφϵ . Here A is a constant to be determined and h

(S)
D is − 1

2
log(D+sup ∣∂φ∣2g−s).

Then there is a problem when you want to differentiate Q, because λ1 is the
largest eigenvalue of the Hessian, but it may not be smooth. If the eigenvalue is
multiplied by 2, then this is not smooth. You need some more trick. The real
eigenvalues are decreasing

λ1(∇2φ) ≥ ⋯ ≥ λ2n(∇2φ)
with eigenvectors V1, . . . , Vn. Assume Q attains its maximum at p. Choose coordi-
nates near p. Then you can extend {Vα}, the eigenvectors, in the coordinates, by
taking the components to be constant.

I should say that I have to take this at the point p, and the Vα is also with
respect to the eigenvalue at p.

Define Φαβ by gαγ∇2
γβφ − gαγBγβ where Bαβ = δαβ−V α

1 V
β
1
.

Write Φ for the matrix (Φαβ), and then λ1(Φ) is strictly larger than λ2(Φ) (al-
though this does not stay the same for smaller eigenvalues). Moreover V1 is still an
eigenvector. We also have λ1(Φ) = λ(∇2φϵ) at p and λ1(Φ) ≤ λ1(∇2φϵ) near p.

We actually do this computation with respect to this Φ.
Now you can replace Q by Q̃, which is logλ1(Φ) + hD(∣∂φϵ∣2) + e−Aφϵ and you

just need to compute the Laplacian of Q̃ at this point p and you get

0 ≥∆g̃Q̃

=
∆g̃λ1

λ1
− g̃

ii∣∂i(λ1)∣2

λ21
+ h′D(∆g̃ ∣∂φ∣2g)

+ h′′Dg̃ii∣∂i∣∂φ∣∣2 −Ae−Aφ∆g̃φ

+A2j−Aφg̃ii∣φi∣2

So then you get V1V1( 1ϵ (φϵ − f)) greater than or equal to 1
ϵ
(λ1 − ∣∣f ∣∣c2) and then

2R(1
ϵ
(φi − fi)φ) ≥ −

1

ϵ
(3 sup ∣∂φϵ∣2g + ∣∣f ∣∣2c′)

and for D large enough we get

1

ϵ
(λ1 − ∣∣f ∣∣c′) ≥

h′D
ϵ
(3 sup ∣∂φϵ∣2g + ∣∣f ∣∣2c′).

□
I’d better stop here.


