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1. Joey Hirsh: What is a homotopy [something]?

I never gave this talk before and have been thinking about these things for a
while. There may be better people to talk to you about these things. There are
many people who think only about categories, stop me if I’m not clear.

What is a homotopy something? What are the somethings I have in mind?
People often say they want to do concept X up to homotopy or homotopy blah.
We can make a list

• homotopy (co)limits
• homotopy mapping space (or derived mapping space)
• homotopy universal property
• homotopy adjunction
• homotopy Kan extensions
• homotopy theory

I heard people give talks in which all these concepts come up. Maybe I’ll pick “ho-
motopy mapping space.” You write down a mapping space, a cofibrant replacement
functor, and then you have a homotopy mapping space.

A derived mapping space, you replace O with O∞ in Gabriel’s talk and then you
get a different kind of mapping space.

Homotopy limits and colimits, for example in a model category, you can move
around a diagram and take a strict limit. Or you can fatten something up when
you have an enrichment and use this to build a homotopy limit.

The answer to all of these questions come from homotopy theory. Once you
make sense of what homotopy theory is abstractly, you can move all these concepts
into homotopy theory from category theory in a coherent way. That’s maybe what
I’ll focus on.

I was supposed to tell you in the beginning, I might not answer all of these
questions in an hour.

So what is a homotopy theory? To answer this question, I need to ask first, what
is a theory? Since I assume that people know what a category is:

Definition 1.1. A theory is a category.

A homotopy theory is a category like structure with objects and relations and
maybe some extra stuff too. The main example of what we have at hand, we take
this and try to abstract.

So let’s look at the example of topological spaces. Maybe I’ll ask the audience
what makes this thing a homotopy theory? One way is to say that it’s a model
category. I don’t really prefer these. Maybe it’s a category with weak equivalences,
a relative category. I want to think of homotopy theory as having more structure,
some kind of category-like thing.
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[Is a model category the classical answer?]
A qualified yes. Whatever I end up with should be a category-like structure,

we would want, maybe, a tensor product, and so for example, spectra had no
model categorical tensor product. It’s wonderful to have a presentation as a model
category but sometimes you only have something more primitive.

I’ll say model category is to homotopy theory as a presentation is to an algebra.
You’d better have generators and relations but this is not the right way to define
things.

Presheaves on a model category with values in spaces have many model category
structures.

So back to a relative category, which is a category with a subcategory of weak
equivalences (C,W ). A morphism between these is a functor which takes W to W .
So for example you could take spaces with weak equivalences.

Maybe I should take this to be a category with homotopies. There are multiple
ways to do this. One way to get the homotopy relation is to say Map(X, Y ) is a
topological space, I can take π0 of that. Then π0 tells me which maps are homotopic.
I can take a category enriched in spaces. You have a space of morphisms, not just
a set.

An object is an object, a morphism is a relation between objects, there are
homotopies between morphisms, and between homotopies and between higher ho-
motopies. This then is some sort of ∞-category. These aren’t arbitrary. You can
always rewind a picture. Homotopies are somehow always invertible. A category
with higher morphisms, all of which are invertible.

I have objects, morphisms, homotopies, higher homotopies, and so on, and start-
ing with the homotopies everything is invertible.

Let’s say I want to define a two-category, I want the morphisms and two mor-
phisms to compose associatively, that’s one option, or I could say that the one
dimensional morphisms are associative only up to a two-morphism. I could say
something weaker. So I could do the same thing with ∞-categories.

I could get a category out of these by collapsing the two-morphisms. That is the
homotopy category of an ∞− 1 category.

Take the category of ∞− 1-categories. There is a functor from this to regular
categories called “π0” or “homotopy category.” You could also take π0 from a
category enriched in Top. You replace a space of maps with π0. That’s like nothing.

So some relationships between these things, we have a functor Model → RelCat
that I can call “forget.” Another way to go from a topological category to a relative
category would be to, take the the space of maps, I can forget to a set of maps, and
then my weak equivalences will be, okay, if you give me a topological category I
can take π0, and I can look at the isomorphisms in π0(C), I have to say a few more
words. You have a functor taking Map(X, Y ) to its components, and the preimage
of isomorphisms, these are the weak equivalences.

Let’s relate ∞− 1-categories to topological categories. The way I’ll do this is
the following. I’d like to justify an equivalence between (∞ − 1)-categories and
topological categories. This is called the homotopy hypothesis, or fallows from it,
so I thought I’d say a few words about that.

The homotopy hypothesis says that spaces are in some sense equivalent to weak
∞-groupoids. An (n − k)-category has n levels of morphisms, and above k ev-
erything is invertible. Weak here, I mean associativity is only true up to higher
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morphisms. Unital relations are also only weak. So I can rewrite this as an (∞, 0)
category.

Strict means that associativity is true on the nose at each level. Weak means
that associativity is true up to higher levels. If you only have one level, these are
the same.

When I have a category like thing, the right hand side has morphisms, I can
think about natural transformations. Categories, the collection of all of them have
two categories. Secretly our objects have stuff inside so I can define natural trans-
formations between functors. So Cat is a strict 2-category. You can have a formal
definition that a strict n-category is a category enriched in strict (n−1)-categories.

So any time you take a category of (n, k)-categories, it’ll be an (n + 1, k + 1)-
category.

So this equivalence of spaces and (∞, 0)-categories is an equivalence of (∞, 1)-
categories.

Spaces are an ∞-1 category where objects are spaces, morphisms are continu-
ous maps, 2-morphisms are homotopies, and higher morphisms are homotopies of
homotopies.

Let’s say more about this homotopy hypothesis.

Definition 1.2. A space X is a homotopy n-type if for every basepoint and every
k > n, πk(X, x0) is 0.

This filtration is not exhaustive but every space is a homotopy ∞-type.
I can take the fundamental groupoid functor π≤1 from spaces to groupoids.

Objects are points of X and morphisms are homotopy classes of paths. If you pick
an object in this category, the automorphisms are the fundamental group at that
point.

We have another functor, we can try to undo this process in a universal way.
Given a groupoid, we can construct a space BG which, I’ll make a cell complex.
Put down a point as a zero-cell for every object in G. Put a one-cell for every
morphism in G, and then a 2-cell for every pair of composable morphisms, and so
on. For every n composable morphisms, I attach an n-simplex.

A fact is that π≤1BG ∼= G and BG is a homotopy one-type.
Then B factors through 1-types. And 1-types are equivalent to groupoids.

Maybe I can show that 2-types are the same as 2-groupoids and so on. So the
hope, naively, is that n-types are equivalent to strict n-groupoids by π≤n of ∞, 1-
categories or something.

That’s not good enough, and here’s the reason why. The first obstruction is, if
we try to make π≤2X, a two-groupoid, it’s not a strict two-groupoid. Well, if you
want to, what did we do for π≤1? For a two-morphism to be a homotopy, you need
morphisms to be paths, not homotopy classes of paths. So then the two-morphisms
here are homotopy classes of homotopies.

Composition of paths is not a strict two-groupoid. This isn’t that bad of an
obstruction. You can still take 2-types, 2-groupoids, strict ones, and still write
down B, and it’s still an equivalence, you can do something here. There’s a real
obstruction at level three.

Fact 1. 3-groupoids and 3-types, B is not an equivalence.

If you take, well, take S2, every space has an associated n-type. So (S2)3 cannot
be in the image of B for any groupoid. So this is not equivalent to BG for any
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strict 3-groupoid G. In (S2)3 you have the Hopf fibration, and BG should have a
simple Postnikov tower. This is like maybe a product of Eilenberg MacLane spaces
or maybe not quite that but certainly nothing like the Hopf fibration.

You can see why it should work in general. This failure tells you that you should
replace strict with weak and it should work.

Let me show you this being tautological or not in the case n = ∞ This is the
same as the equivalence of Top and sSet (or Kan complexes).

2. Deformations with noncommutative parameters

I’m trying to let go of not having finished the last one. So in this talk I want to
talk about moduli spaces, or think about them, and the reason why is that moduli
spaces tell you things about objects that you’re trying to study. You have some
objects in a category, and you want to give them topology. You want to give them
the structure of an algebro-geometric space. You want to think that this is the
structure of a ring, more or less. Maybe a scheme. Suppose you’re in that context,
if you have a category of objects, it’s hard to write down a moduli space. The
best family that your object lives in, this could be hard because it’s impossible. To
address this problem, you use the following categorical yoga. To define an object
in C, you could write down an object. But you could also, given an object X in C,
you should know what Hom(X, M) is.

The minimum you need to define M is to map into M .
The Yoneda lemma tells us that if M exists, it is determined by F = Hom( ,M).
So to find your moduli space you can write a functor from the opposite category of

algebraic gemoetric spaces, and that’s like rings. Functors like this are determined
by functors from unital commutative rings into sets.

This motivates the beginning of moduli space theory.

Definition 2.1. A commutative moduli problem is a functor F from commutative
k-algebras to sets.

The problem is to find a space M so that F is isomorphic to Map( ,M). This
has two parts, existence and construction. There is a tradition of answering these
representability problems, the first type, in category theory.

In the last talk the speaker promised to tell you what a homotopy thing is. I
want to talk about proving some existence theorems. I want to modify things. I
want to prove things only locally. I mean this to be formally around a point. If M
is a space, pick a point x and working formally means you take smaller and smaller
neighborhoods until you see jets, but infinitessimal neighborhoods basically.

The history of moduli spaces says to understand them, you can’t hope to do it
in this naive way, you need to work up to homotopy.

Theorem 2.1. The moduli space of a structure with automorphisms, isomorphism
classes is not representable.

You might hear that the functor from rings to sets, isomorphism classes of el-
liptic curves over R is not representable, because some elliptic curve has an au-
tomorphism. Every bundle should be trivial, and an automorphism gives you a
non-trivial bundle.

Historically the solution is to pass from functors from commutative algebras to
sets to instead use functors from commutative algebras to groupoids. Then we can
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encode automorphisms. Then you could try to tell when these are representable,
stacks or something, this is tricky or hard to, people do work to give theorems where
stacks behave geometrically. It turns out that there is a coherent homotopy theory
approach. So groupoids are a subcategory, they’re the same as 1-types, which sit
inside ∞-types, which are spaces. I can encode all higher obstructions in spaces.
In the last talk you saw how to turn any adjective into a homotopy version. I can
really translate all of these concepts. It’s not clear what you’re doing when you
stop at Gpd. Taking it to spaces, you get expected results. I’ll prove theorems
about functors from commutative algebras into simplicial sets.

In classical geometry it’s hard to work locally, but in algebraic geometry, you
can work locally easily, using a subcategory called commutative Artin algebras or
Artin rings. These are the things that only see locally. Then:

Definition 2.2. A derived commutative deformation or local moduli problem is a
functor from differential graded commutative Artin algebras to simplicial sets.

The problem is to find a representing ring M .
We have the following definition:

Definition 2.3. The tangent space of a derived commutative deformation problem
F is defined to be the value it takes on k[ε]/ε2.

Proposition 2.1. TF is a chain complex.

I suppressed, I want functors that have one or two small conditions that would
follow from representability, called Schlessinger’s criteria. You need this for this
proposition. It lands in simplicial Abelian groups, and these are actually vector
spaces, and you can say:

Proposition 2.2. (in characteristic zero) TF is naturally an L∞ algebra.

I’ve jumped a little bit. Let me say just a word about where this L∞ structure
comes from. If we look at the tangent space of a curve that intersects itself, it’s
two dimensional. The bracket, I have some directions that are off the space. The
bracket measures whether there’s second order, the triple bracket checks to third
order.

So I have a short exact sequence of rings:

ts → k[t, s]/(t2, s2) → k[t]/t2 ⊕ k[s]/s2

and there’s some sort of obstruction map that gives the bracket.
[Is there more structure from being a simplicial set rather than just a set?]

Theorem 2.2. (Schlessinger, Deligne, Manetti)
There is a functor “Maurer Cartan” from L∞-algebras to derived commutative de-
formation problems, which takes L to the functor which takes R to the set of Maurer-
Cartan elements in L ⊗ R. You might say this isn’t a simiplicial set, so take for
your n-simplices the Maurer-Cartan solutions in L⊗R⊗ Ω∆n

For any deformation problem F , that MCTF and F are equivalent on π0, iso-
morphic as functors from differential graded Artin rings to sets.

If you know a little higher category theory and Manetti’s theorem, you can
rephrase it as:
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Theorem 2.3. (Manetti)
MC is an equivalence of ∞− 1 categories, with the construction above as an ∞-
inverse.

The L∞ structure on TF is amorphous. The construction takes a differential
graded Lie algebra and gives a deformation problem, and going back is like giving
you an L∞ structure on homology. This isn’t functorial but passing to the homotopy
category it is.

Essentially this says that L∞ algebras are representing, every functor is equiva-
lent to one of these coming from an L∞ algebra. Also, you might complain, you’re
taking Maurer-Cartan, you’re not representing. Let me say why Maurer-Cartan is
like representing a functor.

A Maurer-Cartan element is a map from k to sL. Given L, there’s a natural
object associated to sL, called BL, the cofree cocommutative coalgebra on sL, with
a differential from the bracket of L. Because this is cofree, and k is a coalgebra,
we can lift this to a coalgebra map eγ to BL. We’d like this to be a dg coalgebra
map. This is 1 + γ + 1

2γ ∧ γ + · · ·
So eγ is a differential graded map if D(eγ(1)) = 0, which is true if and only

if γ is a Maurer-Cartan element. So MCL(R) is equivalent to differential graded
coalgebra maps from R∨ to BL. So this is really a representability result.

Now I guess sometimes it makes sense to work over commutative rings. But
maybe if you’re a physicist you want your moduli space to have more structure,
maybe it’s a quantum field theory. This should apply, the Yoneda lemma, to more
categories or more situations. The moduli space, if it has symmetry or structure,
you’d expect the representing object to have features that reflect that. You have
differential graded commutative Artin rings, you could look at this inside differential
graded Artin rings. Suppose your functor is robust enough to extend to this more
complicated setting in a complicated way. So what if you have P -Artinian algebras
for an operad P , with commutative Artinian algebras inside of them.

The answer is yes, and here is a theorem.

Theorem 2.4. (Hirsh) There is a Maurer-Cartan functor from P !
∞ algebras to

derived P -deformation problems. This functor is an equivalence of ∞, 1-categories,
with the tangent space construction as an inverse in the homotopy category. So you
can interpret an extension of the L∞ structure to a P !

∞ structure.

An application is to give Deligne’s conjecture. I don’t have time to say this. An
associative algebra, its deformations are an L∞ algebra, it’s actually an E2-algebra,
a G∞-algebra, and it’s the universal such thing that acts here on the associative
algebra A. So you plug in E2 which is self-dual. So send an E2 algebra to all
the ways it can act on A. You can show that these commute. That shows that
the Hochschild L∞ structure extends to the E2 one. I think of string topology
operations on the based loop space, as coming from these things. One more word,
I keep getting distracted, we needed characteristic zero for Com and Lie. But
for many P you don’t need characteristic zero. So associative deformations have
representing objects in characteristic p.


