
PMI–POSTECH LECTURE SERIES

FACTORIZATION HOMOLOGY AND NUMBER THEORY OVER

FUNCTION FIELDS

QUOC P. HO

1. January 21, 2019

Thank you very much for the invitation. This is my first time in Korea and I’m
happy to be here.

I’ll talk about factorization homology and applications to number theory over
function fields. There are applications in many fields of mathematics, but factor-
ization homology has its roots in physics. I want to translate the number theoretic
problems to algebraic geometry and then use ideas from factorization homology.

Let me start with the classical motivation and then quickly move to a geometric
picture and then formulate it in terms of moduli spaces of principal bundles and
show how factorization homology can be used on it.

So let me start with the Tamagawa number 1 conjecture (Weil). Roughly it says
the following. Let G be a semi-simple simply connected algebraic group over Q.
So most intents and purposes you can think of G = SLn. Let me introduce some
notation. Let O be the product ∏Zp × R, the integral adeles, so Zp is called the
“finite places” and R is ∞. Then A is defined as ∏

′Qp, meaning (vp) such that vp
is in Zp for all but finitely many primes.

The Tamagawa measure on G(A) is ∏
′G(Qp), and this is some canonical mea-

sure on this group µTam, some kind of product of Haar measures, and the conjecture
is that µTam(G(Q)/G(A)) is one.

So this is a theorem by Langlands, Kottwitz, Chernousov, over number fields
using trace formulas (so analytic), but only recently proved by Gaitsgory–Lurie
using factorization homology for function fields (this is geometric and categorical).

I’ll restate what the conjecture says in the function field setting. I’ll replace
Q with rational functions on a curve over a finite field Fq, so X will be smooth,
projective, geometrically connected, and G will be an algebraic group over X. This
is a bundle of groups where each fiber is an algebraic group. To make things simple
we’ll assume that G is a trivial fibration. What they prove is more general but for
us G will be a constant family.

I’ll also assume, again, that G0 is semisimple and simply connected. So now O
will be the product ∏Ox, where Ox is non-canonically isomorphic to k[[u]] where
k = k(x). The adeles will be ∏

′Kx, where Kx = X((u)) and the prime means it’s
integral for all but finitely many and K is the rational functions.

So as in the number field setting we have a Tamagawa measure µTam on G(A)
and again the conjecture is that µTam(G(K)/G(A)) = 1.

So roughly up to a normalization, µTam is the product of µx.
1



2 QUOC P. HO

The simplest picture, the local picture, is A1(Kx) = Kx. For this part, there is
a canonical measure

µx(A1(Ox)) = µx(Ox) = 1

So we know Ox/mx = k(x) so µx(mx) = ∣k(x)∣−1. So now suppose Y is some
variety, smooth, over Ox, then in particular you have, you want to associate, to
get a measure on Y (Kx)? This is some p-adic variety, so just like in the case of
manifold, to integrate on a submanifold first you have to pick a top form. So the
input is a top form on Y , let me say YKx is the generic fiber of Y over y. You need
a top form on YKx and using that you can get a measure.

But when Y is over Ox you can ask for something better, a top form on Y , and
then we get a measure with very good normalization. Then volY (O) is the number

of points of the residue field ∣Y (k(x))∣ divided by ∣k(x)∣dimY /Ox .
Let’s specialize to the case where Y is G/Ox. You don’t want a random top

form, you want one that’s left-invariant with respect to the group G. You still have
the equality

µ(G(Ox)) =
∣G(k(x))∣

∣K(x)∣dimG/Ox
.

That’s the local picture, so now let’s define the global guy, try to piece them up.
Some expressions may not converge in real life, so we’ll have to say something to
make sure this is well-defined.

So define the unnormalized Tamagawa measure, µun
Tam to be the product

∏
x∈∣X ∣

µx.

I’ll use the notation that Ga is the additive group A1 and Gm is the multiplicative
group A1 ∖ {0} with the product as the group structure. The first thing I want to
compute is µun

Tam(Ga(O)), and this is ∏µx(Ox) = 1.
Let me give a warning. This infinite product can diverge. So some care must be

taken. If G is a constant finite group scheme over X, say G =X ×Γ, then over some
factor this will be the order and then the product will be infinite. So in practice
some care has to be taken.

So the thing that is more interesting is µun
Tam(G(K)G(A)) for G = Ga. For this

we have to use some algebra, so we have the following exact sequence:

0→H0(X,OX)→ G(O)→ G(K)/G(A)→H1()→ 0

This involves a resolution of OX by flasque sheaves.

0→ Ox → Gk ×G(O) = toG(A).

Then this gives you the following sequence

0→H0(X,Ox)→ ⋯→ ⋯→H1(X,OX)→ 0.

Now you do this computation and get by Riemann–Roch

µun
Tam(G(K)/G(A)) =

∣H1(X,OX)

f
ine∣H0(X,OX)∣ = q−1.

Now we come to the normalized Tamagawa measure. Essentially [unintelligible].

So µTam is defined to be
µun
Tam

q(g−1)d
, where d is the dimension of my group scheme

G0. The conjecture is that µTam(G(K))/G(A)) = 1, again.



PMI LECTURE SERIES 3

So far there’s not much geometry. How does geometry come in? This goes back
to Weil. His observation is that there is a correspondence between the double coset
G(K)/G(A)/G(O) and G-principal bundles on X. After we know how this works
we can act in the bundle world, which is a very geometric place.

How do you construct these? You pick a small enough covering and glue together.
First think of G(A). This is typical, first think of things with extra structure

and then quotient out.
So G principal bundles with generic trivialization. I have P → X with a map

SpecK →X and I have a trivialization over each Ox [pictures].
Suppose that P is such a guy, so from P ×X Spec K, this is (from generic

trivialization isomorphic to G × Spec K). So I get

G × Spec K ×Spec K Spec Kx.

[missed some].
So G0 acts in two different ways and considering them together you get the

correspondence.
So we can upgrade the statement from an isomorphism of sets to an equivalence

of groupoids.
Let me quickly recall that a groupoid is a category in which all morphisms are

invertible.
I have to tell you what I mean, what is the gorupoid structure on the right hand

side?
So this is a groupoid whose morphisms are morphisms of G-bundles. The

left hand side has as objects elements in G(K)/G(A)/G(O). So if γ ≠ γ′ then
Hom(γ, γ′) = 0. Then Aut(γ) is γ(G(K))γ−1 ∩G(O).

The reason for the formula, let’s do it after the break.

2. January 21, Part 2

So as promised we will upgrade the statement to one about groupoids. So I gave
some formula to upgrade the left hand side, it’s a natural thing to do. Let me recall
the following general construction, called the groupoid quotient. In general let S be
a set and let G be a group that acts on S. The usual way that we quotient S by G,
we say it’s the set of orbits of S by G. That’s the usual way we define the quotient.
We can do better and define the groupoid quotient. The resulting thing [S/G] is a
groupoid where the general philosophy is when you say that two things are equal
you lose a lot of information. You are saying that two elements of S are equal if
they are in the same orbit. We replace equality by morphism. So the objects are
still the elements of S. The morphisms, Hom(s, t) is the set of g in G such that
gs = t. In particular, there may be multiple ways to make two points isomorphic.
So in particular, the automorphisms of s is the stabilizer of s.

Whenever we talk about categories we can talk about equivalence of categories,
so we consider [S/G] with objects s in S/G and morphisms Hom(s1, s2) empty if
they are different, and otherwise the stabilizer. You pick one isomorphism class
representative per orbit, and get an equivalent category. All of my quotients will
be groupoid quotients and I will not write the brackets anymore.

So let’s come back to G(K)/G(A)/G(O), and do it as a groupoid quotient. So
let’s do something easier first. So G(O) acts freely on G(A) with no stabilizer,
so the naive quotient and the groupoid quotient coincide. So then we can take



4 QUOC P. HO

the quotient by G(K). The objects are again the orbits but the morphisms, if
γ is in G(A), then G(K) acts on γG(O)/G(O), and the stabilizer, when γ is 1
this is G(O) and otherwise it’s γG(O)γ−1 but we want it to be in G(K) so it’s
G(K) ∩ γG(O)γ−1. That’s our automorphisms of γ.

Now we want to say that G(K)/G(A)/G(O) is equivalent to the G-bundles over
X, and we want to say this now for automorphisms. The idea is, if you fix a bundle
then G(K) can be thought of as the automorphisms of the generic fiber of the
bundle. The condition is that your object, your element, lives in there, is that the
automorphism extends, and that’s how you get the correspondence.

Now we’ve moved to something more geometric, so we want to say it as something
bundle-theoretic. Again, up to issues of convergence this is a very formal argument,
so what is Tamagawa number on the geometric side? We’re interested in

µTam(G(K)/G(A)) = ∑
γ∈G(K)/G(A)/G(O)

µTam(G(K)/G(K)γG(O))

= ∑
γ∈G(K)/G(A)/G(O)

µTam(G(O))

∣γG(K)γ−1 ∩G(O)∣

= µTam(G(O)) ∑
P a G-bundle/∼

1

∣AutP ∣
.

Now suppose that, the Tamagawa conjecture says that µTam(G(K)/G(A)) = 1 but
this we also have

µTam(G(O)) =∏µxG(Ox) =∏
∣G(k(x))∣

∣k(x)∣d
1

qd(g−1)

and this then says our geometric version.

(1) ∑
P

1

∣AutP ∣
= qd(g−1)

∏
x∈∣X ∣

∣k(x)∣d

∣G(k(x))∣
.

Let me give a quick remark, that I was supposed to say before I wrote this down.
Suppose C is a groupoid. When you count a set, you count each element with

value 1. The volume of a groupoid is supposed to be ∑C/∼
1

∣Aut(c)∣
.

So the Tamagawa number one conjecture is the statement that the count of
G-principal bundles is this infinite product that looks like an L-function.

Let me say something quickly about classifying spaces of bundles. Really I mean
stacks but for now let’s keep it at a more heuristic level. So when you have G a
group, say over, let G be a finite group, then you can form this thing called BG,
the classifying space of G-bundles, at least topologically, and one way to construct
this is to find a contractible space so that G acts freely and quotient out by G, so
in the world of groupoids, you can view E as a point. So this is a good way to
compute ∗/G. So in topology, homotopy classes of maps from X to BG is the same
as G-bundles over X.

So back to the situation we had over there. So G is a group over X, and we can
look at BG(k(x)) over each point, and we want to compute ∣BG(k(x))∣. The only
information is the automorphism, this is the whole group G, this is the denominator

1
∣G(k(x))∣

. Then if you push this far into stacks, the dimension of BG is, the relative

dimension is the dimension of G, this is then −d. So you get

1

qd(g−1)
∑
P

1

AutP
=∏

∣B(G(k(x)))∣

∣K(x)∣dimBGx



PMI LECTURE SERIES 5

and now both sides have something about G-bundles.
Okay enough motivation, how do we prove this. We’re in algebraic geometry

over a finite field, so we can do point counts cohomologically. Let me recall the
Grothendieck–Lefschetz trace formula.

In general, we work with `-adic sheaves, so let me quickly recall, the theory is
complicated to set up. There are a small list of manipulations that you can do. For
a scheme X, the derived category of `-adic sheaves on X is Shv(X). What I mean,
there are two complicated things here, one is `-adic, there is a difficulty, but it’s
technical, and derived means chain complexes of such sheaves. The coefficients are

in Q̄` where ` is a prime different from p. So now given X
f
Ð→ Y we have pullback

f∗ ∶ Shv(Y ) → Shv(X) and pushforward f∗ ∶ Shv(X) → Shv(Y ). Everything is
derived so I won’t write L and R. These are adjoint, so f∗ ⊣ f∗ meaning

Hom(f∗G,F) ≅ Hom(G, f∗F).

We also have the exceptional pushforward and pullback, and f! ⊣ f
!, extend your

sheaf by zero to the compactification and then use normal pushforward, that’s
pushforward with compact support. Then the pullback is exceptional pullback.

Given two sheaves you can also tensor them, and another tensor product, the

exceptional tensor, if you have X
∆
Ð→X ×X, and then you have the projections pi,

and F1 ⊗
! F2 is

F1 ⊗
! F2 = ∆!(F1 ⊠F2) = ∆!(p∗1F1 ⊗ p

∗
2F2).

I also want to say something about Verdier duality, D ∶ Shv(X)op → Shv(X) and
Df! ≅ f∗D and Df ! = f∗D.

There are two canonical sheaves, the constant sheaf Q`,X and then the dualizing
sheaf ωX , its Verdier dual. One way to define the Verdier dual is hom into the
dualizing sheaf.

Let me give you some properties, and these may look abstract but they’re actu-
ally quite simple.

(1) When X
f
Ð→ Y is proper then f∗ ≅ f!.

(2) When X
f
Ð→ Y , the pullback of the constant sheaf is the constant sheaf, and

the dual statement is that f !ωY ≅ ωX .
(3) When the map is smooth of relative dimension n, then f !F ≅ f∗F[2n](n),

so this is the Tate twist. Cohomologically it’s shifted to the left by 2n. My
differential goes up i → i + 1 → ⋯ and you shift the complex to the left by
2n.

Suppose X is defined over Fq, then X̄ is X ×Fq F̄q. I’ll use the following notation:

C∗(X̄,F) = π∗F where π ∶ X̄ → Spec F̄q. Suppose F is coming from Shv(X) before
base change. Then C∗

(c)(X̄,F) has an action of Frobenius. Then we can recall what

Grothendieck said about point counting and cohomology.

Theorem 2.1 (Grothendieck–Lefschetz trace formula). Let F be a sheaf on X.
On one hand you can form the following sum, where Fx is the stalk of F at the
point x:

∑
x∈X(Fq)

Tr(Frobq,Fx) = tr(Frobq(C
∗
c (X̄, F̄)))

where the bar means I base change everything to an algebraically closed field.



6 QUOC P. HO

The one side is something happening over X and the right side is cohomological.
By trace on the left side, I take the alternating sum of the trace acting on the chain
complex, and likewise on the right side. This works as long as this thing converges.

Some remarks.

Remark 2.1. Say F is the constant sheaf, then this left hand side is ∣X(Fq)∣ and
the right hand side is tr(Frq(C

∗
c (barX))), so this is a link between the point count

and the cohomology.

All right so we can also dualize this statement using Verdier dual. Let me give
one more property that I forgot to say, suppose X is smooth, then ωX is very
simple. The shriek pullback, for smooth maps, this is Q̄`,X[2 dim X](dimX). So
then the theorem is

Theorem 2.2 (Grothendieck–Lefschetz dual). This uses the arithmetic Frobenius
instead of the geometric.

∑
x∈X(Fq)

tr(Fr−1
q , ι

!
xF) = tr(Fr−1

q ,C
∗(X, F̄)).

When X is smooth you see a very nice formula

Corollary 2.1. If X is smooth,

∣X(Fq)∣
qdim X

= tr(Fr−1
q ,C

∗(X̄, Q̄`)).

I like this because you get a point counting over qdim X that is something related
to cohomology.

Let me say a word about how to construct f !. At least étale-locally you can try
to factor this to X → X ′ → Y where X → X ′ is closed and X ′ → Y is smooth. For
the smooth ones it’s just a shift. For closed guys it’s more difficult, but, if it’s nice,
well, suppose X is smooth of dimension n and x is a closed point in X. Suppose
we have the constant sheaf Q`,X , then the upper shriek i!xQ`,X is Q`[−2n](−n).

Verdier duality, again, is a form of Poincaré duality. What does it mean to take
the usual pullback? That’s looking at a very small ball and taking a colimit. For
this you look at sheaves with compact support around that point, and that’s why
the twist (−n) shows up. The 2n is the real dimension of the variety that you
consider. Everything is even dimension.

Here is the theorem for schemes. A stack is a more general kind of geometric
objects that lets you construct these kinds of things. Suppose this holds for that
world, then you could try to show this kind of statement, once you take the Frobe-
nius trace you’ll get this kind of formula, and the tool to do this will be factorization
homology.

3. January 22

Thanks again, so let me start with where I left off last time, here is the formula,
when X is a curve over a finite field and G is (for simplicity) a group scheme over
X, G = G0 × X. Last time we said that the Tamagawa number 1 conjecture is
equivalent to the statement

∑
P a G-bundle

1

AutP
= qd(g−1)

∏
x∈∣X ∣

∣BG(k(x))∣

∣K(x)∣dimBGx



PMI LECTURE SERIES 7

It was a hope that we could prove something like this with étale cohomology. Let
me quickly mention the objects, the geometric objects here, some kind of moduli
spaces. Eventually the geometric objects we’re going to consider will be certain
moduli stacks. Let me give a quick overview of what I mean by moduli stacks. In a
general, moduli problem, a moduli space is an object that solves a moduli problem.
A moduli problem for us is a functor, a contravariant functor M from the category
of schemes to the category of sets or maybe groupoids. Examples, I can consider
M(S) the groupoid of G-bundles over X × S. So we can encode it in families. We
should talk about how things vary in families and not just at a point.

You might wonder why I put in the groupoid condition. A moduli space M for
the moduli problem M is such that Hom(S,M) is naturally equivalent to M(S).
So that’s an object that represents this functor.

So what does this mean? The universal object M, there, it will classify univer-
sally all the objects we’re trying to classify, so that the collection of objects over S
are the S-maps to M and the family we want is the pullback U ×M S.

Usually what kind of space are we talking about? If M is a scheme, then M is
said to be a moduli scheme for the moduli problem M . The natural question to
ask is then, if instead of saying groupoids, I said the set, then [unintelligible]would
solve the moduli problem.

So the remark is that this moduli problem is not representable by a scheme, if
you use sets.

Suppose your moduli problem is representable by a scheme. That means your
moduli problem is some kind of sheaf. So but how do you create a G-bundle
usually? You look at an open cover, on each piece it’s trivial, but you glue it in
an interesting way. But thinking carefully, you’re not taking two things on the
open sets and saying they’re the same on the intersection—you’re remembering the
witnessing isomorphism.

So we really need groupoid-valued functors, hence stacks.
Let me recall something very basic from geometry. Usually the object we consider

is a presheaf. Say you have a scheme or space X. Consider the open sets of
X, then a presheaf is just a contravariant functor from the open sets of X to
Set. The sheaves are those presheaves such that satisfy a gluing property, what
I mean by gluing is, suppose F is a sheaf and ⋃Ui → X is an open cover. Then
F(X) ≅ lim (F(U)⇉ F(U ×X U)).

Now for stacks, a stack is essentially a sheaf but where you have groupoids
instead of sets. A prestack is a contravariant functor from opens of X to groupoids.
A stack is a prestack that satisfies gluing. So you have something on each open set
and they satisfy gluing.

Then it’s immediate that M(S), the moduli problem classfying G-bundles, is a
stack. In fact it has a name, so let me, it’s called BunG.

To actually study BunG is a little complicated, so let me talk about a simpler
one. Let me talk about BG in this language. What is BG in the world of algebraic
geometry.

First I have to define the moduli problem that BG solves. It’s the following. It’s
the functor from Schop to groupoids which sends a scheme S to the groupoids of
G-bundles over S.



8 QUOC P. HO

This is almost the same as the definition from topology, the classifying space of
a group and it classifies bundles. So you can start with a moduli problem and try
to see what this is.

So BG and BunG are different, so BunG(S) is G-bundles on X × S. So bundles
you can also glue so it’s a stack.

Then how do we say more about this stack? How do we present it in terms of
schemes?

First, in addition to stacks we can talk about algebraic stacks, where you have
an open cover by schemes. So roughly, this is a stack with a smooth covering by
schemes.

This is now a geometric object, you can talk about the dimension, for example.
So how do we construct BG as an algebraic stack? One thing that you can do is

to form the prestack first, and this thing is defined to be pt /G, and this quotient
is the groupoid quotient that I mentioned yesterday.

I want a contravariant functor Bpre from Sch to groupoids, so to S I assign the
S points of G, pt /G(S).

In particular, BpreG(k) ≅ pt /G(k). In the stack world you can stackify and
shuffle and move things together to get a stack. Then to form BG you stackify this
thing.

So BG is obtained from BpreG by stackififcation. The claim is that once you’ve
done that you see that it’s the moduli stack that represents moduli problems.

Let me recall a general construction, the pullback of a prestack, so let me talk
about pullback of categories. Suppose you have a diagram of categories C′ → D ← C
and I want to describe C ×D C

′, then the objects are (c, c′, γ) where c ∈ C and
c′ ∈ C′ and γ ∶ p(c) ≅ p(c′). When you work with categories, saying equal is a bad
sign, so you put in the witness for the isomorphism. That’s the space of objects.
Morphisms, you can guess, so essentially you have c1 → c′1 by γ1 and c2 to c′2 by γ2

and then the square commutes.
So now let’s talk about pullback of prestacks. I have a diagram of prestacks,

these are functors, so the morphisms are natural transformations. So I have a
diagram Y1 → Y ← Y2 and I want to tell you the value of Y1 ×Y Y2 on schemes. So
I define this as Y1(S) ×Y(S) Y2(S) where this pullback is taken in categories.

So earlier I said something about smooth covers, that’s geometric while stacks
are formal, so how do I translate that to something geometric? A point maps to
BG (and remember, a point is SpecFq). [missed a little]

Let’s try to compute the pullback of pt → BG ← pt. So what is pt? It’s
the moduli space of trivial G-bundles. So you have two trivial G-bundles and an
isomorphism between them, so that’s an element of G. The point to BG is smooth,
and this is now an atlas of the smooth covering we’re looking for.

One more remark is that a point to BG is the universal G-bundle. Namely, any
S, if you pull back pt→ BG then you get a bundle P over S.

Usually the way you compute dimension is by computing the tangent space if
your sitution is smooth. So for that you do some deformation theory. If an algebraic
stack is smooth, the dimension of Y is usually computed at y via the tangent space
of Y at y. This tangent space is itself a stack, which in turn is computed by
deformation theory.

Let me say why this shows up. How do we compute the dimension of BunG?
Suppose we fix P ∈ BunG(k). Suppose I want the tangent space of BunG at point P?



PMI LECTURE SERIES 9

So we want the maps from Speck[ε]/ε2 extending Spec k → BunG. So translating,
these are bundles on X×Speck[ε]/ε2 which yields P when restricted to X. [pictures]

The space of all such deformations is given by H1(X,ad(P)), where since P is a
bundle over X, and G acts on g by the adjoint action, and ad(P) is the associated
bundle with the action, so ad(P) is (g×P )/G, the quotient by the diagonal action.

The automorphisms are given by H0(X,ad(P)). These are coherent cohomology.
The same thing in general, in geometry coherent cohomology, and topological is `-
adic cohomology.

Then the dimension is the difference. So ad(P), the group is semisimple, and so
by Riemann–Roch we have dim BunG = d(g − 1) where d is the dimension, and this
looks like what we had in our equation for the conjecture.

So let’s rewrite,
∣BunG(K)∣

qdim BunG
= ∏
x∈∣X ∣

∣BG(k(x))∣

qdimBGx
.

Now we’re in pretty good shape, when I ended the lecture, we had point counting
divided by q to some dimension, so now both sides can be represented in terms of
the Grothendiecke–Lefschetz trace formula.

So it will take a while to get to the cohomological formulation, but we can do
a tentative fantasy one. Suppose Grothendieck–Lefschetz worked for stacks and
so on. Then the left hand side should be about the cohomology of BunG, the `-
adic cohomology, and implicitly this is over F̄q, and we want some equivalence, so
suppose the right side is not an infinite product, you’d take the tensor of the two
vector spaces with the action of Frobenius and then [unintelligible]. So since we’re
fantasizing, we want an infinite tensor product and we’d have

“ ⊗
x∈∣X ∣

”C∗(BGx).

So the next step is to make sense of the infinite tensor. Eventually factorization
homology will let us make sense of this infinite tensor. This was first formulated
in algebraic geometry by Beilinson and Drinfeld, but it wasn’t until Lurie noticed
that this thing had come up in topology a long time earlier that [unintelligible].

So now let’s try to make the infinite tensor. Here is the first attempt. Consider
the category of finite subsets of, the goal in the end is to prove the statement
either `-adically or about singular cohomology or whatever, the equivalence is just
this cohomology. Only in the `-adic situation we have Frobenius and recover our
Tamagawa number one identification.

So anyway consider the category K of finite subsets of X, and for each S ⊂ X
we can form the tensor

⊗
x∈S

C∗(BGx)

and so we could try to take

colim
S∈K

⊗
x∈S

C∗(BGx).

If we take the tensor in a naive way like this, you’ll lose all information about
the topology of X. The goal is to have some sort of colimit that incorporates the
space X. So we want to have a version of colimit that takes topology of X into
account. This is a natural place to stop, and in the next step I’ll say what that is
and continue with reformulation.



10 QUOC P. HO

4. Part 4

So the second part is to try to make sense of the tensor product. We have to
take some homotopy colimit instead of a colimit. So let me talk a little about
(∞,1)-categories. We want to do homotopy colimits which will take into account
the topology of X. Let me start with a classical story, the story of triangulated
categories when working with chain complexes. So what does the theory do? Usu-
ally you start with an Abelian category, maybe the category of vector spaces, and
then look at chain complexes in that Abelian category and mod out homotopy
equivalence and invert quasi-isomorphisms and you end at a triangulated category.

In a triangulated category (think about chain complexes in vector spaces) there
is this construction, the cone construction, that replaces or combines the concept
of a kernel and a cokernel in an Abelian category. For any map A → B in a
triangulated category, you can complete it with a map B → C where C is the “cone
of f”. Such a sequence is called a distinguished triangle, and you can take the
cone of B → C and you get a shifted version of A, written A[1], and you can go
on. This cone construction is not functorial. It satisfies a property and there are
some complicated axioms, but, well, what do I mean, there is a functorial kernel,
you factor uniquely through a kernel if you satisfy the right property, but for the
cone there is a map but it’s not unique. It also satisfies some complicated axioms
that are not very natural from the categorical point of view. Lastly, taking limits
or colimits in a triangulated category usually doesn’t give the correct answer. It’s
pretty ill-behaved.

The special cases, you have to do some weird thing instead of the natural thing of
taking a limit or colimit. So the problem is that whenever you do chain complexes,
you just kind of invert quasi-isomorphisms you lose a lot of information. If you take
a quotient, we saw earlier, if you quotient as a set you lose information but if you
take the groupoid quotient you get something more geometric.

So here again, we don’t want to identify things, we want to do something more
enhanced. So what it does is instead of hom sets, you should think of hom spaces.
That’s the upshot. Again, this is easy to say but to implement it, Lurie wrote this
really long book. To use it is easier than to invent it. So what is ∞ and what is
1? The ∞ refers to the fact that we have 1-morphisms, 2-morphisms, et cetera, up
to ∞, and 1 refers to the fact that morphisms of 2 and above are invertible. The
Hom sets, it’s, well, a space is like a category where objects are points, paths are
morphisms, homotopies are two-morphisms, so all of them are invertible.

So in an (∞,1)-category, (usually people just say ∞-category) we can also talk
about limits and colimits, so these are usually what people call “homotopy limits
and colimits” but in this context these are the only notions that make sense. Let
me say an example of what this really means.

The objects of topological spaces are spaces, the 1-morphisms are maps of spaces,
and then 2-morphisms are homotopies and so on. So what does it mean to take a
pullback in this setting? What if we take the pullback of ∗ → X ← ∗. If you take
the usual pullback you get a point, which forgets almost everything about X. The
way to take the homotopy pullback, you take a point in X and a point in X and
then a path between them, and then this becomes the based loop space of X [sic].

So now let’s look at a map from X to Y , in the most naive way, you contract
the image to a point, so the cone of f is going to be a cone on X glued onto Y , and
then you can do the same thing and go on and get ΣX, and continue.



PMI LECTURE SERIES 11

Say you want to take the pushout of X with a point and a point then that’s the
same as the suspension of X, let me say that too. So this brings us to the theory
of stable ∞-categories, the kind of linear version of ∞-categories. The definition is
easy to state, so C an ∞ category is stable if two conditions,

(1) C should be pointed, there’s a terminal object which is also initial, and
(2) all pullback squares exist and are also pushout squares.

Usually the point object is denoted by 0. So let’s consider the category Vect of
chain complexes, with objects chain complexes, maps chain maps, 2-morphisms
chain homotopies, it’s not so easy to actually construct this because you need a lot
of data but manipulating it is not so bad. So in this world I define X[1] to be the
pushout of 0 ← X → 0. The other shift is the pullback of 0 → Y ← 0, and this says
that X[1][−1] ≅X and likewise in the other direction.

Let’s say what the cone is. The cone is the pushout of Y ← X → 0. So you can
extend in both directions

Cone(f)[−1] X 0

0 Y Cone(f) 0

0 X[1] Y [1].

f

Now I want to do an illuminating computation, not the infinite tensor but we’re
gotting there. So X is a topological space which we view as an ∞-groupoid. What
do I mean? Even the 1-morphisms are invertible, the objects are points, the 1-
morphisms are paths, and so on. Now pick a simple chain complex C, the constant
diagram X → Vect, we can take the colimit over x. In the classical world, if X is
connected, you just get C. In this world you get the homology of X with values
in C, you get C∗(X,C). You can do this by seeing that you get the answer you
expect for the ball and then gluing together is a kind of Mayer–Vietoris, it’s a kind
of colimit statement.

Okay, let’s see one more formulation of this. Let me recall the construction
called left Kan extension. So we’re in the following setting. You can think of this

as integration or pushforward. So think we have C
F
Ð→ E and we also have C

α
Ð→ D,

we want to extend and get a universal map D → E , the left Kan extension of F
along α, and so we get an extension by α from Fun(C,E) to Fun(D,E) and left Kan
extension is left adjoint to pullback along α.

Suppose that E is nice, it has all colimits, then you can construct this in a
pretty explicit way, say you want to know LKEα F (d). Then you can take the fiber
product C/d which is the fiber product of D/d with C over D, so this has objects c
and then a map from α(c)→ d, then the Kan extension is

colim
c∈C/d

F̃ (c)

where F̃ is F composed with the canonical map C/d → C.



12 QUOC P. HO

Okay, so now let’s get homology using this. So say we have

∗ Vect

Top

V

α
LKEα V

so we form the comma category,

∗/X ∗ Vect

Top/X Top

V

α
LKEα V

which has objects maps from a point to X and then morphisms paths in X, so this
is the same as the ∞-category we had so we get

LKEα V (X) ≅ C∗(X,V )

like we said.
Let me go back to the thing we’re interested in, so the infinite tensor product

(take two). So we use the topology. So now let E
π
Ð→M be some kind of fibration

with base an n-dimensional manifold. Consider the category U0(M), where the
objects are open subsets of M that are homeomorphic to Rn. We can consider,
this is now (intuitively) an ∞,1-category, and we can consider the functor Sectπ ∶
U0(M)op → Top which sends U to MapsM(U,E), the space of sections.

Now taking cohomology, which is a contravariant functor, we see the following,

C∗ ○ Sectπ ∶ U0(M)→ Vect

I have this diagram in Vect, and for each U in U0(M), there’s a natural map from
C∗(Sectπ(U))→ C∗(Sect(M)) which is C∗(Maps(M,E)).

Then the remark is that when M is an algebraic curve over C then we can
take E to be BG × X, so topologically we think of this as the classifying space
of G-bundles, and BunG is Maps(X,BG), or equivalently, the space of sections
MapsX(X,X ×BG).

So the right hand side will be about cohomology of BunG. The left hand side,
because U is contractible this will just be about BG. So now the last thing we want
to do is to take colimits, all the maps are compatible with the diagram in Vect, and
so we get a map

colim
U∈U0(M)

C∗(Sectπ(U))→ C∗(Maps(M,E))

or

colim
U∈UG(M)

C∗(BG)→ C∗(BunG).

There’s no tensor right now, though. We have to modify it as follows.
Note that Vect has a tensor structure, if you have two chain complexes you can

tensor them. So one can talk about commutative algebras in Vect, the category of
commutative algebras. So it looks innocent, but we have to be careful about what
we mean. If we talk about commutative algebra, we have xy = yx. Here we can’t
say that, we have a homotopy between xy and yx and so on for higher things. So
this can be pretty complicated.



PMI LECTURE SERIES 13

But then our functor C∗ ○ Sectπ has values from U0(M) → Com Alg(Vect) and
so this colimit should be taken in commutative algebras rather than just vector
spaces.

Let me say quickly why this is the right thing to do. The remark is that, say you
have two algebras A and B, then what is, so, let’s say everything is over C, if we
want to take the pushout in the category of commutative algebras over C, that’s
the tensor product. We’ll get a quotient of the direct sum if we work in vector
spaces, which is not what we want.

So here is the theorem that one can prove. If M is n-dimensional and the fibers
of E are n-connected (meaning that all homotopy groups up to and including n
are trivial) then the map colimU∈U(M)C

∗(Sectπ(U))→ C∗(Maps(M,E)) is a weak
equivalence.

For us, our group is simply connected so BG is 2-connected and our curve is
2-dimensional, so we have

colim
U∈U0(M)

C∗(BG)
∼
Ð→ C∗(BunG).

So let me say one word about how this is proved. The formulation in algebraic
geometry is a little harder, but let me say something about what goes into this
proof. The ingredients, the first thing is that when M is Rn, there’s nothing to
prove. Then you use a gluing procedure, supposing that the statement is true for
U , V , and U ∩V , then we want it to be true for U ∪V as well. At the level of spaces
we have

Sectπ(U ∪ V ) Sectπ(V )

Sectπ(U) Sectπ(U ∩ V )

and the claim is that when you apply cohomology to this guy, you get some sort
of multiplicative Künneth, which means that the value at U ∪ V is the pushout in
commutative algebra.

This is a theorem in algebraic topology, called the Eilenberg–Moore spectral
sequence, for the square

C∗(Sectπ(U ∪ V )) C∗(Sectπ(V ))

C∗(Sectπ(U)) C∗(Sectπ(U ∩ V ))

and this lets you glue together and complete the theorem. That’s the kind of end
of the discussion for taking the infinite tensor product in topology.

You may complain that this looks too big and you can’t use it to compute. I
claim that it’s not so bad. How do we compute this colimit? It boils down to
something abstract and quite formal.

So you have from Vect to Com Alg(Vect) a free functor which is taking the
tensors and modding out by the relations for commutativity in a homotopically
correct way. This is sometimes called the symmetric algebra.

So a classical thing is that C∗(BG) ≅ SymV , formally it has this shape, it’s Sym
of something. Now any left adjoint commutes with colimits.



14 QUOC P. HO

So let’s plug in and see.

colim
x∈X

C∗(BG) ≅ colim
x∈X

SymV

≅ Sym(colim
x∈X

V )

≅ Sym(C∗(X)⊗ V )

and this is known classically as the Atiyah–Bott formula for the cohomology of the
moduli space of principal G-bundles over X.

5. January 24: Part five

Last time I formulated the infinite tensor construction and how it’s related to
the Tamagawa number one conjecture. Today I’ll start with the algebro-geometric
formulation of the same thing. In a lot of the things I talk about, first I’ll do the
topological picture and then the algebro-geometric version. While logically they’re
independent, it’s good to see the topological version first. Recall from topology
that the infinite tensor product is defined in the same way as for homology except
that we take a certain colimit in the category of commutative algebras rather than
just vector spaces.

In algebraic geometry we can do the same thing. What is homology in algebraic
geometry? Suppose I have a scheme X and the map π to a point. I have adjoint
functors between Shv(X) (I mean `-adic sheaves) and vector spaces, I have π! and
π!, and these are adjoint functors, and one way to define `-adic homology is to say
that C∗(X) = π!π

!Q̄`, i.e., it is C∗
c (X,ωX). In general, what we’re really after is

C∗
c (X,F), i.e., π!F , where F is in Shv(X).
The special multiplicative homology is in commutative algebras so we want to

replace in this way. The category Vect (the ∞-category) has a natural monoidal
structure, and Shv(X) also has, well, we use the exceptional tensor product ⊗!,
which is ⊠ and then pull back via the shriek pullback:

F ⊗! G = ∆!(F ⊠ G)X×X .

So we should be working with commutative algebra objects in Vect, and instead of

Shv(X), we want to use Com Alg(Shv(X)⊗
!

).
So π! is determined uniquely, abstractly, via its adjointness property. And π! is

monoidal, if you have two chain complexes, tensor and then pull back, it’s the same
as pulling back and doing the tensor, so if you set up the theory correctly, then the
left adjoint of π!, I’ll denote it π?, goes from commutative algebras in sheaves to
commutative algebras in vector spaces. Another way to see this, is, we want to do
a kind of colimit, so the left adjoint is what we want to work with.

So let’s try to say something about this functor. It looks unsatisfactory. You
need a better way to handle this functor. But we’re not too bad. In the topological
setting, since we got lucky and the thing we’re taking homology of is a polynomial
algebra. The same thing will happen here. The fact that this is a left adjoint—

Lemma 5.1. Let F be a sheaf on X. Then I can form the polynomial algebra
SymF , which is a commutative algebra in sheaves. Since π? is a left adjoint, one
can show that there is a natural equivalence between π? SymF and Sym(π!F), so
some mysterious functor applied to the symmetric algebra is the symmetric algebra
on the value on an easier functor.



PMI LECTURE SERIES 15

The proof is the Yoneda lemma plus the two adjunctions π? ⊣ π
! and π! ⊣ π

!. So
Gaitsgory proposes that this should be the right candidate for the infinite tensor
product. So let me do the following construction. Suppose you are mapping Y to
a scheme X by f (eventually Y will be BG). Then we define [Y ]X as f∗f

∗ωX .
Suppose X is smooth (it’s a curve in our case), then this is ωX up to a shift. We
want to do it this way because we’re adapted to the functors we’re taking and we’ll
just get [unintelligible].

The first remark is that this construction is contravariant with respect to Y . If
Y1 maps to Y2 over X then at this level you get a map the other way, it’s just like
cohomology.

The second remark is that [Y ]X is in the category of commutative algebra objects
in sheaves on X, essentially using the cup product.

So now let’s put this together. We have BunG ×X →X ← BG×X and there’s a
map BunG ×X → BG ×X, which is the identity on X and is given on BunG ×X →
BG by the universal property of BG, since BG is universal for G-bundles and BunG
for bundles with base X.

Now suppose you have X ×Z where Z is a stack and X is a scheme, mapping to
X, then we can show that [X ×Z]X is the same as π!C∗(Z).

Applying this observation, first using contravariance there’s a map [BG×X]X →
[BunG ×X]X , and then using the observation this is the same as a map of commu-
tative algebras

π!C∗(BG)→ π!C∗(BunG),

which induces a map like so:

π?π
!C∗(BG)→ C∗(BunG).

So now the cohomological formulation of the product formula in algebraic geom-
etry is the following. The natural map

π?π
!C∗(BG)→ C∗(BunG)

is an equivalence as commutative algebras, this is the same as the topological state-
ment.

So last time I used something that looked like that and got something called the
Atiyah–Bott formula. Let’s see that I get the same thing. For simplicity assume
X is a complete curve. Recall that C∗(BG) is a symmetric power of some vector
space V . Then

C∗(BunG) ≅ π?π
!C∗(BG)

≅ π? Symπ!V

≅ Symπ!π!V

≅ Sym(C∗(X)⊗ V )

and let’s see that we can get the numerical statement, the product formula, from
this.

So we need the following ingredients.

● the Grothendieck–Lefschetz trace formula for BunG. For constant group
scheme this is Behrend, for nonconstant by Gaitsgory–Lurie.

● let’s be careful about what converges and what doesn’t, we need some
convergence of some infinite products, which boils down to estimating the
size of the eigenvalues of Frobenius.



16 QUOC P. HO

Up to these things, the derivation from the cohomological product formula is es-
sentially formal. The first observation is that, after having those two things, if F
is an operator acting on V , then we have the following statement, F acts on the
symmetric powers of V , and if we want the trace of F on SymV , it’s the same as
taking the exponential:

tr(F,SymV ) = exp(∑
n>0

1

n
tr(Fn, V )),

as long as we have convergence. Now replace F , now F = Frob−1 acting on V , where
SymV is the cohomology of BG.

The exponential is the thing that turns the multiplicativity of the product for-
mula to the additivity of the trace formula,

tr(Frob−1,C∗(BunG)) = tr(Frob−1,Sym(C∗(X,π!V )))

= exp(∑
n>0

1

n
tr(Frob−n,C∗(X,π!V )))

= exp
⎛

⎝
∑
n>0

∑
x∈∣X ∣(Fq)

1

n

⎞

⎠
by G.–L. trace formula

= exp
⎛

⎝
∑
x∈∣X ∣

∑
n

1

n
tr(Frob−nx , Vx)

⎞

⎠

= ∏
x∈∣X ∣

tr(Frob−1
x ,C

∗(BG))

= ∏
x∈∣X ∣

∣BG(K(x))

qdim BGx

So this recovers the numerical product formula.
The goal now is to sketch the cohomological statement of the formula

π?π
!C∗(BG) ≅ C(BunG).

It’s quite different from the topological setting, where it’s straightforward. Let
me give a kind of a quick introduction to the subject of topological factorization
homology. So before doing this, let me give the main ideas for the proof. So this
is essentially two steps. The first step is non-Abelian Poincaré duality. Instead of
proving something about the cohomology of BunG and cohomology of BG, we’ll
say something to link the homology of BunG to the homology of the double loop
space of BG, i.e., the loop space of G. Then we’ll do some Verdier or E2-Koszul
duality, which turns the C∗ to C∗ and then does something similar to the C∗Ω2.

This part showing up is a bit mysterious, and this is the relation to factorization
homology.

The colimit I discussed last time is the simplest kind of factorization homology,
with coefficients in a commutative algebra. Homology of Ω2BG is not a commu-
tative algebra, so we have to capture what kind of commutativity this has, so the
coefficients is some kind of En algebra. The heuristic or intuition is that an En-
algebra interpolates between associative and commutative algebras. When n = 1,
an E1 algebra is an associative algebra. An E∞ algebra is a commutative algebra.
How do we formulate what an En algebra is?



PMI LECTURE SERIES 17

So consider the following category Disk⊔n. The objects are disjoint unions of Rn.
The morphisms are embeddings. A morphism from (Rn)⊔k to (Rn)⊔` is the space
of embeddings between these spaces. So ⊔ is a symmetric monoidal structure on
this category.

Pick C⊗ to be a symmetric monoidal category, maybe either Vect⊗ or Spaces×.
Then a definition is that an En-algebra in C is a (strong) symmetric monoidal
functor from Disk⊔n to C⊗.

This looks a bit abstract so let me give some intuition about this definition. Let’s
start with n = 1. Then embeddings from two copies of R1 to one copy. So A of two
copies becomes A of one copy squared. Then the map becomes A(−)⊗2 → A(−). So
let me write A = A(−) by abuse of multiplication. You see that for each embedding
you get a multiplication map.

Now suppose you have three guys, you can [pictures]. This thing commutes, so
that means that

A⊗2

A⊗3 A

A⊗2

commutes. Then the homotopy structure encoded shows that you have associativ-
ity here. Because we’re working with (∞,1)-categories. When we say (ab)c = a(bc)
classically, we say there’s an invertible morphism between them that satisfies co-
herence.

Now let’s look at E2 algebras. The picture is that embeddings are of two-disks
into two-disks. You have relative position of points (essentially) in a plane instead
of a line. If you have two guys, for each configuration you get a multiplication.
If we fix one guy, then the multiplication is parameterized by, essentially, a circle,
homotopically speaking, the second disk can be anywhere except at the first disk,
so we have a circle’s worth of multiplications.

Then when n =∞, because S∞ is contractible, essentially, this gives you the fact
that multiplication is commutative. Fix a point, and then you get R∞−{pt}. Let’s
take a break here.

6. Part 6

So first I’ll talk about factorization homology in topology. So I sometimes write
Spaces and sometimes Top. Let me try to be consistent, if you do a left Kan
extension along a vector space V

∗ Vect

Top

then you get C∗(X,V ). We can do a similar thing for factorization homology, you
have a fully faithful embedding of Disk⊔n into Mfd⊔n, the category of n-manifolds



18 QUOC P. HO

and embeddings and you can do a Kan extension

Disk⊔n C⊗

Mfd⊔n

α

A

LKEαA

This is the factorization homology of M with coefficients in A, denoted ∫M A.
That looks abstract but there are cases where you say something about it. The

first remark is that any E∞ algebra is also an En-algebra, and so suppose we have
A a commutative algebra object in some category C, then we can forget to En
algebras, and compute ∫M A. The theorem says that

∫
M
A = colim

U∈U0(M)
A

This is where you have only one disk. This is a theorem of Ayala and Francis.
This is the thing that we use to formulate the topological version of the infinite
tensor product. So in particular, if you start with V then you can form the free
commutative (polynomial) algebra generated by it, and we see that

∫
M

SymV ≅ SymC∗(M,V )

in vector spaces. The second case I want to mention is free En-algebras. So note
that if, if you start with a theory of algebras, you want the free objects, if you have
En − alg(C) you can forget by oblv to C and then the left adjoint is FreeEn . So one
thing you want to understand is what is the free En-algebra. So the general way to
think about free objects, if you think about free associative algebras, you take all
the tensors and add them up. So you take the things that are not there and add
them, step by step.

Intuitively, we can do the following. First, we want to add how to multiply k
things together, but in, say, E2 algebras, you have a circle. You have something
with topology. It looks like the topology of configurations in the plane. So what
you do is you take

∞

⊕
k=0

(C∗(P ConfkRn)⊗ V ⊗k) /Σk

where P ConfkX is Xk minus the fat diagonal where any xi is xj .
This is at the intuitive level but it’s not very conceptual. Suppose we have, on

the one hand we have, let’s consider the following category Diskiso
n . The objects are

integers at least 1, well, finite sets of size n (let’s do the non-unital version), and
the morphisms are isomorphisms, and the symmetric product is ⊔.

Note that (strong) symmetric monoidal functors from Disk⊔n to C⊗ is the same
thing as En-algebras in C. We also have (strong) symmetric monoidal functors from

Diskiso,⊔
n to C⊗ and because this has no interesting maps this is just C by evaluating

at the singleton set. Suppose you have an object in C. The category Diskiso,⊔
n

embeds into Disk⊔n with k points becoming k copies of Rn. Now the pullback along
this is the forgetful functor and our task is to produce the left adjoint, the left Kan



PMI LECTURE SERIES 19

extension

Disk⊔n

Diskiso,⊔
n C

and using this kind of reasoning, with colimx∈X V ≅ C∗(X,V ), you recall the defini-
tion of left Kan extension, compute a colimit, you see that the configuration spaces
show up, and so say you want to compute

∫
M

FreeEn C

The factorization homology is left Kan extension and the free thing is the left Kan
extension and by abstract arguments left Kan extensions compose, and you get

⊕
k≥1

C∗(ConfkM,C)

Knudsen used this to give a concrete formula for the cohomology of configurations
and with Gabriel did computations explicitly in many cases.

Now I want to move on to the non-Abelian Poincaré duality and then apply this
to BunG. All of these have the feature that I do something to make an En algebra
and then take factorization homology with coefficients there.

Suppose X is a based topological space then you can take ΩnX which is the
maps from Sn to X, this is maps with compact support from Rn to X. Then ΩnX
has the natural structure of an En-algebra. How so? Suppose you have a map with
compact support from two disks to X, then you can extend by zero to a bigger disk
holding them.

So is there anything you can say about factorization homology of a manifold
with coefficients in such an algebra?

Theorem 6.1 (Non-Abelian Poincaré duality— Lurie; Ayala–Francis). Suppose
M is an n-dimensional manifold and X is (n − 1)-connected. Then

∫
M

ΩnX ≅ Mapsc(M,X).

When X = BG and M is a curve, an algebraic curve, if you think of a manifold C,
say, compact, then you have the statement that ∫C Ω2BG ≅ Maps(C,BG) ≅ BunG.

So the goal is to implement non-Abelian Poincaré duality in algebraic geometry,
so the steps will be

(1) what is an En-algebra in algebraic geometry?
(2) factorization homology
(3) realize Ω2BG
(4) prove non-Abelian Poincaré duality

So how do we get En algebras? The diagonal of X in X ×X is a copy of X, and the
complement is two points floating in X, so in each way to move to the diagonal,
that’s like encoding multiplication. We want a sheaf F on X equipped with the
following piece of data:

i!j!j
∗F⊠2 → F

where

X̊2 j
Ð→X2 i

←ÐX



20 QUOC P. HO

You also need similar conditions for higher powers, you need higher powers in the
towers of X. This is a picture in X2. Most of what I want to talk about is in X2.
We want to use this multiplication to produce a sheaf on X2. The way to do it is
to look at the following, i!i

!j!j
!F⊠2 → i!F by applying i! and look at the diagram

of sheaves in X2 and get a pushout

i!i
!j!j

!F⊠2 i!F

j!j
!F⊠2 F(2)

and then if you do i!F(2), you just get F , and if you restrict by j! you get j!F⊠2

because this is supported on the diagonal.
This tells us to maybe reformulate En-algebras as follows. Let’s say, for every

non-empty finite set I, we want a sheaf FI on XI . When I is two elements, we get
this F(2). The properties are

● If α ∶ I ↠ J then ∆αX
J → XI and we want, for each such α, then I want

∆!
αF

I ≅ FJ , this is a general version of the first point

● So FI , when you restrict it to X̊I , you should get F⊠I ∣X̊I .

There’s also an ΣI -action that I didn’t say explicitly.
So let me say one thing about how to do this more generally and then we can

formulate factorization homology in algebraic geometry. Eventually we want a
geometric object, a prestack with a sheaf that captures these properties. So suppose
Y is a prestack, a contravariant functor from schemes to groupoids, so I want the
sheaves on Y . This is the limit over S → Y of Shv(S). Essentially this is the usual
trick. So Y is some object that you are making up, it doesn’t really exist, but if it
exists, then for each map from a scheme to it, you can pull back, so we turn around
and use this as a definition. Then the transition maps [unintelligible]. I ran out of
time, can I have five more minutes?

So automatically, we know how to pull back between sheaves on two stacks,
suppose f is a morphism of prestacks Y1 → Y2, then f ! is a functor from Shv(Y2)→
Shv(Y1). Then one can essentially by abstract nonsense, say that f ! admits a left
adjoint f!. Then the prestack we’re interested in is the Ran prestack. Suppose X
is a scheme, then RanX is a prestack, in this case, it’s just a presheaf valued in
groupoids, so

(RanX)(S) = {nonempty finite subsets of X(S)}.

[pictures]
One can show that, fact, RanX is the colimit of XI , where I runs over finite

sets, nonempty, with surjections.
This colimit is in prestacks. It kind of looks like my XI glued all together. This

formulation says that sheaves on Ran(X) are the same thing as the limit of sheaves
on XI where I runs over all finite sets.

Let’s unwind this definition. For each α ∶ J ↠ I, we get

XI XJ

RanX

∆α



PMI LECTURE SERIES 21

It’s compatible with the diagonal pullbacks. The upshot is that a sheaf on the Ran
space (prestack) is the same as sheaves on powers of X satisfying the first condition,
the Ran condition. With some more work (Beilinson–Drinfeld; Francis–Gaitsgory)
you can capture the factorizable condition or fatcorization condition. So the output
is that you get Fact(X), the factorizable sheaves on X. One last thing, we know
what a factorizable sheaf is, what is factorization homology?

Now it’s not mysterious. Now Ran(X), the structure map π to a point, for
any sheaf F on Ran(X), you can define C∗

c (RanX,F) and so in particular, when
F is a factorizable sheaf, then C∗

c (Ran(X),F) is the algebro-geometric analog of
factorization homology.

Tomorrow I’ll define the algebraic analogue of the loop space and say precisely
what it is that we are doing.

7. January 25: Part 7

Proposition 7.1. If X is connected, then C∗(RanX) = C∗
c (RanX,ωRanX) ≅ Q̄`.

I didn’t talk about the dualizing sheaf of a prestack. Given Y
π
Ð→ pt induces π!

and π! functors between sheaves on Y and vector spaces, and then ωY = π!Q̄`.
So the proof is simple. We start with

H0(RanX) =H0(C∗(RanX)) = Q̄`
since X is connected. Let n be the first integer where Hn(RanX) is zero. Then by
Künneth,

Hn(RanX ×RanX) ≅Hn(RanX)⊕Hn(RanX).

We have a union map RanX ×RanX → RanX which induces a map on the homol-
ogy level

Hn(RanX)⊕Hn(RanX)→Hn(RanX)

and essentially by symmetry I can tell that this map has to be u⊕ u for some u.
On the other hand I can consider the diagonal map

RanX
∆
Ð→ RanX ×RanX

If I postcompose the union I get the identity map, so at the level of homology,
2u = id as maps from Hn(RanX) → Hn(RanX). Now you do the same game for
three factors, and get 3u = id. That means u = 0 so id = 0 and the only space is the
0 vector space.

This is a fundamental result in this theory, contractibility of the Ran space.
In this algebro-geometric setting I think it was first considered by Beilinson and
Drinfeld.

Last time I outlined factorization homology in algebraic geometry. One thing
I had to do was alegbrize the double loop space Ω2BG. We want non-Abelian
algebraic geometry, ∫X Ω2BG = BunG.

So we want to look at Mapsc(D,BG), so what does compact support mean?
There’s a distinguished point of BG, and everything at ∞ maps there. So let’s
interpret this. That’s the same as a G-bundle on D but everything at ∞ maps to
the distinguished point. So we want a trivialization of the bundle P at the boundary
of the disk.

How do we do something like this in algebraic geometry? Vell D is Speck[[t]]
and the boundary should not have the special point, Speck((t)). That means
we want to consider the following moduli problem. We want G-bundles plus a



22 QUOC P. HO

trivialization. For each ring R we want to associate the following data, P is a
G-bundle on SpecR[[t]] and γ is a trivialization on SpecR((t)). Here R is a
K-algebra.

This is classical in representation theory. In fact, it’s represented by an ind-
scheme, namely, an inductive limit of schemes, called the affine Grasmannian. GrG.

Remark 7.1. Classically, this space also appears in number theory, the k points

GrG(k) = G(K)/G(O) = G(k((t)))/G(k[[t]])

By Lang’s theorem, any bundle over [unintelligible]is trivial. We have a bundle
over k[[t]], and the [unintelligible]is smooth, so if the special fiber is trivial then
the whole thing is trivial. A trivialization at the boundary is a point in G. You
mod out the different trivializations on the whole disk.

So we have some algebro-geometric object that plays the role of Ω2BG. We want
to be able to say that GrG is a factorizable scheme. Before doing that we want a
more concrete description of GrG.

We have the following, given R we want a G-bundle P on XR = X × SpecR, so
fix x ∈X. Then γ is a trivialization of P on the complement of x × SpecR.

These are the same. A trivialization on the punctured disk, you glue to get a
bundle on the whole thing, or just restrict back. So the two moduli problems are
the same, this is a result by Beauville–Laszlo. In the picture here I’ve fixed x and
to say something about the Ran space we have to let the point x move as well.

The new moduli problem associates to R first a point x ∈X(R) and P a bundle
on XR and then γ is a trivialization of P outside of x.

[picture]
Let me name this GrG,X , and you can (by the same idea) show this is repre-

sentable by an ind-scheme. You can map to X by forgetting everything except the
point. So if x is a k point of X, then the fiber is GrG. So this is a family of GrG
where you let the point x move.

Now we have one point, we’re getting there. Let me do multiple points and
formulate the Ran version of the affine Grasmannian. We want to say in what
sense this double loop space is an E2 algebra. Consider the moduli problem

R ↦

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

I ⊂X(S), i.e. I ∈ (RanX)(S)

P a G-bundle on XR

γ a trivialization of P outside ΓI .

We want a bundle with a trivialization outside of the graph. So I’ll write GrRan

fixing a group G. There’s a map to RanX by forgetting everything but I. This
is sometimes called the Beilinson–Drinfeld affine Grassmannian. Let’ say in what
sense this is a factorizable scheme over RanX. Suppose you have X2 → RanX, this
is the canonical map, and you can pull back GrRan and get GrG,X2 , and pull back to
the complement of the diagonal to get GrG,X̊2 . So (GrG,X̊2)(R) is pairs of disjoint

points x1 and x2 in X(R) and P is a G-bundle on XR and γ is a trivialization
outside x1 and x2.

Now note that because the two are disjoint, you can construct a G-bundle on
the formal disk around each and a trivialization on the boundary. So that’s the
same as GrG,X ×GrG,X pulled back to X̊2.

This is also by Beauville–Lazslo. This is the precise sense in which the Ran
version of the affine Grassmanian is a [unintelligible]version of [unintelligible].



PMI LECTURE SERIES 23

Okay now there is a morphism from GrRan to BunG which induces an equivalence
on the level of homology.

A couple of remarks.

(1) One can prove that the affine Grassmannian is proper, and so one can form
f!ωGrRan

, and because of the factorizable property, we get factorizable sheaf
on RanX, i.e., an object in Fact(X).

(2) Remember the adelic interpretation G(K)/G(A)/G(O). For GrRan it’s
G(A)/G(O). It’s trivialized outside a finite number of points. Then the
map is the quotient map by G(K).

Okay, so let me call this object A, this f!ωGrRan
. And let me formulate this à la

non-Abelian Poincaré duality. So

C∗(GrRan) ≅ C
∗
c (GrRan, ωGrRan

)

≅ C∗
c (RanX,f!ωGrRan

)

≅ C∗
c (RanX,A).

So this is the factorization homology of RanX with coefficients in A.
So the map GrRan → BunG, this map is an equivalence if and only if factorization

homology with coefficients in A is C∗(BunG). So this is non-Abelian Poincaré
duality in this case.

Let me briefly say how to try to say that GrRan → BunG is an equivalence.
Then the strategy for the proof of non-Abelian Poincaré duality is as follows. So
GrRan → BunG, we have [pictures]

The first step is a result of Drinfeld and Simpson which says that locally on
R, any G-bundle on XR is geometrically trivial. This says that if you look close
enough, then you can find a divisor and make this trivial outside of it. From this
result one cane reduce to the case when P is trivial.

So what is the problem and how do we solve it when the bundel itself is trivial?
Right, so let BunG get its map from GrRan and also from SpecR, and we want to
look at the pullback. We want, the problem becomes comparing the cohomology
of BunG and SpecR. The pullback—to make things simpler let me assume R = k.
The pullback has thy follewing moduli interpretion. It takes R to sets consisting of
a subset of R(S), a genereic trvialization (i.e., a map from XR/π) to G.

So suppose we can solve the problem. Let Y be an affine scheme, then

Maps(X,Y )Ran

contains all of the data, I ⊂ X(S) and γ with Y this time. Suppose Y can be
covered by open affine subschemes, they’re isomorphic to open subschemes of An,
then this thing has trivial homoloogy.

It’s conjectured that it’s anything smooth and birational to An but it’s not
known. So these Maps(X,Y )rat

Ran should be considered as Y (k(X)). It’s not outra-
geous, it’s not a proof, but Gm(k(X))), this is kind of like R∞ ∖pt. This is known
to be contractible.

Let me give a sketch of how to prove this thing. The first step is to show that

Maps(X,U)rat
Ran →Maps(X,U ⊂gen Y )rat

Ran

(where in the codomain, the maps are those maps X → Y that go generically to U)
induces an isomorphism on homology when U is open in Y . Then the next step is



24 QUOC P. HO

to show that

Maps(X,U ⊂gen Y )rat
Ran →Maps(X,Y )rat

Ran

[unintelligible]Y = An.
So then for each U we have an open subprestack

Maps(X,U ⊂gen Y )rat
Ran →Maps(X,Y )rat

Ran

so you can cover by these and it suffices to figure out here. So we can look at

Maps(X,U ⊂gen Y )rat
Ran

Maps(X,U)rat
Ran Maps(X,Y )rat

Ran

Maps(X,U ⊂gen An)rat
Ran Maps(X,An)rat

Ran.

and then some of these maps are equivalences, and then we’re done since this is an
affine space.

The second step, the first step was

(1) To link C∗(BunG) ≅ C∗(GrRan).
(2) Then use Verdier duality on the Ran space—this doesn’t behave well since

RanX is infinite dimensional, e.g., DωRan = 0, so apply DA, denote this
B, and we show that the fiber of B is the same as the cohomology of BG.

The cohomology of BG is close to the cohomology of G, and it’s also close to the
cohomology of ΩG, which is C∗(Ω2BG). The link is E2-Koszul duality, and then
Verdier duality switches homology and cohomology and all together we have the
following statement, C∗(BunG) is the same as C∗

c (RanX,B), where B comes from
C∗(BG).

This part is a complicated exercise in homological algebra. Sorry for the over-
time.

8. Final part

I am going to say something about my work now. One motivation for me is that
factorization homology has some nice product formula. So now if you see an infinite
product you can ask whether factorization homology gives you a cohomological
version of it.

Let me start with a number theory observation. Suppose you are interested in
the density of square-free integers over all numbers,

lim
n→∞

∣{d ∈ [1, n] ∶ d squarefree}

n
= ζ(2)−1.

This is classical and well-known. Less well-known is

lim
d→∞

∣{(m,n} ∈ [1, d]2 ∶m,n relatively prime

d2
= ζ(2)−1

So the thing that unifies these, for m and n integers, look at a1 through am inside
[1, d]m that are relative n-prime (I’ll explain this) and divide by dm, the limit as
d→∞ is ζ(mn)−1.

Relative n-prime means that pn ∤ gcd(a1, . . . , am) for any p.



PMI LECTURE SERIES 25

So (1,2) is the first version and (2,1) the second. This is number theory, you
can do the function field analogue. We’re counting points.

So let X0 be a scheme over Fq, if you let X be X0 ×Fq F̄q.
So the points on X0 should be thought of as primes. Then we’re thinking about

symmetric powers. So fix m,n, and we want to consider d = (d1, . . . , dm) and

Symd =
m

∏
i=1

SymdiX0.

Okay, and the thing about this, we’ll take an open subscheme and remove a certain

locus, disallowing certain configurations. So we will call this Z
d
∞(X), and

Zdn(X0)

will be the open subscheme of Symd(X0), these are particles in X0, colored, such
that no point on X0 appears with multiplicity at least n for all colors.

Let me give an example. When m = 1 and n = ∞ then this is SymdX0, the
symmetric powers, When m = 1 and n = 2 then this is ordered configuration space
of X, then you have ConfdX0, so no point can have multiplicity 2.

When m = 2 and n = 1 then this is Z
(d1,d2)
1 (X) so (Symd1 X × Symd2 X)disj. So

you can take the limit as d→∞

lim
d→∞

∣Z
d
n(X0)(Fq)∣

∣Z
d
∞(X0)(Fq)∣

= ζX((dimX)mn)−1.

So it’s natural to ask a question, is this a shadow of some cohomological coincidence?
Let me phrase the question more precisely. Let me introduce some more notation,

Zmn (X0) =∐
d

Zdm(X0)

Zm∞(X0) =∐
d

Zd∞(X0)

Let me refine the discussion. I want to consider the cohomology as a whole,

Am,n(X) =⊕Ad,n(X) =⊕C∗(Zdn(X)).

That’s the first step, and we we can do either n or ∞, and the next step, I have
an asymptotic statement, so we want an asymptotic statement in the world of
cohomology, so we want to make sense of

lim
d→∞

Ad,n(X).

This is a limit in the world of chain complexes, you should have maps to take some
sort of colimit, we want a map Ad,n(X) → Ad+1k,n(X). So having such a map is
enough to compute, to define the colimit, so the question is, is there homological
stability? Suppose you fix a degree i, do you have a map

Hi(Ad,n(X))→Hi(Ad+1k,n(X))

and you’d like this to be an equivalence when n is big compared to i.
So we’d like to make sense of the quotient homologically, want something that

looks like
Ām,n(X)

Ām,∞(X)



26 QUOC P. HO

where Ām,n is our colimit of Ad,n, so that after Frobenius trace we recover the
numerical density.

So you can phrase this in singular or de Rham cohomology until the end. So in
some sense we use arithmetic to guess what the cohomology thing should be.

So this question was considered by Farb–Wolfson–Wood. Let me say what is
known about this problem.

● in the topological steting, there is a paper of Knudsen, who proved homo-
logical stability in the case (1,2), so for configuration spaces.

● There was work by Kupers–Miller, who proved homological stability for
(1, n),

● Farb–Wolfson–Wood proved stability for (m,n) arbitrary but X smooth
and coincidences in quotients between Poincaré series for Hodge–Deligne
polynomials.

What do I mean? Even though we don’t know the quotient, what they prove is
that the Poincaré polynomials, if you divide them as series, you get this kind of
thing with the same kind of coincidence as in the numerical version.

So we want to be able to do the non-smooth case and do this at algebra. So
they do some Leray spectral sequence and combinatorics with the strata and com-
putations with the spectral sequence. It’s geometric but we don’t see why the
coincidences appear. So a question is how to see these quotient coincidences con-
ceptually.

We can handle the non-smooth case as well, but anyway, let me assume smooth
in this talk. What is the idea of this quotient? The idea is very simple. The
upshot is that derived tensors of commutative algebras give you the quotients.
Let me give a very simple example of why it is true. In the category of graded
commutative algebras, Λ is a base field, usually it’s field coefficients, either C or F̄q.
So t has cohomological degree 0 and internal degree 1. So if I take χgr(Λ[t], u) =
1 + u + u2 +⋯ = 1

1−u
.

So now let’s consider Λ⊗LΛ[t] Λ. I’ll always derive so I’ll leave out L, and so this

is Λ⊕Λ[1], let’s compute χgr(Λ⊗Λ[t] Λ), this is 1 − u.
This suggests that we should equip Amn with the structure of a graded commuta-

tive algebra, graded bym colors. Note that whenX is geometrically connected, then
H0(Amn (X)) = Λ[x1, . . . , xm], keeping track of connected components of Zmn (X).
If this is a commutative algebra, then we can act on it by xi, which will give a
map from Amd (X) to Amd+1k

. So then we get these maps to formulate cohomlogical

stability.
The second game that we get is to compute, show that the same kind of coinci-

dences happen for Amn (X)⊗Am
∞

(X) Λ and then show that in the Fq-setting, taking
Frobenius trace recovers numerical density. Essentially this boils down to equipping
this space with a commutative algebra structure.

Not surprisingly the tool that we’ll use is factorization homology. We’ll use the
following, recall that X, we have Shv(X), we want to do Com Alg(Shv(X)), so
now it’s natural to use graded commutative algebra objects, graded by Zm>0. We

have the adjoint functors π? and π! between this and Com Alg(VectZ
m
>0).

One can show (up to some details) that

χgr

Frob−1q
(π?A, t) = ∏

x∈∣X ∣

χgr

Frob−1x
(i!xA, t

degx).



PMI LECTURE SERIES 27

This sort of multiplicativity allows us to recover the zeta values, and the proof is
similar to the Tamagawa number one case.

Now let’s take the link between conifiguration spaces and factorization homology.
In the graded setting, we have a graded version of the Ran space, which is simpler,
because here the different degrees are separated. The graded version, it’s Zm∞(X),
so this has all these powers, glued together. Now let me say what is a commutative
factorization algebra on X via Ran. Essentially, RanX×RanX → RanX, the union
map, using that you can construct the star monoidal structure on sheaves, namely

F
☀

⊗ G = ∪∗(F ⊠ G)

and then you can talk about commutative algera objects on sheaves on RanX under
☀

⊗ , and let Com Fact(X) be the ones in their with an appropriate restriction off

of the diagonal. Then the proposition of Gaitsgory–Lurie is that Com Alg!(X) ≅
Com Fact(X). If I start with a commutative factorazation algebra, I can pull back
along the map X → RanX. and get something in the appropriate category. This
δ! has a left adjoint δ?, and in fact this is an equivalence of categories.

Let me give you an idea of how this functor δ+ can be thought of. Start with
A a commutative algebra object under ⊗!, on the first power of X I get A itself.
Then next I get X2, the flavor is similar, and now for commutative algebras it’s a

bit simpler. An object there has A⊗
!2 → A, I can rewrite this

∆!(A⊠2)→ A

and I can postcompose wiht ∆! and then A(2) is the pushout as follows

∆!∆
!(A⊠2) ∆!A

A⊠2 A(2).

It’s the same as before but simpler. Now we can use this construction to find which
A to plug in. The reference for higher powers of X, which are more complicated,
this is in the paper of Gaitsgory, semi-infinite IC something Ran. He produced a
precise diagram that one can take.

All right so using this one can guess what commutative algebra object to put in
to prove this.

Remark 8.1. Suppose A ∈ Com Alg!(X). On the one hand you can do π?A which
is a left adjoint to the pullback. There’s a way to compute it, you can do δ?(A)
and then compute the cohomology C∗

c (RanX,δ?A), and that’s π?A.

The upshot after thinking about these diagrams is the following, the objects in
Com Alg!(X) that we’re interested in are pullbacks from Vect ofAm,∞ = Λ[x1, . . . , xm]
where xi is in degree 1i and cohomological degree 2d, with Tate twist d. This is
essentially just a polynomial algebra, so the factorization homology is a symmetric
thing and recovers Zm∞ , so

π?π
!Am,∞ ≅ Am,∞(x).

Then Am,n is the same guy but with the relation (x1⋯xm)n. Intuitively, we want
the stalk at the disallowed locus to be zero. So densities, then the ? is a left adjoint
and preserves pushouts, and here that’s relative tensors.



28 QUOC P. HO

So
Am,n ⊗Am,∞ Λ ≅ Λ⊕Λ[1 − 2(dimX)mn](−(dim X)mn)

with this latter in degre (n, . . . , n). And you see the ζ values appearing.
There are two things remaining:

● homological stability and
● the multiplication formula

The idea is to use Koszul duality between commutative algebras and Lie algebras.
The real version should be with Lie coalgebras so there’s some shift, and one of
them is the coChevalley complex. This has a filtration whose associated graded is
the symmetric algebra, and we know how to handle these.

The ? is kind of exponential in nature. The nature is this quotient, and what
I want to say is that π?A, if A = co Chev a then π?A = co Chev(π!a), and this is a
generalization of π? Sym = Symπ!. Then we can prove the product formula in this
case.

The associated Lie algebra is just two steps, it’s very simple, and essentially
from, it exchanges trivial and free. The objects are not free but are close enough,
and then one can formulate a theorem about homological stability of factorization
homology. I think I’m way over time.


