
LOOP SPACES IN GEOMETRY AND TOPOLOGY

GABRIEL C. DRUMMOND-COLE

1. September 1: Nancy Hingston, geodesics and the structure of the
free loop space

So I’m speaking on geodesics and the structure of the free loop space. I was
asked to give an introductory talk. So experts, if you want to leave now, it’s fine.

The main ideas in the talks are the following. First of all there are ideas coming
from geometry, so we have closed geodesics, iteration and index growth, there’ll be
a couple more here in a minute.

From topology we have loop spaces, loop products, and something that I call
Poincaré duality in the free loop space. That’s a main theme here. These are the
basic ideas from geometry and from topology. The applications will be in geometry
to the existence of closed geodesics and a resonance theorem for spheres. There are
also some analogues in Floer theory.

So the original motivation, how I originally got involved was from these questions
in geometry. Given a compact Riemannian manifold M , I’m also going to assume,
just for simplicity, that π1M = 0. More general statements are possible. Also
just for simplicity any homology or cohomology will be with rational coefficients.
Riemannian means we have a metric and so we have distance. A geodesic is a path
which locally minimizes distance. If you start with a point and a direction there is
a unique geodesic that starts at that point and goes in that direction. We ask the
question whether this ever closes up and becomes periodic. This question goes back
to Lusternik-Schnirellmann, Poincaré, Birkhoff, Morse, Bott (my advisor), many
people have discussed this.

There are two basic approaches. The dynamical systems approach takes the
point of view that a closed geodesic is a geodesic that happens to close up. Look
among geodesics for closed curves.

The second point of view is the variational approach, this says look among closed
curves for those that happen to be geodesics. That’s the loop space, that’s the
subject of this conference, so now we’re thinking of a closed geodesic as a critical
point of, so, we’re looking on the free loop space ΛM , the space of all maps S1 →M .
I’m not going to worry about how smooth these are, what kind of maps they are,
it doesn’t seem to matter in practice.

The most obvious function is the length function. A better function is the
energy function,

∫
|γ̇|2dt, where γ : S1 → M . This isn’t the best function, the

best functinon turns out to be F =
√

energy. This function has the property that
it’s greater than or equal to the length, with equality if and only if the loop is
parameterized proportional to arc length. I’ll tell you right now, you may as well
just think that F is the length. You won’t go wrong thinking that.

There’s actually a somewhat deep reason behind the fact that that’s the best
way to think about this.
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I’m going to do a brief review now of Morse theory. If you understand the
basic ideas you have some hope of understanding details, so I’m just going to do
nondegenerate Morse theory on a compact manifold X, which the free loop space is
not, of course. So suppose that f : X → R is a nondegenerate Morse function, think
of it as being a good function. Morse theory gives us a relationship between the
topology of X and the critical points of f . It’s a relationship between the topology
and what you might think of as the geometry.

There’s a beautiful picture we all learned from Milnor, from Milnor’s book. Here
X is a torus and the height function is the function f . The minimum has index 0,
the saddle points have index 1, and the maximum has index 2. A critical point is
one where the derivative vanishes. The index means we look at the dimension of
the maximal subspace of the tangent space where the second derivative is negative
definite. So if the second derivative looks like x2

1 + · · · + x2
k − y2

1 − · · · − y2
λ, then

this is a critical point of index λ. This tells us we can build this torus out of a 0
cell, two 1-cells, and a 2-cell. This is a way where we can use the geometry of the
critical point to tell us something about the topology.

To go the other way around, we can use the topology to tell us something about
geometry. For example, we can get the Morse inequalities. In this particular
example, the Morse inequalities tell us that if we take H∗(X,Q), this has rank 4, so
there must be at least four critical points for f in the nondegenerate situation. One
way to think about this is using relative homology. So if we look at the homology
of the space X cut off at the level b, Hk(X≤b), where this is the subspace where
f(x) ≤ b. If we look at the relative homology Hk(X≤b, X≤a), then this is equal
to 0 if there is no critical value in [a, b], and if we assume there is exactly one
critical point in the complement of X≤a in X≤b, of index λ, then this homology
Hk(X≤b, X≤a) is Q for k = λ and 0 otherwise. You can state this in terms of
relative homology. As the level increases, the homotopy type changes. The level
homology is H∗(X

≤a, X<a), which is the limit as
epsilon → 0 of H∗(X

≤a+ε, X≤a−ε). This is the basic building block of Morse
theory.

There’s a more modern way of saying this, in terms of a spectral sequence. Morse
didn’t do this but it’s a more modern way of saying what Morse was talking about.
We cut off X≤a. This induces a filtration of the chains C∗(X

≤a). The spectral
sequence converges to the homology of X and the first or second page is the direct
sum of the different homologies,

⊕
crit valuesH∗(X

≤λ,X < λ). This is bigraded by
the level λ and by the degree.

That’s the end of the brief review of Morse theory. The case we have in mind is
the free loop space. I’m assuming the manifold has a metric and is simply connected.
We also have the based loops ΩM , which fix the basepoint. We have the length
function, the energy function. We want to use F =

√
E, which, well, the based

loops are a subset of the real loops, and this is a function to the real numbers. Now
critical points of F are precisely closed geodesics in the given metric. We need a
metric to do this.

These are not compact manifolds, the loop spaces, but they have nice structure as
infinite dimensional manifolds. With respect to any of the structures we’re talking
about, they have good finite-dimensional approximations. There’s a beautiful finite
dimensional approximation due to Morse that I’d be happy to talk about.
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[Inside the free loops, we have a copy of M , these are constant loops and they
are critical points. They have length zero and they are critical points.]

We can do Morse theory on the finite dimensional approximations. So Morse
theory gives us a map, a correspondence between homology and closed geodesics.
One way to set up this correspondence is using the critical level. From h ∈
H∗(Λ) we can produce the critical level cr(h), which is the infimum of lengths
{a|h is represented in Λ≤a.

So you have this infinite dimensional manifold, take a homology class represen-
tative, and push it down inside the manifold and when it gets stuck you’ve hit the
critical level. This is also the infimum over representatives [x] ∈ h of the supremum
over in x ∈ X of f(x), the minimax value. This is due to Birkhoff in this example.
It’s a theroem of Birkhoff that this is a critical value. of F .

Theorem 1.1. (Birkhoff)
The critical level of h is a critical value of F .

So there exists a closed geodesic γ with the length of γ equal to this critical level
and the index of γ approximately equal to the degree of h. This theorem is true in
much more generality.

In the non-degenerate case this is off by at most 1, in the degenerate case it’s off
by at most 2n. Here n is the dimension of the manifold.

[You’re talking about nondegeneracy in the loop space, are you perturbing this
in some way? You always have a circle of symmetries.]

You always have a one-parameter family of reparameterizations, the group S1

acts by isometries. In the best case there’s still a dimension one family, so this is
always degenerate. I was sweeping that under the rug. It’s a valid point though.

You have this infinite dimensional manifold, you have lots of homology, does that
give you lots of closed geodesics? There’s a problem which is much bigger than the
problem pointed out by Ralph, which is the problem of iterations. Unfortunately,
lots of homology classes does not ensure lots of closed geodesics. Any time you have
a closed geodesic γ, this is a map from S1 to the manifold. If you have a closed
geodesic you also have γ2. You go around twice, you have γn(t) = γ(nt), thinking
of S1 as R/Z. These are different points in the free loop space. In general these
have different indices. If you have one closed geodesic, it gives an infinite family
of critical points, and these are not points, these are circles, which are even worse.
They have different lengths and indices. So one honest closed geodesic looks like
an army. You can’t just count homology classes.

However there’s a wonderful theorem of Gromoll and Meyer that says if you have
a LOT of homology you get a lot of geodesics:

Theorem 1.2. (Bott, 1956) The index of the iterates grows approximately linearly.
Fix a manifold and its iterates. The index grows approximately linearly in M .

[Is there a formula in the typical case? Let me answer that later.]

Theorem 1.3. (Gromoll-Meyer 1969) The rank of the level homology of the iterates
of any fixed closed geodesic is bounded.

It’s a simple and beautiful idea. Fixing a closed geodesic, the index grows lin-
early. So the degree in homology grows approximately linearly. So all the homology,
the rank can be infinite but it’s somehow bounded. It’s easy in the non-degenerate
case, but this is true and important in the degenerate case.
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My advisor was Bott. He told me to go read Gromoll and Meyer’s paper and
explain it to him. In the non-degenerate case, there’s nothing to prove. He said
“oh, is that all it is?” It’s the degenerate case that’s interesting. If you only have a
finite number of closed geodesics, then the ranks of the homology of the free loop
space are bounded.

Theorem 1.4. If the rank of Hk(Λ,Q) is unbounded as k → ∞ then M has
infinitely many closed geodesics for any metric.

Then you might ask when this is true? This was settled by Sullivan and [unintelligible]-
Poirrier, who showed (in 1976) that the Rank of H∗(Λ,Q) is unbounded if and only
if H∗(M,Q) requires more than one generator. So it’s almost always true. This is
if and only if H∗(M,Q) 6= Q[x]/xn.

Let me just finish up by saying, most manifolds you get infinitely many closed
geodesic for any metric, manifolds you don’t get it for include spheres and projective
spaces. What about those? These are the spaces for which these are truncated
polynomial rings in one generator. The rank is bounded, and Gromoll-Meyer does
not apply. It’s interesting because these are the spaces for which there is a metric
for which all the geodesics are closed. If you perturb the metric it becomes a very
difficult problem. Very little is known. Maybe I’ll leave it at that, it’s been about
45 minutes.

2. Kenji Fukaya: Cyclic homology in Lagrangian Floer theory and
pseudo-holomorphic curves

I’m happy to have an occosaion to talk here. I will talk about some structures
close to loop space homology. At least half af my talk will be sections 3.8 and 7.4
of my book. This does not mean that I assume all of that. It seems likely that
7.4 was not read by most people. It’s a very similar structure that was discovered
independently by many other people. These are open-closed or closed-open the-
ory. Open strings are bordered Riemann surfaces and closed strings are Riemann
surfaces. This story gives some relation between these.

We’re always working with a symplectic manifold (X,ω). We’ll let LM be based
loops, ΛM the free loops and ΩM differential forms. So ω ∈ Ω2X with dω = 0
and ωn 6= 0 In many parts of my talk, X will be compact. it’s richer when X is
not compact. It’s studied in more recent work. Let L ⊂ X be an n dimensional
compact submanifold with ω|L = 0.

So q will be a closed open map, and will give a map from H(X) to HH(Ω(L),m)
with some twisted structure.

If you have HH(ΩL, d,∧), this is most likely to be equal to H(ΛM). I used the
twisted structure, though, not d and ∧. So we use a deformation of this and get an
A∞ structure.

If X is non-compact, we replace H(X) with the symplectic homology SH(X),
this kind of relation was discovered by many people. The first place I know about
it is in Kontsevich, then Paul Seidel and others.

Let me say how this kind of thing works. The most typical non-compact sym-
plectic manifold is T ∗M , and in this case SH(X) = H(ΛM) and the reason, I don’t
want to prove this, but Hamiltonian dynamics of T ∗X is related to the homology of
the free loop space. The Hamiltonian dynamics are related to the closed geodesics.
So in this case this is your q and it’s an isomorphism.
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Let’s take another case, the case of S2. When X is non-compact you get sym-
plectic homology, but you get the regular homology of X in the compact case. In
the compact case, the Hamiltonian dynamics are controlled by HX. The number
of periodic orbits of a Hamiltonian vector field is at least the rank of HX. So
here this plays the role of the loop space homology. You can just do the de Rham
complex, this is very likely to be the homology of the loop space. If you have the
q-deformation, you will get something finite, that’s different, it’s not infinite rank.

Let X = S2 and L the equator S1. Of course, if you consider Ω(L), the homology
of L is Q[x]/x2 = 0. The Hochschild cohomology is the homology of the free loop
space of S1. The structure is deformed, HF (L) = Q[x]/x2 = 2T1. You have two
disks which are bounded by L. I don’t want to explicitly take the Floer homology
but I just want to say that x2 6= 0. So ΛR0 = {

∑
aiT

λi |ai ∈ R, λi ≥ 0, limλi =∞}
Then HF (R) is a Clifford algebra. The Hochschild cohomology of this Clifford

algebra is Λ, one dimensional. One of the two algebras in nilpotent and in the other
case it’s semisimple.

In this case there are two spin structures, s1 and s2, and Lagrangian Floer theory
depends on the choice of spin structure. So q̂ : HS2 → HH(ΩS1, s1)⊕HH(ΩS1, s2)
and this is an isomorphism. The situation is very different from the cotangent
bundle but you still get an isomorphism.

There is another example that’s harder to understand, let me take X = T 2 with a
meridian as L. Then m is just d,∧. So then we have a map H(T 2)→ HH(S1, d,∧).
This is not an isomorphism. The reason that this big difference happens, you have
many L in the same homotopy class. In this case it should not be correct to consider
the individual Hochschild cohomology, we should consider the whole family. I don’t
know how to make it precies yet. So something like ∪aHH(La, d,∧). If you move
the equator up or down in the sphere, you get 0. The equator is isolated, so there
you can use the Hochschild cohomology itself. So then the choice is not correct.
We need the Hochschild cohomology of a family version of Floer homology.

That’s the general picture. This is something about, I can also cook another
map p also. So p is something in the opposite direction. It’s better to call it p+

maybe, so p+
∗ goes from cyclic homology HC(Ω(L),m) → H(X). Let me take

q̂ : H(X) → HH(Ω(L),m), which is an L∞homomorphism. The first is a trivial
Lie algebra and the second one is the Gerstenhaber Lie algebra. This is an L∞
morphism. This is the closed open map. The other thing, the other story, you have
the same q, it’s actually a ring homomorphism.

We found that the HQ is actually an A∞ algebra. I’ll explain that soon. Then a
problem is, is q an A∞ homomorphism? Then the things are kind of more confusing.
You have an A∞ homomorphism and an L∞ homomorphism, and are they related?
If anybody knows how to name and study this? One wants to prove that q is an A∞
homomorphism. Then you make this consistent and this should give the relation
between the two. That’s the question I don’t know how to answer. On the chain
level cooking up this structure is difficult.

In May, I heard a talk in which it was explained that one can generalize to the
non-compact case, Pascaleff said that one can do this in the non-compact case, with
contact boundary, then symplectic homology of X to HH(Ω(L),m), and this is an
L∞ homomorphism. The SH(X) is not yet defined but then this should be L∞ I
don’t know if there’s an A∞ structure on SH(X).

Let me look at X ⊂ X ×X. This gives the A∞ algebra structure.



6 GABRIEL C. DRUMMOND-COLE

The next section is about the open to closed map. This is something which goes
in the opposite direction. Let me write p+ : HC(Ω(L),m)→ H(X), from the cyclic
homology to H(X). We need to understand the homological algebra behind this
map. In general HC(C) is an L∞ module over HH(C). So H(X)→ HH(Ω(L),m)
acts on HC(Ω(L),m). Then p+ is an L∞ module homomorphism.

[What about the compositions?]
The cyclic homology HC(Ω(L),m)→ HQ(X) is an HQ(X)-module homomor-

phism. The linear part is again respectful of the associative structure. Everything
is actually A∞ Everything should come from the same A∞ structure. This is the
story of p+. There is another story about p0 which is in a sense more interesting,
from Λ0 → H(X). This is some extra part of p+. This has various applications, like
proving nontriviality of some Floer homology. To understand this map p0 is some
motivation. To define this we need p+. To understand p0 correctly is important.

Let me say more things that are expected to exist. So p+, this is not written,
from HC(Ω(L),m) → H(X), probably everything generalizes to the non-compact
case. Probably a similar strategy works. You can generalize to p+

S1 : HC(ΩL,m)→
HS1

(X), and in the compact case this is justH(X)⊕H(CP∞), and there is a famous
sequence of Connes
HH → HC → HC → HH and the equivariant Gysin sequence. t]Then p∗ inter-

twines one and the other. You just replace symplectic homology with equivariant
versions. The whole structure looks complicated and involved. I don’t know how to
give the homotopy algebra framework behind this. I don’t have enough knowledge
to discuss all of them. There should be p0 which is different from usual. If you
understand it correctly it gives some knowledge of the open closed theory.

3. Kathryn Hess: Simplicial and cosimplicial models for free loop
spaces

We have homotopy theorists, symplectic topologists, I want to make sure every-
one can understand what’s going on. Let me say what I want the goals for me for
what these lectures are.

(1) I want to describe various (co)simplicial models for the free loop space ΛX.
These will have different levels of complexity and we’ll be able to capture
different parts of structure, not just the homological structure but the S1

actions and what Nancy was calling the iterations, which come from the
power maps. So these should capture some of the extra structure of ΛX. I
call the power map λ(r) which takes γ 7→ γr. You’ve realized already that
these are important parts of the structure. We’d like to have as much of
this structure as possible.

Why would we want simplicial models? If I actually want to understand
the structure, it helps to have a combinatorial model for the structures
we’re looking at. Perhaps, or sometimes, this makes them better adapted
for computation.

I imagine or expect that reaching this first goal will take the lecture
today and about half of the lecture tomorrow.

(2) I also want to describe various chain complexes the homology of which is
either isomorphic to the homology of the free loop space or the equivariant
homology (its S1 orbit), let me call this fls∗ or ho∗, so that H∗(fls∗) ∼=
H∗ΛX and H∗(ho∗) ∼= HS1

∗ (ΛX) = H∗(ΛX ×S1 ES1), the homotopy orbit
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space. I’d like a small computable chain complex for these. We’d actually
like to capture the algebraic structure we can here, so these should be
isomorphisms taking into account as much algebraic structure as possible.

That’s the kind of thing I’m going to talk about today and tomorrow.

Now let me talk more about simplicial and cosimplicial models.
[What is a cosimplicial model? What’s a model?]
The sense of the word model, there is a pair of functors relating simplicial sets to

topological spaces, | | (geometric realization) and S· (the singular functor), which
is a Quillen equivalence. What I mean by model is that L• is a model of LM if
|L•| ∼= ΛX. I mean something similar in the cosimplicial context, with totalization
instead of geometric realization.

I’ll give a two-minute introduction and then refer you to any of numerous classical
sets. It’s relatively simple to describe.

A simplicial set is a graded set K• = {Kn}n≥0 together with face and degeneracy
maps linking these together. There are di : Kn → Kn−1 (face maps) and si : Kn →
Kn+1 (both for 0 ≤ i ≤ n). I won’t write the complete set of identities that these
things satisfy but I’ll give a couple of examples.

One example is that disi = Id = di+1si. Then didj = dj−1di if i < j. There’s
an old book by Peter May which has all of these identities on page one.

Let me write sSet as the cotegary of simplicial sets. A morphism respects face
and degeneracy maps. It’s nothing but a category of functors from the (opposite
of the) ordinal category to sets.

Remark 3.1. ∆ has objects N and morphisms order preserving maps {0, . . . ,m} →
{0, . . . , n}. So then sSet = Set∆

op

.

I won’t explain how geometric realization works. The basic idea is to think of geo-
metric simplices, zero simplices as points, one simplices as intervals, two-simplices
as triangles, three-simplices as tetrahedra and then the face and degeneracy maps
give you how you should glue these together.

Let me make a few more simplicial preliminaries. Let me start with twisting
functions. If K• is a simplicial set and G a simplicial group, then I can define
a twisting function as a map of graded sets τ : K• → G•−1. This is a twisting
function if the following condition is satisfied.

If for x in Kn, if I calculate diτ(x), for i = 0 this should be τ(d0x)−1τ(d1x) and
for other i this is τdi+1x. For degeneracy maps you just intertwine siτ = τsi+1.

If I have a twisting function τ and a simplicial action α from G• × L• → L•,
then we can build the twisted Cartesian product (TCP) that looks as follows.

(K• ×τ L•) = Kn × Ln.
The degeneracies are componentwise, si(x, y) = (six, siy). Faces are strange only
for degree zero:

di(x, y) =

{
d0x, τ(x)d0y i = 0
dix, diy i > 0

So the projection to K• is a simplicial map and is a Kan fibration if and only if L•
is a Kan complex. These are nice (if you don’t know what they are) because they
have good lifting properties in simplicial sets.

The next thing I should remind you of is Kan classifying spaces and loop groups.
We want, one of the points of twisting functions is that they give a way of expressing
things related to loop groups.
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Theorem 3.1. There is an adjunction between reduced simplicial sets sSet0 (where
K0 = {∗}) and simplicial groups sGr, G and W̄ which has the following properties.
If I apply G(K•) it should look like a group, then G(K•) = Free(Kn+1)/〈s0Kn〉.
Let me just say the faces and degeneracies. If I have x ∈ Kn+1, that corresponds
to x̄ ∈ G(K•)n. I want to tell you the faces and degeneracies look like. So

di(x̄) =

{
d0x
−1 · d1x i = 0

di+1x i > 0

and the degeneracies are just six̄ = si+1x. I should say what the underlying sets of
W̄G• look like. In degree n it should be G0 × · · ·Gn−1 for n > 0 and a singleton
for n = 0.

Proposition 3.1. We have τK from K• → (GK•)•−1 which takes x to x̄, this is
the universal twisting function. There’s a “couniversal” twisting function W̄G• →
G•−1 which takes (a0, . . . , an−1) 7→ an−1.

So sSet0(K•, W̄G•) ∼= Tw(K•, G•) ∼= sGr(GK•, G•).

Remark 3.2. Homotpy classes of simplicial maps into W̄G• classify simplicial
fiber bundles with fiber G•. There is a universal bundle

G• → W̄G• ×νG• G• → W̄G•.

Remark 3.3. Part of the story is that ηK• : K• → W̄K• is a weak equivalence, this
means that geometric realization takes it to a homotopy equivalence of topological
spaces.

So now I wnat to talk about the bar and cyclic bar constructions. Let A be
either a topological (or simplicial) monoid, so a topological space (or simplicial set)
endowed with an associative multiplication µ : A × A → A and unit η : {∗} → A.
The bar construction on A is a simplicial space (bisimplicial set).

BnA = A×n.

So I should tell you what the faces and degeneracies do. di takes (a1, . . . an) to (a2, . . . , an) i = 0
(a1, . . . aiai+1 . . . an) 0 < i < n
(a1, . . . , an−1) i = n

The degeneracy maps insert an e in the ith place. It’s easy to check that this is a
simplicial object.

The cyclic bar construction takes the same input and the same type of output.
Z•A = {ZnA}, ZnA = A×n+1,

di(a0, . . . , an) =

{
(a2, . . . , ana0) i = 0
(a1, . . . ai−1ai . . . an) 0 < i ≤ n

At every level there’s an action of the cyclic group of order n+ 1 on the elements.
This is called a cyclic set. I’ll come back to this notion maybe this afternoon. What
I did want to say, there’s a simplicial map, πA : Z•A → B•A, which drops off a0.
This will give us the free loop fibration down to our classifying space.

Let me take two more minutes for preliminaries so that tomorrow I can really
start talking about free loop spaces.



NANTES: LOOP SPACES 9

The last thing I want to mention is Artin-Mazur totalization which goes from
bisimplicial sets to simplicial sets. It has Tot(K••)n as (x0, . . . , xn) ∈

∏n
Ki,n−i

such that dv0(xi) = dhi+1xi+1 for 0 ≤ i < n.

Theorem 3.2. (Cegana-Remedios, 2005)

|Tot(K••)| ∼= |diagK••| ∼= ||K•|•|.
Here (diagK••)n = Knn.

Thanks for your patience, next time I’ll talk about loop spaces.

4. Latschev: Non-exact Liouville embeddings and symplectic
homology

[We said we would announce the question session. This afternoon we’ll have
Nancy Hingston for half an hour, then Kathryn Hess. Now we start with Latschev.]

Thank you very much for organizing a conference that bridges two fields that I
like. I will talk about work in progress with K. Cieliebak. I reserve rights to change
pieces of the argument in the final version. Okay, so there are a few words in the
title that I don’t expect most of the topologists to know. So let me spend the first
parts of the talk organizing the question. The basic object of study in what I’m
going to say is a Liouville domain. What are these?

Start with a symplectic manifold (W,ω) and assume it has boundary, compact
with boundary. Then for it to be a Liouville domain, I want, first, for ω = dλ.
Think of the λ as also part of the structure. Then I can find a unique vector field
Y which satisfies the equation that ω(Y, ) is λ. This is called the Liouville vector
field. I require that it is transverse pointing outward at the boundary of W .

What are the examples? The first example is the ball. I take as my primitive, the
standard symplectic form, take λ = 1

2

∑
xidyi − yidxi. The picture becomes that

the Liouville vector field is the radial vector field. Another very similar example is
if W = T ∗Q, and here λ is pdq, the picture is roughly the same, I draw this picture
in every fiber. This is radial. I should say the unit disk bundle in the cotangent
bundle.

Just to give another one that’s not the same, let’s take a surface with boundary,
a disk with holes, say, then this admits a Liouville structure. It’s actually a nice
little exercise to write one down.

That’s domains. Now I want to talk about embeddings. We’re interested in
codimension 0 symplectic embeddings W0 ⊂ W . We call ϕ exact if ϕ∗λ− λ0 = df
for some f . In this case ϕ∗λ0 exctends to a global primitive on W .

Say we are given (W,ω) and inside it there is a closed Lagrangian Q. Then this
gives us [λ|Q] ∈ Hn(Q,R) and Q is called exact if [λ|Q] = 0. Gien Q ⊂ W there is
a embedding of D∗Q in W . Then φ is exact if and only if Q is exact.

Theorem 4.1. (Gromov, 85) There exists no exact Lagrangian embedding of a
closed Q into R2n with the standard structure.

The cartoon version of the proof, the hard part of the argument, assume Q ⊂ R2n

is Lagrangian, the hard part of the argument, pick a compatible almost-complex
structure (in this case the standard one) and there exists a holomorphic disk U
with boundary on Q that is non-constant. The disk has positive area, so

∫
∂D

λ > 0
which implies that [λ] 6= 0.
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The next big development was a theorem of Kenji Fukaya, maybe it’s a heorem,
the details are a mess but a strategy for proving it is clear, around 2004. Let Qn be
closed, spin (w1 and w2 vanish so it’s oriented), and a K(π, 1). Assume there exists
a Lagrangian embedding of Q into R2n with the standard spin structure. Then
there exists a symplectic disk with boundary on Q with Moslov index 2.

The idea of the proof, now we look at all disks, fix some class a ∈ π2(R2n, Q),
and let M(a) be the moduli space of holomorphic disks in that class. This M(a)
comes with an evaluation map to the loop space. I want my disks to have a marked
point on the boundary and then I get a map to the loop space ΛQ. We think of
this moduli space as a chain on the loop space. Now here comes the trick. If we

take the formal sum M =
∑
aM(a) and think of this in ̂C∗(ΛQ)⊗ Z[π2(R2n, Q)]

then this thing satsifies the equation ∂M+ 1
2{M,M} = 0. Then there is some N

so that ∂N + {N ,M} = [Q]. The second equation tells you, the first says it’s a
Maurer-Cartan element. The second one is a twisting of the boundary, and in the
twisted version of the boundary map, the cycle [Q] has become exact. This cycle
was manifestly non-exact before. My loop bracket had to be non-trivial and theM
had to be non-trivial. Deform the right hand side in a one parameter family until
you get no solutions and that family is N .

The statement comes out now by playing with indices. Once you’re at this stage
and on one has complained, you’re home for free. I really like this point of view,
whenever you have a Lagrangian embedding, looking at things with boundary on
that Lagrangian gives a deformation of string topology.

I wanted to mention a corollary

Corollary 4.1. If Q3 is closed oriented and irreducible, then there exists a La-
grangian embedding into R6 if and only if Q is S1 × Σg.

That these do embed goes back to Givental or Gromov, but the fact that no one
else does is quite surprising. There was an expectation on the minimal number of
intersection points for immersion. A recent result of Eckholm-Eliashberg-Murphy-
Smith showed that for all 3-dimensional oriented closed manifolds, if I take one
connect sum with S1×S2, there is a Lagrangian embedding into R6. So there’s an
embedding with one double point.

What we don’t know is the following open question. What about Q1#Q2 with
both of these K(π, 1). We don’t know.

One of my students is working on proving nonexistence of Lagrangian embed-
dings of products where essentially you prove that string brackets vanish.

As a manifold it embeds by Whitney, but you want there to be a Lagrangian
embedding. Immersion is then a similar easy homotopy theoretic condition. But
embedding is harder. Asking these questions is probing symplectic topology in
interesting ways.

This is all stuff that other people did. Where do I come in? OUr plan is to
make this heorem a theorem, and the idea is to bypass technical difficulties coming
from string topology by rephrasing the argument purely in symplectic terms. This
brings me to the second half of my title, namely symplectic homology.

The experts have forced me to mention monotonicity. The Maslov index in
this context (Q in R2n) is a map from π2(R2n, Q) ∼= π1(Q) → Z, which basically
measures twisting of the Lagrangians in a loop.

The other thing of course you have is the symplectic area ω : π2(R2n,Q) → R.
Monotone is you want these two to be proportional with a positive constant.
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So okay, symplectic homology. Clearly I won’t try to define it. So for those who
don’t know, just wait until Thursday and then you’ll get a little bit. So SH(W,dλ)
is Floer homology for Hamiltonians which grow at infinity. Technically you should
complete your W and do all kinds of funny stuff. The generators are periodic
orbits for your Hamiltonian functions. You get a chain complex with two types of
generators, critical points in the interior of W and Reeb orbits on the boundary.
Something I should have said in the beginning, the vector field being transverse to
the boundary, I get a contact form on the boundary and on that thing I get closed
orbits (sometimes). Once you have one, you get all its iterates. This is a highly
infinite dimensional chain complex.

Let’s go back to my examples and see what you get. So the symplectic homology
of the ball is zero. You have one critical point in the interior. That cancels with
[missed].

In the cotangent bundle case, working with Z2 coefficients, this is H∗(ΛQ,Z2).
Mohammed will explain what to do in the general case. For the surface with holes
the answer is not quite as nice.

Now here comes a useful theorem due to Viterbo, who pioneered this kind of
homology. Suppose thet ϕ : (W0, dλ0)→ (W,dλ) is an exact Liouville embedding.
Then there is an induced map ϕ∗ : SH(W,dλ) → SH(W0, dλ0). Nowadays we
know much more about this map.

Remark 4.1. ϕ∗ is a ring homomorphism which preserves even more structure

Then we get the corollary:

Corollary 4.2. There are no exact Liouville embeddings of (W0, dλ0) with SH(W0, dλ0)
into a (W,λ) with zero symplectic homology.

You don’t have a ring homomorphism from a zero ring to a non-zero ring.
Here’s the strategy, what does it mean to rephrase Kenji’s argument in these

terms? The strategy is, what do we need? We need the loop bracket in symplectic
homology. I should have stressed this more before, it was important for the equa-
tions to be on the chain level. So the first step is to produce an L∞ structure on
the chain complex, I should say a chain complex because there are choices here,
for symplectic homology. For the topologists it will not become a surprise that it
is an L∞ structure and not just a bracket. The underlying complex is very small
compared to chains. If you want them on a small complex is that they become
infinity versions. This is obvious to topologists and less so to symplectic people.

A second step is from an embedding of (W0, dλ0) into (W,dλ), we want to pro-
duce a Maurer-Cartan element in this L∞ algebra (W0, dλ0). Then we get a twisted
differential.

The picture is that the Maurer Cartan element should count the caps in W of
things on the boundary of W0. These will not exist when the cobordism is exact,

then this element will vanish. So we get a twisted version S̃H where the complex
has the same generators as the complex for W0 but the differential is twisted in
some way coming from the embedding.

We also get a ring structure on this, also twisted by the Maurer-Cartan element.
Now I want to assert the existence of an analogue to Viterbo’s map which goes

from SH(W,dλ) to S̃H(W,W0) which is a ring homomorphism.
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5. Craig Westerland: homology of stabilized moduli of Lefschetz
fibrations

I want to apologize for what will be a very jet-lagged talk. What I want to do,
I’m in the homotopy theory crowd, I want to talk about using homotopy theory to
talk about symplectic topology. I’m far from an expert, so pleas bear with me.

A general goal is to study the homology of moduli spaces of “structures” on
Riemann surfaces which degenerate at some marked points. What “structure”
means, I don’t want to give a talk that is so general as to have no content. I want
to start with a framework, though. My favorite example are those of branched
coverings, where you’re studying the moduli space coverings which degenerate to
branched coverings. The other case is the case of Lefschetz fibrations. There’s
much more of substance you can say in the first setting. I’m hoping the symplectic
people in the crowd can tell me what you can get from the second situation, I’ll
give some information and you can tell me what it means.

So let M be a connected n-manifold, possibly with boundary, let (X, ∗) be a
connected pointed space, and choose c ⊂ πn−1(X, ∗) which is invariant under the
action of π1. Basically I want a subspace of the free classes [Sn−1, X].

With these assumptions, let the configuration mapping space CMapck(M,X) be
the space of pairs {z, f} where z ∈ Confk(◦M) and f : M\z → X. The function
f |∂Bε(zi) should lie in c, it’s a homotopy class of Sn−1 to M . So here Confk(◦M)

is tuples in Mk such that zi 6= zj modulo Sk.
Let me tell you how to topologize this space. One thing to note is thatHomeo(M,∂M)

acts transitively on Confk(◦M) as long as the dimension is at least 2. So Confk(◦M)←
Homeo(M,∂M)/Homeo(M,∂M, y) for y ∈ Confk(M). This map is a homeomor-
phism defined by taking the value on y.

There’s a bijection Homeo(M,∂M) × Mapsc(M\y,X) → CMapck(M,X) by

taking (g, f) to g(y), f ◦ g−1). The same argument tells me it factors through the
homeomorphisms that fix y. So we topologize the right hand side as this product.

There are variants, we can choose f to be based for a basepoint in the boundary
of M .

If I do it without the k, I mean the disjoint union over all k of CMapck.
What we’re going to focus on is the case that M is a surface and X is BG for

your favorite group. I want to at least give you some reason to care about these
spaces. If G is a finite group, then CMapk(M,BG) = {(z, f)|f : M\z → BG}. So
these are G-fibrations, so covering spaces over the complement with Galois group G.
There is an essentially unique way to fill in the covers to give a branched covering
space.

Another natural thing is to mod out by diffeomorphisms of M .
If I take G = Mod(Σg), then BG is the orbifold moduli space of surfaces of

genus g, because there’s isotropy on Teichmüller space. Now I want to restrict to
a specific set of conjugacy classes, positive Dehn twists. That’s c. I have the same
situation, notw CMapck(M,Mg) is pairs where f : M\z →Mg and this is a surface
bundle. Now I have X4 mapping via q ot M\z. This is a surface bundle over the
base. I can’t fill this in to produce a 4-manifold that maps to all of M , but I can do
it since c is only Dehn twists. I produce nodal fibers by collapsing the Dehn twist.
Then I get a Lefschetz fibration from X̄ to M with nodal fibers at z.
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Let me follow Kathryn’s model, who wants to see the definition of a Lefschetz
fibration? Probably the complement of those who wanted the definition of a sim-
plicial set. So q : X4 → M is a Lefschetz fibration if q,X, and M are smooth,
oriented, and there exist a finite number of critical points. On a neighborhood of
this q appears to be the map C2 → C sending (x, y) to xy. This is at best a con-
tinuous Lefschetz fibration. It’s probably the same as a smooth Lefschetz fibration.
If you have any wisdom, this isn’t algebraic, the map from algebraic into smooth
Lefschetz fibrations, if you know when that’s a homotopy equivalence or that it is
in a range of degrees, that would be really nice to know.

We’ll assume a couple of adjectives about these spaces. First, we’ll assume there
is at most one critical point per fiber, that it’s relatively minimal (no nodal S2 in
the fiber), that it’s irreducible (the pinched curve is non-separating). I want to
study the homology of these spaces Cmapck. What does the homology give me?
Characteristic classes for families of Lefschetz fibrations.

Let’s bring this down to earth and talk about the homotopy type, for M =
D2. The homomorphisms preserving the boundary are contractible. Fixing the
boundary and fixing my favorite configuration elements pointwise is the mapping
class group, and this is the kth braid group.

That was one of the ingredients of the topology on the configuration space. I also
needed maps (based now) from D2\y to BG. This is the homotopy type of a wedge

of circles, so this is Gk. If I want to restrict to c, this is ck. So the configuration
mapping space

CMapc,∗k (D2, BG) ∼= ck ×βk Eβk,

the Borel construction. This is a computable-looking right hand side. The homology
is the homology of a braid group with funny coefficients, if you pick a c and a k I
don’t know what to do. But I can say something stably.

So I need to talk about multiplicative structures.

Proposition 5.1. If I look at CMapc,∗(Dn, X), this is an En−1-algebra.

Why is this? Let me give you a picture proof. Well, En−1 embeds into En
equatorially.

It’s worth noting that CMapc,∗(Dn, X) is homotopy equivalent to the one where
the entire southern hemisphere maps to ∗. Let me take some of these, and I can
plug them into my swiss cheese, and say the function at any point is its value when
I project vertically to the boundary of the little disk.

There’s a variant of this that allows me to glue for other M . If ∂M 6= 0, then
CMapc,k(M,X) is a CMapc,∗(Dn, X)-module. Again, a picture should suffice.

This takes some work to set this up. I need two more definitions.
If V ∈ CMapc,∗(Dn, X), this has its set of components a monoidM = π0CMapc,∗(Dn, X).

Look at [V ] in M . This is called a central stabilizer if [V ] is in the center of M
and for every element m of M , there are m′ and m′′ ∈ M and k, ` ∈ Z>0 so that
mm′ = V k and m′′m = V `.

For any element, I should eventually be able to multiply to get to this stabilizer.
Maybe I won’t say straight away, these do exist in basically every example I’ve

looked at. Let me define one more thing. A(G, c) is the pushout of (L is my free
loops), well, LBG has a lot of components, it’s conjugacy classes, let’s pick the ones
from c. So it’s the pushout D2 × LcBG← S1 × LcBG→ BG (via evaluation).
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Theorem 5.1. (Ellenberg-Venkatesh-W.)
If CMapc,∗(D2, BG) admits a central stabilizer V , then

H∗(CMapc,∗(M2, BG)[V −1]) ∼= H∗Maps((M,∂), (A(G, c), BG).

The left hand side is a limit over V .

This crowd is probably fairly happy with function spaces, even if they’re function
spaces built out of function spaces. The homology is quite tractable for A(G, c).

I do ultimately want to say something, maybe I’ll shortcut through something
really quick, when we take G = Mod(Σg,1), then c are positive non-separating Dehn
twists, what do I get when I build this thing? The pushout is D2 × BC(Tγ) ←
S1 ×BC(Tγ)→Mg,1.

Here C(Tγ) is the centralizer of γ. So BC(Tγ) is almost Mg−1,3 but things line
up so it’s an S1 bundle over this. This looks almost like the very first layer of the
Deligne-Mumford compactification of Mg.

Maybe I’ll take two or three minutes. You can compute with Meyer-Vietoris
and Seifert-van Kampen that π1A(g, c) is zero and then that π2 is Z ⊕ Z. I want
genus at least four. Then these are the dual of κ1 and degree. This says that
π0(Map(D2, S1), (A(G, c), BG)) ∼= Z⊕ Z⊕Mod(Σg,1).

What this ends up proving is that, maybe I’ll finish by stating a theorem of
Denis Auroux and you can compare.

Theorem 5.2. (Auroux)
For g ≥ 3 there exist Lefschetz fibrations fAg , fBg , fCg , and fDg with V = fAg # · · ·#fDg
so that if f and f ′ are genus g Lefschetz fibrations without reduced fibres and the
same boundary monodromy, then there exist positive constants a, b, c, d, k, ` so that
f#afAg # · · ·#dfDg ∼= f ′#(a+ `)fAg #(b− `)fBg #(c+ k)fCg #(d− k)fDg .

That’s exactly what we’re getting, the boundary monodromy and the k and `.
My question is that, in principle we can compute things about the homology of

this mapping space. What do these invariants tell us about Lefschetz fibrations.
We can’t expect them to give us more than this theorem but perhaps they can talk
about families thereof.

6. September 2: Kathryn Hess, Part II

So, thank you all for your patience yesterday. Last time I told you about basic
simplicial things. I’m going to give you the payoff today. We’ll start with section 1b,
the Burghelea-Fiedorowicz-Goodwillie model. This article appeared in Topology in
1986 back when Topology was still a good journal in topology. Then there was
Goodwillie, 1985, also in Topology, who more or less simultaneously came up with
the same model. Research articles are often not as easy to read as syntheses that
come later. So I suggest you look at chapters 6 and 7 of Loday’s book. I’ll omit
some details and for the details you can look to Loday.

Recall that we have Z• from topological groups or simplicial groups to simplicial
topological spaces. This has an extra structure, a cyclic structure, an action of an
appropriate cyclic group. We have that Z•G is actually a cyclic space. I’m not
going to go into great detail about what this means, but in particular, the cyclic
group Z/(n+ 1)Z acts on ZnG for all n in a way that is appropriately compatible
with faces and degeneracies.
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If you want to see the exact formulas, you can look in Loday’s book, for example.
As a remark, a cyclic space can be seen as a functor from a category with multiple
different names, I’ll call it Λop → Top, where Λ has the same objects as ∆, it’s
the natural numbers, but the morphisms from m to n is a morphism in ∆ followed
by an element of the cyclic group. One thing to observe is that there’s a natural
inclusion of ∆ into Λ. We have this simplicial functor ι from ∆ into Λ.

Theorem 6.1. Geometric realization induces a functor | | from cyclic topological
spaces to S1 − Top, spaces endowed with an S1-action. I’ll give you a little sketch
of the proof. This inclusion of categories induces an adjunction between cyclic
topological spaces and simplicial topological spaces that looks as follows. ι∗ has a left
adjoint which I’ll call L. It’s a left Kan extension. It has this back and forth between
cyclic and simplicial topological spaces. It turns out that (LK•)n = Z/n+ 1Z×Kn

but the di and si are twisted by the group action.

It turns out that the geometric realization of LK• turns out to be homeomorphic,
well, there exists a homeomorphism from |ι∗L(K•)| to S1 × |K•|, where S1 =
|Z•+1Z|.

All right, so now what? Now let K• be a cyclic space. It has the simplicial
and cyclic structure. The point is that you get an S1-action on the realization
|ι∗K•| by looking at S1 × |ι∗K•| and running the homeomorphism backwards, this
is |ι∗Lι∗K•|, and there’s a natural transformation ε from Lι∗ → Id, the counit of
the adjunction, and you can use this to get to |ι∗K•|. This composite gives you an
S1-action.

This explains why it’s important to understand ι.
Henceforth I’ll drop ι∗. I’ll write geometric realizations without it. So in par-

ticular this means the geometric realization of the cyclic bar construction on a
topological group is, well,

Theorem 6.2. For any topological group G, there is an S1-equivariant map |Z•G| →
ΛBG that is a homotopy equivalence.

So it’s not an equivariant homotopy equivalence. Let me again give you a sketch
of the proof. So what do we do? We know that |Z•G| is an S1-space by the previous
theorem. That means we can consider the following composite:

S1 × |Z•G| → |Z•G| → |B•G| = BG

and then take the transpose of the adjoint of this map, and we get a map |Z•G| →
Map(S1, BG) = ΛBG. As I mentioned yesterday, there’s a really important fiber
sequence for the free loop space. We have the geometric realization of [unintelligble]
|Z•G| → |BG| and the fiber is |C•G|, the constant at G. So this is the fiber sequence
ΩBG→ ΛBG→ BG. Since you have these two fiber sequences with the same base,
then the other two maps, the total space is an equivalence if and only if the induced
map of the fiber is.

Now it turns out, I wanted to capture the nice structure on the free loop space.
It turns out that one can also see the power maps in here, not just the S1-action.
If there’s a question session this afternoon then maybe we can see the details.
Putting together work by Bökstedt-Hsiang-Madsen in Inventiones in 1993 and some
work that I’ve done with John Rognes, it turns out that there is a simplicial map
Z•G → Z•G, maybe I’ll call it λ̃(r), that is homotopy equivalent in its realization
to the usual topological power map.
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That’s the staritng point that lets us get to simpler simplicial models for the
free loop space. Now let’s start simplifying a little bit, move to the “Hochschild”
model.

This time I’ll start with a simplicial group, not a topological group. This is also
in the paper with John Rognes on the arxiv (it doesn’t have his name on it for
reasons that only he knows). We want a model for the free loops on the realization
of the classifying space of this group.

One remark before this definition,

Remark 6.1. Any time you have a fibration, the based loops on the base B have
a natural action on the fiber, the holonomy action, this twisting is what you do to
combine the base and fiber together. With the path space the holonomy is left or
right translation. Here the holonomy is conjugation.

This adds motivation for the definition here:

Definition 6.1. The simplicial Hochschild construction on G denoted HG• is the
simplicial set that we get by taking the twisted cartesian product W̄G• ×νG Ad(G•)
where Ad(G•) is G• seen as a G•-simplicial set via conjugation.

This looks like the right thing, it fits into a fiber sequence between G• and W̄G•
and we’ve glued together using the conjugation action. You prove that it is with
the following observation.

Proposition 6.1. Remember you have this sequence

c•G• → Z•G• → B•G•
and apply Artin-Mazur totalization and get this sequence

G• → HG• → W̄G•
and since we have that, it turns out that the geometric realization of HG• is ΛB|G•|.

We’ll use the fact from yesterday that |TotK•• ∼= |diagK••| ∼= ||K•|•|.

Remark 6.2. You can see the power maps here with no problem.

Now we simplify even further starting with a simplicial set rather than a simpli-
cial group, we’ll use the coHochschild model. I want a model for Λ|K•|. Keeping
in mind the holonomy action, we’ll use the other universal cochain, and the co-
Hochschild construction ĤK• = K•×τK• Ad(GK•). We again have a fiber sequence

GK• → ĤK• → K•

and we get

Proposition 6.2. There is a commuting diagram

GK• // ĤK•

��

// K•

∼=
��

GK• // HGK• // W̄G•K•
I gave you that the right map was a weak equivalence so the middle map is a weak
equivalence, so its geometric realization |ĤK•| ∼= ΛB|GK•| ∼= Λ|K•|.

Again, we can very easily model the power maps.



NANTES: LOOP SPACES 17

Remark 6.3. The power map λ(r) : ĤK• → ĤK• which takes (x, a) to (x, ar) is a
model of λ(r).

I was very briefly going to talk about one more model, a cosimplicial model this
time, the Jones model.

Jones in Inventiones, 1987, defined for X a topological space a cosimplicial object
whose totalization is the free loop space.

Definition 6.2. The Jones model for ΛK is the cosimplicial space J •(X) : ∆ →
Top given by Jn(X) = Xn+1. The coface maps are built using the diagonal (and a
cyclic action). The codegeneracy maps are given by dropping an index, by projec-
tion. It’s very easy to check this is a cosimplicial space. It’s got a cyclic structure
as well. If we apply totalization, we’ll get a cyclic space again. We get an S1-space
and can apply a similar construction to show that you get the free loop space.

Remark 6.4. There’s another functor, unfortunately also called totalization, from
cosimplicial spaces to spaces such that if you have a cosimplicial object which has
a cyclic structure, then TotK• is an S1-space. Using that and the fact that J •(X)
has a cyclic structure, we can use that cyclic structure, look at this totalization
and it turns out to be equivalent to ΛX. What one uses here is the fact that
J •(X) = Map((Z/ •+1Z), X).

I’ll stop there, thank you.

7. Richard Hepworth, string topology of classifying spaces

These are three lectures on string topology on classifying spaces. There are notes
on my homepage. If you want to not take notes but just read along on your device,
that might work. This subject began with a paper of Chataur and Menichi, these
talks are based on joint work with Lahtinen. Any mistakes I make or lies I tell are
solely my own.

I want to address the following question. Let G be a finite group. What is the
structure, the algebraic structure, of the homology H∗(BG) and the homology of
H∗(ΛBG)? I’m using Λ for the free loop space. These are the strings in string
topology. Homology is always taken with coefficients in a field F which I’ll suppress
most of the time.

The answer given by Chataur-Menichi is that they are part of a homological
conformal field theory. I don’t expect you to know what that means, but it’s an
algebraic structure governed by surfaces and their diffeomorphisms. This is the
standard answer in string topology (of manifolds, say).

The answer that Lahtinen and I gave was, we looked at the existing constructions
and realized that whenever you see a surface, you only need something that is pretty
much a surface, and a diffeomorphism is a homotopy automorphism. Our answer
is that they are part of a homological h-graph field theory. For the moment let me
say in contrast to HCFTs, these field theories are governed by things that are not
quite surfaces and their homotopy automorphisms.

To give you a bit of a preview, this homological h-graph field theory will allow
me to draw a picture of the standard pair of pants and that will give a product on
H∗ of the free loop space of BG. That’s the kind of thing you find in homological
conformal field theories. The homological graph theory lets me draw a trivalent
graph and get a product on H∗(BG). We can draw an interval with a loop at the
base and that will also give us a structure.
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If you look up the paper on the arxiv, you get a version where G is a compact
Lie group. For simplicity in this lecture I’ll use a finite group for simplicity.

The first aim is to tell you what a homological h-graph field theory is. Our
answer says those vector spaces are part of such a field theory. Finally, those of
you who are familiar with what happens in string topology. I’ll hopefully end by
explaining how we get some nonzero higher operations.

Now let’s start properly with H-graphs and h-graph cobordism. If you’re used to
things governed by surfaces, bear with me. I’ll tell you about a homotopy theoretic
replacement.

Definition 7.1. An h-graph is a space homotopy equivalent to a finite graph.

Example 7.1. A finite set is an example. A compact 1-manifold is an example.
A surface, compact, with boundary in each component, is an example.

In analogy with surfaces and 1-manifolds, h-graphs will be both our surfaces and
our 1-manifolds.

Definition 7.2. An H-graph cobordism S : X →/ Y consists of h-graphs and maps

X
i→ S

j← Y such that

(1) i t j : X t Y → S is a closed cofibration.
(2) i(X) meets every path component of S
(3) there is a homotopy cofiber square

A //

��

Y

j

��
B // S

where A has the homotopy type of a finite set and B is an h-graph.

Why do I impose these conditions? In order for spaces of homotopy equivalences
to have the right type you need to do something like this.

Example 7.2. Suppose we’re given S a finite graph, X and Y finite sets, and maps
i and j to S which are injections. Let’s also assume that this satisfies the second
condition. Then S determines an h-graph cobordism X →/ Y .

Suppose I take S to be an arc and X and Y to be points on the arc, at the
endpoints. This gives i : pt →/ pt. If I take S to be a Y -shaped graph, I get
m : pttpt→/ pt. I also get w from one point to two and c from a point to the empty
set.

Suppose we’re given a compact surface, a disjoint union of its incoming and
outgoing boundary such that the second condition holds, then I get an h-graph
cobordism from X to Y . I can take S to be the cylinder and I get I : S1 → S1. I
can take S to be the pair of pants and I get M from two circles to one. I get W
from one circle to two. Finally, I get C from a circle to the empty set.

I’m going to write down a word and don’t hate me for it.

Exercise 7.1. Find more.

I can do with these what I can do with ordinary cobordisms. I can compose
them. How do I compose? I just glue together. I can also take disjoint union.
More interestingly,
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Definition 7.3. Let S →/ Y and S′ : X ′ →/ Y ′. A two-cell ϕ : S ⇒ S′ consists of
compatible homotopy equivalences ϕX : X → X ′, ϕY : Y → Y ′, and ϕS : S → S′.

For example (c t i) ◦ w → i.

Exercise 7.2. Take ` to be the lasso, a line with a circle coming out of it. Take
d the dunce’s cap, the cone. These go from the poitn to the circle and back. Find
two-cells d ◦ `⇒ i, (d t d) ◦W ⇒ w ◦ d, and W ◦ `⇒ ` t ` ◦ w

Let S be an h-graph cobordism X →/ Y . Then hAut(S) is the topological monoid
of homotopy equivalences α on S such that α respects i and j. This is our analogue
of the topological group of all diffeomorphisms of a surface.

Proposition 7.1. The map hAut(S) → π0hAut(S) is homotopy equivalence. In
other words, the components are contractible and π0hAut(S) is a group.

Example 7.3. Let’s draw the second most simple h-graph cobordism, call it Q :
pt→/ pt The proposition tells us that we might as well study the π0. It’s the semidi-
rect product of the integers with {±1}. We let {±1} act on Z by multiplication.

Why do I get this? The group has two generators, the generator of the integers
and the generator of ±1. What does the generator of the integers do? It sends Q
to, well, it sends the circle to itself by the identity map, it sends the arc to the circle
plus itself. What does the ±1 do? It sends the arc to itself and it flips the circle.
It’s not terribly difficult to see that this map is an isomorphism.

Exercise 7.3. π0(hAut(cylinder)) is the integers.

Example 7.4. For S a surface, the map from Diff(S, ∂S) → hAut(S) is a ho-
motopy equivalence.

Example 7.5. If i modify Q so that it features a wedge of n-circles at its left hand
end, then π0hAut(Q) is FnnAut(Fn), the holomorph of the free group on n letters.

Suppose given a two-cell S ⇒ S′, I can cook up a zigzag

hAut(S)← H→ hAut(S′)

of monoid homotopy equivalences.
That’s the end of my first lecture, next time I’ll tell you something about building

them into a field theory.

8. Kathryn Hess, Part III

Now I’ll talk about chain complex models for free loop spaces, hopefully with
extra structure. I won’t talk about string topology operations, but you should be
able to see in the cohomology the structure not just as a vector space but the
multiplication.

Some of the chain complex models will be built in analogy with the simplicial
models, so I put some of the sequences, fiber sequences, up there.

Let me start again with some preliminaries. I won’t say what a chain complex is.
Let’s fix k a commutative ring, and tensor products will be over k. I’ll work with
the following three categories. Ch is the category of non-negatively graded chain
complexes of k-modules. I’ll work with Alg, which is the category of differential
graded k-algebras (η the unit and µ the multiplication), monoids in Ch, and I’ll
assume that they are connected, so that in degree zero it’s a copy of k and aug-
mented so with a map A → k. I’ll also work with Coalg, which is the category
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of dg k-coalgebras, counital. The counit is ε and the coproduct ∆. These will be
1-connected so C1 = 0 and C0 = k, and also coaugmented.

Given A ∈ Alg and C ∈ Coalg, a twisting cochain is a k-linear map of degree −1
t : C∗ → A∗−1 such that there is a Maurer-Cartan condition, so that dAt + tdC =
µ(t⊗ t)∆.

If M is a left A-module, that is, there is a chain map λ : A⊗M →M , associative
and unital, and N is a right C-comodule, that is, there is a chain map ρ : N →
N ⊗ C, satisfying dual conditions, so that n 7→ ni ⊗ ci, then there exists a chain
complex, the twisted tensor product N ⊗tM such that in degree n, it’s the usual
tensor product, (N ⊗tM)n =

⊕n
k Nk ⊗Mn−k where the differential is defined, you

have a standard way of computing the tensor product, but we’ll perturb this using
t, so Dt(n⊗m) = dNn⊗m± n⊗ dmm+ ni ⊗ t(ci) ·m.

We have this explicit formula for the twisted tensor product of these guys.
An important example is when A is a module over itself and C is a comodule

over itself. Then you can construct C ⊗t A which fits into something that kind
of looks like a principal bundle, A ⊂ A ⊗t C → C. It has the feel of a principle
A-bundle.

The next thing that I want to talk about is the bar-cobar adjunction. This
is analagous to the Kan loop group classifying space adjunction. This is old old
classical stuff.

Theorem 8.1. There is an adjunction Ω : Coalg � Alg : B, these are called cobar
and bar, and I’ll say something about what these things look like. So ΩC will be the
free algebra on the desuspended chain complex Ts−1C≥0, dΩ where the differential
is built from dC and ∆. Dually BA is a cofree coalgebra, splitting words in all the
ways you can, BA = TsA≥0, dB where the differential is built from dA and µ. This
is the cofree coassociative coalgebra.

If V is a graded k-module, then TV =
⊕

k≥0 V
⊗k.

Twisting cochains mediate as before in the simplicial setting.

Proposition 8.1. The k-linear maps tΩ : C>0 → ΩC, c 7→ s−1c and tB : (BA)≥0 →
A which takes a1 ⊗ · · · an to a1 if n = 1 and 0 otherwise, are twisting cochains and
mediate the adjunction:

Coalg(C,B(A)) ∼= Tw(C,A) ∼= Alg(ΩC,A)

If I have a map of coalgebras g, I’ll take it to tB ◦ g or an algebra map f goes to
f ◦ tΩ.

This adjunction plays nicely with homotopy in the sense that the adjoint give
us unit and counit, and C 7→ BΩC and ΩBA→ A are quasi isomorphisms.

This bar construction is some sort of geometric realization, you can do everything
in the previous lectures in the algebraic context, the bar is a realization and the
cobar is a totalization.

What is the topological significance? In various versions and with varying degrees
of extra structure, going back to Adams, Szczarba, Baues, and my work with others,
if you have a one-reduced simplicial set K•, exactly one zero and one simplex, then
there is a twisting cochain tK : C∗K• → C∗GK• (the C∗ is the normalized chain
complex functor to Ch, I’ll come back to it) such that the associated dg algebra
map αK : ΩC∗K• → C∗GK is a quasiisomporphism of algebras. We worked out
that it’s possible to make this actually respect the Hopf comultiplication as well.



NANTES: LOOP SPACES 21

One remark about this functor, so C∗ : sSet→ Ch behaves very nicely, it’s the
normalized chain complex, and if you have, it’s a free k-module in each degree, free
on the nondegenerate simplices of your simplicial set. This says that the cobar can
provide a nice model of the loop space.

The idea is to push this further now, find a model for the free loop space.
So the first thing to talk about is the Hochschild complex.
One can define this for ordinary fieldk-algebras. Define the Hochschild complex

as a functor H : Alg → Ch that is an extension, a twisted tensor extension of the
bar of A by A. So

HA = TsA>0 ⊗A, dH

which is a perturbation of the bar differential and the differential onA. So dH(sa1| · · · |san⊗
b) is dB(sa1| · · · |san) ⊗ b ± sa1| · · · |san ⊗ dAb but then perturb this by adding
±sa1| · · · san ⊗ anb ± sa2| · · · |san ⊗ ba1. We have an extension to a similar thing
to one of our fiber sequences, A → H(A) → BA, and let me also say that
HH∗A = H∗H(A) is the Hochschild homology of A.

Why should someone interested in free loop spaces care about Hochschild ho-
mology? The big theorem in [B-F, G, J] (all cited in previous lectures) is

Theorem 8.2. If X is a pointed connected topological space, then Hochschild ho-
mology of the singular chains of the Moore loops on X (a model which are lit-
erally associative), so HH∗(S∗Ω

MooreX) ∼= H∗(ΛX; k). If X is one-connected,
HH ∗ (S∗X) ∼= H∗(ΛX,k) as graded k-modules.

Remark 8.1. The key is the Eilenberg-Zilber equivalences, the shuffle, that gives
you S∗(X) ⊗ S∗(Y ) → S∗(X × Y ). I’ll be happy if someone asks to see this proof
in the questions session.

One more remark

Remark 8.2. There’s work by Ndombol and Thomas in 2001-2002 in which they
show that if k is a field and X is simply connected, there’s a strongly homotopy
commutative structure on S∗(X) which lets us get the product on H∗(ΛX; k) if
k is a field, so that we have an isomorphism of algebras. Further, Menichi in
2001 showed that if X is path connected, then you can turn the cohomology of the
Hochschild complex into H∗(ΛX) as algebras.

This is a chain model which is analagous to line number three, now let’s quickly
see one analagous to line number four, a coHochschild complex, sticking a “co” in
front of everything. Remarkably that makes things almost easier, this goes back to
Doi, Idrissi, and a paper I wrote with two others. I twisted an algebra and the bar
construction. Now we twist together a coalgebra and its cobar construction.

Definition 8.1. The coHochschild construction Ĥ : Coalg → Ch is built by twist-
ing together ΩC and C so that you have ΩC → ĤC → C, This is analagous to the
fiber sequence over a reduced simplicial set.

Let me define also ĤH∗(C) = H∗(ĤC). We’ll see if you do this appropriately
you get the homology of the loop space.
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The point is that if t is a twisting cochain it gives rise to a comparison system
that looks like this:

ΩC //

αt

��

ĤC //

γt

��

C

βt

��
A // HA // BA

and αt is a quasiisomorphism if and only if βt is if and only if γt is.
So as an example, apply this to tK• : C∗K• → C∗GK•. Then we know that

γK : ĤC∗K• → HC∗GK• so ĤH∗(C∗K•) is a nice chain model for the free loop
space.

Let’s take a little look at this and then stop there.
Why would one care about this particular model? This thing is C∗K (which has

finitely many generators) and you’re twisting it together with ΩC∗K. If you can
find a nice model for your space, this gives you a relatively small and computable
model for your free loop space. You can pick up the multiplicative structure and
power maps.

We have a natural chain equivalence ĤC∗K• → C∗ĤK• extending ΩC∗K• →
C∗GK•.

9. Somnath Basu: the closed geodesic problem for four manifolds

[Editor’s note: I was pretty tired for this talk, I apologize]
Thanks to all the organizers in what has been a very nice conference so far. I’ll

use LX for maps from the circle to X. This is based on joint work with S. Basu,
another S. Basu. We’re going to try to answer the question, let nT be the number
of distinct closed geodesics of length at most T in (M, g) (this is a Riemannian
metric). One needs to restrict the metric g that you want to put.

The question is the following. Usually my manifolds are simply connected and
closed. If (M, g) is a generic Riemannian manifold then nT grows exponentially. I
guess as I’ve stated it, it’s a conjecture of Gromov. He said something like this is
likely to be true. I’ll say more about what I mean when I say it grows exponentially.
The answer, the positive one, will be for 4-manifolds that are simply connected and
closed.

Before I begin, let me explain what I mean by “distinct.” Here we mean we
consider iterates and inverses the same, so they are considered the same if their
images coincide.

So that’s what we’re counting. If you look at the first simple example, trying to
count nT for (S2, gEuc), you see that you don’t see any until you hit ∞. You want
a number for each T and talk about how it grows. We’ll see a reason this is not
well suited is because gEuc is not a generic metric.

What is a generic metric? Whenever you see a closed geodesic, you get an S1 of
these by rotating. You should not be able to get anything more by moving them. I
should draw a picture in the free loop space, but what we need here is to restrict to
metrics g which are generic, satisfying the property that any closed geodesic gives
rise to S1 ⊂ LM and this is a nondegenerate critical submanifold.

It turns out by a result of [unintelligible] that these metrics are dense in the
Frechet space of metrics. There for each T you get a number and the question is
how fast this sequence can grow.
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One can imagine that you can try to answer this from the geometric viewpoint
or try to use algebraic topology.

Definition 9.1. A sequence of non-negative numbers {bi} has exponential growth
if there is a λ > 0 and c > 1 such that max{b1, . . . , bn} ≥ λcn for n > N . This is
basically equivalent to saying that b1 + · · ·+ bn ≥ µDn for some µ and D.

A key result relates the counting function nT to the Betti numbers of the free
loop space. In my notation, LM is the free loop space of M and so:

Theorem 9.1. Gromov 78, Ballmann-Ziller 82
For a generic metric on a simply connected manifold, we have the following in-
equality:

nT ≥ amax
j≤bT

bj(LM)

with a and b positive constants for large enough T (bj is the rank of Hj(LM,Q)).

Why is this good? It reduces the problem to the question of how fast bj(LM)
grows. How is this related to 4-manifolds or 5-manifolds in general.

There’s another thing that I haven’t quite mentioned. There’s a twofold generic-
ity, not only the manifold but the space should be generic. Given a simply connected
space, it is either rationally elliptic or rationally hyperbolic. We are interested in
the rationally hyperbolic ones.

Definition 9.2. Consider a simply connected space X with bounded rational co-
homology. In this setting, we say X is rationally elliptic if

∑
dimπj(X)⊗Q <∞

and rationally hyperbolic otherwise.

We want the space to be rationally hyperbolic. You choose your manifold and
then put a metric on it where that thing makes sense.

So a fact is, if X is rationally hyperbolic then you have a similar phenomenon of
exponential growth on the homotopy groups,

∑n
dimπj(X) ⊗ Q ≥ λAm for large

enough m.
So far, this sort of gives us a connection between πj(X) and the based loop space

which you want to go compare to the free loop space, and that passage is usually
not that obvious.

Theorem 9.2. (—,Basu)
The first one answers this question and the second calculates homology.

(1) nT grows exponentially for M4
K where M4

k is a simply connected closed 4-
manifold with H2(M,Z) ∼= Zk and k ≥ 3.

(2) There is an explicit formula for dimension of πj(M
4
k )⊗Q.

One might be tempted to say at this point, how do I obtain such a thing? One
could write down the Sullivan minimal model but that is very hard to deal with.

Lemma 9.1. (Well-known)
Basically it says that if you have a four-manifold of this type, not necessarily smooth,
you can assign to it a spin five-manifold, an S1-bundle Ek−1 over Mk. This should
satisfy

(1) Ek−1 is a C∞ simply connected closed spin manifold.
(2) H2(Ek−1,Z) = Zk−1.



24 GABRIEL C. DRUMMOND-COLE

One way to try to construct circle bundles, corresponding to H2( ,Z) which
are equivalences [missed some]

Let me assume that M is smooth, let me neglect the case where M is not proven.
So these are the same as maps from M to CP2. How do you make this spin? If
M is spin, then choose any α in H2(M,Z) which is part of an integral basis of
H2(M,Z). This gives me a map. Look at the corresponding f : M → CP2. Pull
back from CP2 to M .

I’m essentially pulling back the classifying map to the larger space.
Then there exists a nonzero element in ω2(Mk) 6= 0. Make sure this is part

of an integral basis so that the thing you get is rank one lower. Then choose
it so α mod 2 is w2. Then Ek−1 = f∗(S5). The whole action, why is it spin?
There are rather nice arguments, this is the second Stiefel-Whitney class. Then
TEk−1 = L ⊕ π∗(TMk). So this line bundle is a trivial bundle. We know that
these are stable invariants. And by construction this is π∗(ω2(Mk)). It’s 0 in both
cases. Why is this useful? There are theorems of Smale that say what these things
look like. The standard form is relevant for both these questions. So Smale has a
classification for simply connected five-manifolds.

Theorem 9.3. (Smale ’62) Any simply connected closed spin 5-manifold is diffeo-
morphic to #`(S2 × S3).

You read ` off of the rank of the homology group H2. Take all spin manifolds,
the Ek−1 only depends on `. So H2(M,Z) has dimension that determines πj(M

4).
Coming back to the two parts of the theorem, for bj(LM

4
∗ ), this grows exponen-

tially. if one has a handle on the Betti numbers of the manifold, you get a spectral
sequence for the 5-manifold and it gives you expenential growth.

The idea is that bj(LE
5
k−1) has exponential growth if and only if bj(LM

4
k ) does.

You can bypass the calculation or one can do this, but then you have to do some-
thing. You are pretty much done though by a result of Lambrechts, who says when
such connect sums have exponential growth.

Theorem 9.4. (Lambrechts 01) The quantity bj(L(M#N)} grows exponentially
fast if neither of M and N is monogenic.

You can apply this to the connect sum of spheres. You need k to be at least 2.
[missed].

Okay, so that’s a sketch of a proof. What about the last part? Some of you
might hate formulas, some might like them, I at least like this one. The rank of
πQ
n+1(M4

k ) is ∑
d|n

(−1)n+n
d
µ(d)

d

∑
a+2b=n

(−1)b
(
a+ b

b

)
ka

a+ b
.

The first few checks turned out to be right. It doesn’t factor into irreducible factors.
This is essentially the answer. As an easy corollary of this, it turns out that∑2n+1
j=2 πQ

j (M4
k ) ≥

√
k − 1

2n
. So this shows the growth.

So how do you prove something like this? Well, the main tool would be to look
at the based loop space and then try to calculate the rational homology of the
based loop space. We know that πj(ΩX) is πj+1X. There is a famous theorem of
Milnor and Moore that says that H∗(ΩX,Q) is the universal enveloping algebra of⊕
πj(X)⊗Q. Here the Lie structure is the Whitehead product.
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You compute using this the ranks of the homotopy groups which agree between
the four and five manifolds, then use some Koszul duality to calculate this in another
way and compare them to give the formula.

So define pV (t) =
∑
dim(Vi)t

i, then we can look at

p∧V (t) =

∏
odd(1 + ti)dim Vi∏
even(1− ti)dim Vi

and

pTV (t) =
1

1−
∑
dim(Vi)ti

.

Why is that useful? It turns out that we know what the dimension ought to
be using Milnor Moore. The generating function, the series for H∗(ΩE

5
k−1,Q)

will be the generating series for p∧L(t). This is the first part, the other part is

that H∗(ΩE
5
k−1,Q) is isomorphic to T (V )

I where V is an algebra generated by
x1, . . . , xk−1, y1, . . . , yk−1, where you have x in degree 1 and y in degree 2. These
are the generators of S2 and S3, shifted down. Then I is generated by

∑
[xi, yi],

this is the five-cell. You need a little bit of duality of algebras. Calculating the
generating series here is

pTV/I(t) =
1

1− (k − 1)t− (k − 1)t2 + t3
.

You solve for your dimesnions in terms of k and that’s what you get. This is
probably a good time to stop.

10. Thomas Kragh: A simple construction of the Fukaya Seidel Smith
spectral sequence

So, I’ll start with a little background. Let me fix some notation. So let N be
a d-dimensional closed smooth (oriented spin but we can play around, start with
Z/2Z coefficients). The cotangent bundle T ∗N has a canonical symplectic form
ω = −dλ and on the disk bundle this is a Liouville structure. A Lagrangian is
j : Ld ⊂ T ∗N such that j∗λ is closed (or ω pulled back is zero). So α ∈ Ω1(N) we
can look at its graph and that’s a Lagrangian in T ∗N if α is closed, exact if α is
exact.

The nearby Lagrangian conjecture says that these are essentially all of them, any
exact closed L ⊂ T ∗N is isotopic through exact Lagrangians to the zero section.
That’s the same as Hamiltonian isotopic. I won’t dwell on that right now.

There are a lot of results on this. Gromov had a result early on, then Lalond
and Sikorar, and later Viterbo proved something with spheres, but thene sort of,
one of the biggest results is:

Theorem 10.1. Fukaya-Seidel-Smith 2007; Nadler
If N is simply connected and L is spin, and the Maslov index is zero, then H∗(L) ∼=
H∗(N).

Their map is induced by the inclusion and then projection to N . They con-
structed a spectral sequence to prove this, it looks something like, on one axis,
well there are some Lefschetz fibrations, you make thimbles and filter things in the
Fukaya category and this gives a spectral sequence converging to the Floer homol-
ogy of something or another. You have a generator for each thimble on one axis,
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some sort of Morse complex and then Floer homology of your Lagrangian, well, its
tensor square.

In 2009, Abouzaid proved, took the ideas, gassed it up with local coefficients and
a lot of stuff, and proved

Theorem 10.2. If the Maslov index is zero, then L → N is a homotopy equiva-
lence.

Let me just finish this overview. I used another spectral sequence, motivated
by this one, this looked like a Serre spectral sequence but it’s not defined like this,
combined with Viterbo’s 1998 paper, I proved:

Theorem 10.3. (Kragh, 2009)
Up to a finite covering space lift of N , the map L→ N is a homology equivalence.
Combining with Abouzaid’s result, this proves that L ∼= N .

Before I explain this spectral sequence, I want to say a word about the Serre
spectral sequence and Morse homology. If you have a fiber bundle E → B with
fiber F and you want to talk about the Serre spectral sequence, one way of doing
this is to pick a Morse function on B and now this has a bunch of critical points. If
you plot E like a fat version, then you have entire fibers as critical manifolds. This
is Morse-Bott. If you take the function on the base to be self-indexing, then if you
have several critical points, you get disjoint unions of fibers as critical manifolds.
So if you filter the chain complex by cutting off at halves, you recover the Serre
spectral sequence.

What I’ll try to explain for Floer homology, this is done on an infinite dimensional
manifold and the function is the action integral.

So let L0 and L1 be exact Lagrangians in T ∗N . Then define FH(L0, L1), well, I’ll
give two definitions, so here’s definition one. Perturb L1 to L′1 which is transversal
to L0. Now define the Floer chain complex as Z[L0 t L1] with δ where the differ-
ential counts pseudo-holomorphic disks with corners in the intersection points.

So now this defines the Floer homology for the perturbation, and for some generic
compatible almost-complex structure J on T ∗N . This is to make sure that these
are isolated, the rigid holomorphic disks.

Let me now instead give you the definition I prefer. I’ll use both.

Definition 10.1. This is version two. Define the path space P (L0, L1) as the space
of paths I → T ∗N such that γ(0) is in L0 and γ(1) is L1. Then define A(γ) to be∫
γ
λ+ g1(γ(1))− g0(γ(0)). where gi is a primitive for λ|Li , a map Li → R.

So I define Floer homology as the Morse homology of the action, but we’d perturb
the action to make it Morse.

This is precisely what one does when one makes L0 and L1 transversal. The
generic J gives nondegeneracy even on the path space.

If you look at the equation that these strips satisfy, and think of it as I × R →
T ∗N , then the Cauchy-Riemann equation becomes the gradient equation. I prefer
this picture.

So Floer saw that taking a small perturbation of L with itself, you can ook at
FH∗(L,L)., this is isomorphic to H∗(L) which is nothing like the loop space (well,
it’s actually the same homotopy type but let’s pretend we don’t know that).

So then let me also mention that however much you isotope L0 and L1 it doesn’t
change things. So this only depends on isotopy classes of these guys. So the plan
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is to isotope L away from itself. I should have said that the FSS spectral sequence
converges to FH∗(L,L) which is isomorphic to H∗(L). So define Lt to be tL and
define L′t to be tL+ df . If you look inside the cotangent bundle of M , you’ll have
the zero section and you’ll be close to the zero section and very close to the graph
of df . When df is zero, like a critical point, you get all your intersections.

This was also where FSS began their train of thought. But then they got into
the Lefschetz thimbles instead, it has more structure. They were beginning to look
at FH(L,N), and then, well, that’s a longer story, so let me just define something
here that will help us with this spectral sequence. Let’s look at one of these critical
points for f . Then we’ll talk about the bunch of intersection points lying around
this critical point.

Let me argue that we can define a local Floer complex for Lt, L
′
t, f , and q. So

this will be free on intersection points near the critical point, with a differential.
you don’t want to include global critical points. You have one strip going there and
one going back. That’ll be bigger than some ε. By making t small enough, this is
well-defined.

So this defines the local Floer homology, and this looks a lot like what Nancy
was defining. That also happens in the Serre spectral sequence. That’s why you
get a copy of the fiber for each point in the base. The key point is to prove that
this local homology thing is in fact a local system. There are all these groups, in
the Serre spectral sequence, they’re all fibers of the same fibration. We need to
shaw that this is independent of q and f .

Lemma 10.1. This is independent of q and f except for a shift from the Morse
index of q.

How do you prove this? A sketch is that, when you argue that this is isolated, you
make some monotonicity argument, what goes on outside doesn’t matter. you are
still doing perturbative things. You get some sort of moving of negative directions.
I don’t think there will be. So now this is like a Serre spectral sequence.If we
assume π1(N) = 0 and the Maslov index zero, then you have a spectral sequence
ith LFH(Lt, f, q), and then nothing in the next vertical line and then a big lump.
The Morse complex is along the bottom. You pick a function with no index one
critical points. This works if the dimension is large enough (otherwise cross with
S6). You get two vertical lines of zeros near the beginning. You use some argument
to show that certain parts have to be zero below a certain range and certain parts
are zero above a certain range because this has to converge to the Floer homology
which has nothing below a certain level. By Poincaré duality, this has consequences
for homology above a certain level.

I should have said how this thing depends on the Morse index. If you do a birth
of a critical point. Because this is local they have to cancel. So they’re shifts of
one another by one.

So if one wants to soo whath this means, you have Z then 0 then something then
0 then Z. I have not proven that these differentials are the same as the ones they
were for the Morse thing. This is already very close to a homology equivalence.

If you didn’t know this, you’d actually know that, well, if the homology of N is
free, then you have a Morse function with this number of critical points. For L the
rank would be smaller but this can’t be for a degree one map. You see putting it
up against what you know about manifolds and degree one maps.
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It looks like some parts of L′t, you have a lot of intersection points. Look at their
grading and the Euler characteristic. Since the parity of Maslov index follows these
generators, this shows that χ is the square of the degree. I’ve not completely said
that this is the same as FSS’s fibers. If you look at one of these L, you have, well,
it looks a lot like it. You have the same Euler characteristic, but it’s just 1 and
then you get ±1.

What if π1(N) is not zero? How can one look then? In that case, one can go
to the universal cover. If one has L inside T ∗N , then going to the universal cover
you get L̃ ⊂ T ∗Ñ . Now we don’t know that L̃ is connected. But still this local
Floer homology up in the cover will be the same picture, you’ll have the exact same
picture. You have a projection. Everything works upstairs, things are periodic, but
now there’s one important thing. If you take a disk from one of these to another,
when this is lifted to the universal cover, the same monotonicity argument says it
cannot be lifted so it cannot close back at the same point. This says it’s got to be
the same as it was downstairs. Now the degree at least is finite. You have χ < ∞
so that the degree is finite. This recovers the result about the projection being
surjective, since the cokernel is finite.

Now can we get degree 1? If we look at T ∗N and take N̄ → N , the cover associ-
ated to the image of π1(L) inside π1(N), we look at this, because it’s associated to
the image, that means that L lifts to T ∗N̄ . But this is L×{1, . . . p}, the associated
cover there. If you assume this has degree k and this has degree p, then the lift has
degree k

p . Taking the lift again you’re back at degree k. Upstairs the Euler charac-

teristic, well, you get k2 is the Euler characteristic of the local Floer homology. So
this is, well, if you got to the universal cover, this is still p copies of L. This means
that the local Floer homology is in degree zero. We can use the same argument,
so that the Euler characteristic is just going to be the number of components. It’s
just p. That means that k2 = p. But the same formula downstairs tells you that
(k/p)2 = 1. Was that right? I confused myself a little bit but I think that’s right.
Now you’re back to homology equivalence if you believe that the differential is the
usual one, but very close if you’re not.

You need to do something for general Maslov index. So there you need to look
at product structures. The difficult part that I haven’t been able to solve in this
picture is the fact that this spectral sequence is going to be, is going to respect the
Serre spectral sequence. You have an algebra structure and know something about
grading. There you need a lot more structure and I don’t have time to talk about
it. So let me just stop.

11. September 3: Kenji Fukaya, Part II

Thank you very much. So in the first talk, after what I talked about in the first
talk, it was supposed to be an introduction. Today I want to talk more about how
we construct those maps. Today I want to do geometric [unintelligble] so I’ll use
the loop space and string topology. So q̂ will be a map we can cook up from a
chain model S∗X of X to the Hochschild complex CH(S∗L, S∗L). Now S∗L is a
Lie algebra with trivial bracket. The Hochschild complex is also a Lie algebra with
the Gerstenhaber bracket. I actually want to replace this with S∗(ΛL) where this
is a Lie algebra with the loop bracket.

The statement that there is an L∞ morphism is rigorously proved for the Hochschild
case but not when it’s replaced with S∗(ΛL). I’d like to prove this one but there
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is still some difficulty. One difficulty is constructing a chain level thing on the loop
space. There are even more difficulties. There is a map to de Rham homology.
There is a map S∗(ΛL)→ CH∗(Ω(L),Ω(L)) and this is easy to see, that this inter-
twines the loop bracket with the other bracket. This composition is constructed,
but not the map to S∗ΛL.)

Let A1 and A2 be chains of ΛL, then let’s look at the bracket, find (a1, a2, t) in
A1 × A2 × S1 such that `a1(0) = `a2(t) and define a map A1 ∗ A2 to ΛL by going
around a2 to the basepoint of a1, then going around a1, then finishing with a2. The
bracket is the commutator of this.

So q̂ : S∗(X)→ S∗(ΛL)⊗ Λ0, where Λ0 =
∑
aiT

λ
i

So q̂` : E`S∗(X)→ S∗(ΛL)⊗ Λ0. So E`C = C⊗`/ ∼ where a1 · · · a` ∼ ±aσ(1) ⊗
· · · aσ(`), so this is symmetric. You have a family of such maps, and the condition
that this is an L∞ homomorphism is the following. First of all, take this total sum⊕
E`C = EC. Then ∆ : EC → EC ⊗ EC is the unshuffle:

x1 ⊗ · · · ⊗ xn 7→
∑

ItJ={1...n}

xI ⊗XJ

If we have ⊕q : EC → C ′ then we can lift this to a coalgebra morphism EC → EC ′

uniquely so that π1q̂ = q. So if C is a Lie algebra, then you get a differential on

EC, where d̂(x1 ⊗ · · · ⊗ xn) =
∑
±{xi, xj}x1 ⊗ · · · x̂i · · · x̂j · · · kn Now q̂ is an L∞

morphism if and only if q̂ is a chain map.
So we want to cook up q` : E`(S∗(X)) → S∗(ΛL) ⊗ Λ0 so that q` becomes an

L∞ homomorphism.
The construction is by using pseudoholomorphic curves. So

∫
M1,`(β) is the

set of (u, z1, . . . z`) where u : D2, ∂ → X,L is holomorphic and has homology
class β, and zi are disjoint points in the interior of D2 modulo G where G is
the space of D2 → D2 biholomorphic and preserving 1. We have an evaluation
map M1,`(β) → ΛL taking u to u|∂D2. Once you fix the S1 part you get a
contractible choice. We want to fix the parameterizations in a consistent way. There
are another natural map M1,`(β) → X`. Here we take this cycle Qi, actually to
make everything rigorous we need to use a different model than the singular model,
but let me stay in the singular model. So (Q1×· · ·×Q`)×X`M1,`(β) =M1,`(β,Q).
So then q̂(Q) =

∑
β ev

∂M1,`(Q)Tω∩β .
The hard thing is transversality. After we are working on this for a couple of

years, my feeling is that the easiest way is to use de Rham theory. You have to use
infinite dimensional forms. But we can use iterated integrals to work out the de
Rham theory.

Okay, so this is the map, I want to explain why this is an L∞ homomorphism.
The main formula we need is how to understand the boundary. What is the bound-
ary of M1,`(β)? You know something about Floer theory, you know that there
were bubbling phenomena, sphere bubbling and disk bubbling. The former is codi-
mension two so you only need to worry about disk bubbling for the boundary.
[Picture].

So you see that this picture looks like a string bracket, splitting things into two
pieces. Suppose you take the comultiplications of this vector, then what we know
is that the boundary of q̂β,Q is∑

β1+β2=β,c

{q̂(β1, Qc,1), q̂(β2, Qc,2)}
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where this is the string bracket. You can see this in the picture.
If you see this formula and remember the definition, this exactly means that q̂

is an L∞ morphism. To make it work transversally is rather cumbersome.
What’s good about this, I need to mention one point, when I wrote EC, I

consciously do not write, well, usually you use E+C and start from ` = 1 but
maybe you want to start from ` = 0. In a similar way to the A∞ case you can
define a curved L∞ homomorphism. It wakes sense that this is a sense, but the
curved corresponds to E0. So you have q` : E`C → C so that q̂E+C → E+C

′ is a

coalgebra homomorphism and q̂d̂ = d̂q̂. If you have the same thing for EC this is
a curved L∞ homomorphism.

Now you have q0 : Λ0 → C ′, and d̂q̂ = q̂d̂ implies that ∂q0(1) + 1
2{q0(1), q0(1)} =

0. So q0(1) satisfies the Maurer-Cartan equation. So then q` is curved means you
can use this q0(1) to perturb C ′ to an L∞ algebra, then q1, . . . , q` is a usual L∞
homomorphism.

In our situation, our q0 is nontrivial, it is Λ0 → S∗ΛL ⊗ Λ0. so q0(1) is in this
loop space homology and satisfies Maurer Cartan.

This deformation theory relating this is the following thing. We have something
like a sum of Hom(ΩL⊗k,ΩL). This is a Lie algebra homomorphism. This is by
definition the Hochschild cochain complex. The Maurer-Cartan element in S∗ΛL
gives a Maurer-Cartan element of CH(ΩL,ΩL). Then mk is fk : ΩL⊗k → ΩL for
k > 2, is f2 + ±∧ : ΩL⊗2 → ΩL for n = 2 and f1 is ±d. You can see that mk

is an A∞ structure. This mk is Lagrangian Floer theory. So then since we have
this q, we have slightly more. We start from S∗(X) and then S∗(ΛL)⊗ Λ0. So we
get transformation of Maurer Cartan elements, so Maurer-Cartan elements on the
singular complex of X give deformations for this A∞ algebra. Since the bracket is
trivial, the Maurer-Cartan equation is easy, the solutions are ∂q = 0. Any homology
class deforms the de Rham complex of L to an A∞ algbera (curved). This is the
story of bulk deformations.

Let me just say a few words about what happens in the non-compact case. If
you replace singular homology with symplectic homology, you can put Hamiltonian
perturbations near the boundary, and this was dealt with by some people and
you can get an L∞ homomorphism from symplectic homology to loop space and
Hocschild homology. What’s different in this case, in the compact case the Lie
algebra on the ambient homology is trivial. In symplectic homology you have non-
trivial bracket so that the Maurer-Cartan equation is non-trivial. Then the elements
you have go to the Maurer-Cartan elements and deformations on the Hochschild
side.

12. Nancy Hingston, Part II

I refer you to a very nice paper by Alex Oancea, the title is Morse theory, closed
geodesics, and something about the free loop space. Here are some nice results.

(1) There exists at least one closed geodesic on any sphere or projective space.
I’ll outline a proof.

Definition 12.1. A circle on Sn is the intersection of Sn with a 2-plane,
not necessarily through the origin.

This also includes the point loops of the sphere.
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We’ll also be interested in the set of all circles beginning at ∗ with the
tangent vector v, a fixed v. This is the cycle A, it has dimension n− 1. If
you take (A, ∗), that represents a nontrivial element in H∗(Λ,Λ0) the free
loops modulo the constant loops. If you change the metric on the sphere,
you still get this thing. You can’t shrink these all, so for any metric, the
critical level of this homology class is positive, so there’s a closed geodesic.
There exists a closed geodesic γ with the length of γ the critical value of
this homology class A.

(2) There exist at least three simple closed geodesics for any metric on S2.
There’s a very nice story, but the basic idea is that you look at the three
parameter family of circles, if you look at the space of circles, there have to
be at least three homology classes and, well, there’s a beautiful idea behind
this and it’s often true in this field, it takes a while to work out the details.
It originally appeared in 1929 and there were people working on it over the
years and in 1989 we had a complete proof, by Grayson, who finished this
up. He went to Wall Street since.

(3) There exist infinitely many closed geodesics for any metric on S2. This is
a long story. It started off with Birkhoff. We need at least on simple one.
There’s a part by Bangert, by Franks, for finishing this up, and with my
method you get a growth rate. lim inf nT

log T
T > 0. That’s the best so far.

(4) There are infinitely many closed geodesics for a generic metric on Sn (also
projective space). Some names are [missed]-Takens, Hingston, Rademacher
(who had a better proof than mine)

(5) There are Finsler metrics with finitely many closed geodesics. These are
due to [unintelligible]

(6) There exist at least two closed geodesics on any Finsler S2. This is due
to Bangert and Lang using my results. This looks like a miserable number
but it’s sharp by the previous examples.

(7) It’s also known that there are greater than or equal to 1 close to the standard
metric. If you look at the topology of the Morse Bott, close to the standard
metric you will not go far. There are various results like this.

So Dennis has said, there should be an algebraic topology proof that there are infin-
itely many closed geodesics on the sphere. This led to this question of mine. You’ve
got lots of homology classes, but you can’t distinguish between closed geodesics and
their iterates. So a question is, is there an algebraic operation on H∗(ΛM) which
corresponds to iteration?

The answer is sometimes. In some critical cases, yes. This brings us to products
on loop spaces. We’ll start with the Pontryagin product. This is a product from
Hj(Ω) × Hk(Ω) → Hj+kΩ. Assume you have two “cycles” which I’ll pretend as
subsets of the loop space. These are sets of loops with base point at the basepoint
of the manifold. Take the homology class of [X] × [Y ] to be [{α · β}] for α in X
and β in Y . So let me do some examples on Sn. A lot of you have seen this. But
let me do some examples.

I already did the class A. You do all the circles going through A with direction
v. You can also take U , the constant loop. Let’s compute some products. What is
[A] ∗ [U ]. It’s [A] again. So [U ] is the identity element in the Pontryagin ring. So,
what’s [A] ∗ [A]? It has degree 2(n− 1). It’s not zero, and in fact it’s a generator of
the Pontryagin ring. The Pontryagin ring is Z[A], so [A]n 6= 0, so A is non-nilpotent.
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What about the critical levels? For the standard metric the critical level for U
is 0. The critical level for A is 2π. What’s the critical level of [A ∗ A]? It’s 2π.
Here’s an exercise, [A ∗A] ∼ [B], the cycle of all circles beginning at ∗. In fact, it’s
true that the critical level of [A]2m−1 is the critical level of [A]2m is 2π. So we say
[A] is level-nilpotent. But its level-nilpotent because the level drops. This is the
statement that Cr([A]N ) < NCr([A]) for some N .

The next product I want to talk about is the Chas-Sullivan product. The Chas-
Sullivan product is on the homology of the free loops. Again, assume we’re given
cycles, so X = {a} and Y = {b}. Now we’re in the free loops. A cycle will just
be a set of points or will be a submanifold. We’re going to assume that the base
points of X are transverse to the base points of Y . Then [X] ∗CS [Y ] = [{α ∗ β|α ∈
X,β ∈ Y, α(0) = β(0)}].

We take α then β, the same product, but we do this when they have the same
base point. If you take a j-dimensional class and multiply it by a k-dimensional
class, you lose n, the dimension of M .

Let’s add some more cycles. There’s this beautiful cycle C which is the set of all
circles. This has dimension (3n− 2). We also have E, the set of all trivial loops on
the sphere. What is [C] ∗CS [E], it will be another copy of [C]. So [E] is the unit
in this ring.

What about [A] ∗CS [A]? This is 0. If you take anything from the based loops
and take a Chas-Sullivan product, you get 0 because you pull them apart and you’re
parameterizing the empty set.

One more computationg. What is [C] ∗CS [U ]? It’s [B]. It is a fact that [C]m is
nonzero. What does [C]m look like? A composition of m circles at that basepoint.
It’s non-nilpotent and also level-non-nilpotent. In other words, the critical level of
[C]m is m2π. It’s true that multiplication with [C] is injective on homology. It’s
true that the homology ring, H∗(Λ, ∗CS) is finitely generated. The Chas Sullivan
ring was computed for spheres and projective spaces by Cohen, Jones, and Yan, in
2002, and they used the spectral sequence of the fibration of ΛM over M with fiber
ΩM .

The transversality condition in the definition is hard to deal with. One definition
is due to Cohen and Jones. This is the idea. In the simple, beautiful examples, the
guy C is automatically transverse to everything. So the computations are easy to
do.

There’s a Morse-Bott-Samuelson connection. If you look at A, B, C, E, U ,
with their products, Morse drew all these pictures. He would have recognized all
these pictures. Especially powers of C, you can see them in Bott and Samelson on
manifolds all of whose geodesics are closed. I first encountered the Chas-Sullivan
product in 2005. I was sitting in the lunch room at the IAS and I heard someone
give the definition and I said “I know that product, Morse knew that product” and
then I said “Where’s the other product?”

There’s this recurrent symmetry, everything I’ve ever seen using closed geodesics
looks like Poincaré duality. For a finite dimensional manifold this asserts an iso-
morphism between HK(X) and HN−K(X). You can’t have something like this for
an infinite dimensional manifold, but if you think of turning the free loop space
upside down, the homology is generated by Morse relative chains. These are the
things that go into the spectral sequence. The cohomology is generated by infi-
nite dimensional upward facing chains. In a finite dimensional manifold, you can
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reverse a Morse function and everything is flipped around. The function f should
go to −f and the index to the coindex and you get this seemingly very non-trivial
correspondence. I’ve never known it to fail. I’ll give some examples of this next
time and judge for yourself whether you believe in this principle or not.

13. Richard Hepworth, Part II

Remember I was asking about the algebraic structure of H∗(BG) and H∗(ΛBG).
The answer is that they are part of a homological h-graph field theory. The first aim
is to ask what these are. The second aim is to ask what this homological h-graph
field theory is, and finally to give some nonzero higher operations.

So we had some examples, some coming from graphs, these all go from points
to points. We have more traditional things coming from surfaces with boundaries.
We have the rest, the strange and wild remainder. We have genus one from a point
to a point. We have a lasso from a point to a circle, from a circle to a point, and
there’s one from two circles to one by identifying the outputs of two cylinders.

Okay, so if I take homotopy equivalences that fix the input and output pointwise,
if it’s a surface, it’s Diff of the surface. We did the interval with a loop, which is
Zn {±1}. The cylinder has Z. You can get Asn,k studied by Hatcher and Wahl by
looking at appropriate diagrams. That was last time. So moving on, homological
h-graph field theories.

Definition 13.1. An HHGFT φ consists of

(1) A symmetric monoidal functor φ∗ : h − graphs, homotopy equivalences →
grV ect. The symmetric monoidal structure on the left is disjoint union.
On the right it’s graded vector spaces. The second part of the data is

(2) for each h-graph cobordism S : X →/ Y , a map φ(S) from H∗(BhAut(S))⊗
φ∗(X)→ φ∗(Y ).

This should be compatible with two-cells, composition, disjoint union, and iden-
tity. I won’t write these things down, I heard someone else say this, I’m sorry and
you’re welcome. It’d take a board, you’d be bored, let’s not do it.

In our case, φ∗(X) will be H∗(BG
X). What does the second thing do for us?

It’s a rich algebraic structure on these vector spaces. Another point of view is that
what this does is allow you to study H∗(BhAut(S)). These groups contain many
interesting things. They contain diffeomorphisms of surfaces, holomorphs of free
groups. Those things are largely mysterious, and this lets you study. So if you had
a homology class and wanted to study it, you could ask whether it gives a non-zero
operation.

Definition 13.2. The degree 0 operation associated to S : X → Y , called φS :
φ∗(X)→ φ∗(Y ) is defined as φS(a) = φ(S)(1⊗a) where 1 is the standard generator
of H0(BhAut(S)).

Let me add something that I forgot to say. I said that φ∗ is a symmetric monoidal
functor. Let me add that this gives vector spaces φ∗(X) for all X and isomorphisms
between φ∗(X)⊗ φ∗(Y ) to φ∗(X t Y ).

Example 13.1. The value of φ∗ on a point is a commutative non-unital Frobenius

algebra. It has a product, φ∗(pt) ⊗ φ∗(pt) ∼= φ∗(pt t pt)
φm→ φ∗(pt). Similarly, the

coproduct is

φ∗(pt)
φw→ φ∗(pt t pt) ∼= φ∗(pt)⊗ φ∗(pt).
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I also have

φ∗(pt)
φc→ φ∗(∅) ∼= F.

Definition 13.3. Let S : X →/ Y and σ ∈ Hi(BhAut(S)) with i > 0. The
associated higher operation is φ∗(X)→ φ∗+i(Y ) defined by a 7→ φ(S)(σ ⊗ a).

For example, the BV operator ∆ is the higher operation associated to the gen-
erator of H1(BhAut(cylinder)). Now let’s get to string topology of BG.

Theorem 13.1. (H-Lahtinen)
There is an HHGFT φ with φ∗(X) = H∗(BG

X). For example φ∗(pt) = H∗(BG)
and φ∗(S

1) = H∗(ΛBG).

I’ll give you an idea of how to construct the operations. Then I’ll say how to
compute what’s going on here.

Let me give a sketch construction of φ(S) : H∗(BhAut(S)) ⊗ H∗(BG
X) →

H∗(BG
Y ). The zigzag X → S ← Y gives BGX ← BGS → BGY . This has a

parameterized version. The homotopy automorphisms of S act on all three spaces.
In the middle they do something nontrivial. I can attempt to do a Borel construction
and try to get a zigzag lying over BhAut(S). Since it acts trivially on S, I get

BhAut(S)×BGX α← BhAut(S)×tw BGS
β→ BhAut(S)×BGY . The ×tw doesn’t

correspond to a definition, it’s the name of a thing we’re doing. The homotopy
fibers of α are finite since the group is finite. Then there is a transfer map α∗ :
H∗(BhAut(S)×BGX)→ H∗(BhAut(S)×tw BGS).

So φ(S) isH∗(BhAut(S))×H∗(BGX)→ H∗(BhAut(S)×BGX)→ H∗(BhAut(S)×
BGY ) → H∗(BG

Y ). That after stepping back is the rough construction of the
string topology operations.

Tomorrow I’ll make an extremely explicit recipe for doing this, saying what these
things are explicitly. To do that I’ll use a little bit of language or notation about
homotopy quotients.

There’s a big theory of homotopy quotients and I’ll tell you a tiny little bit of it.

Definition 13.4. Let G be a discrete group and X a G-set. The homotopy quotient
is called X//G and is the Borel construction EG×X//G where G acts diagonally.

This construction is functorial in the pair X,G, where a map of such pairs is
a map of groups and an equivariant map of sets. All these spaces BGX will be
homotopy quotients.

Here are some examples.

Example 13.2. For X a point, we have pt//G = BG. A different example is, basic
G-sets are cosets of H, (G/H), the ideal orbit with stabilizer H. The quotient there
is (G/H)//G = pt//H = BH. The homotopy equivalence comes from (pt,H) 7→
(G/H,G). If I start with an orbit, I get B of the stabilizer of the orbit.

In general, if X is arbitrary, then I can decompose it into the disjoint union of
its orbits tGx and the disjoint union runs over representatives of the orbits. The
orbit stabilizer theorem tells me that Gx is isomorphic to G/Gx where Gx is the
stabilizer. Then X//G = tGx//G ∼= t(G/Gx)//G ∼= tBGx. For a given choice of
X I told you how to represent this as a disjoint union of classifying spaces.

I think I’m going to overrun. I’ll just stop now.
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14. Denis Auroux: Monotone Lagrangian Tori

Theorem 14.1. There exist infinitely many different families of monotone La-
grangian tori in R6.

The following is not due to me but to Vianna and also Galkin-Mikhalkin,

Theorem 14.2. The same is true in CP2.

Why is this new? What is a monotone Lagrangian?
A symplectic manifold is a manifold of dimension 2n with a closed nondegenerate

2-form. A Lagrangian is a middle dimensional submanifold on which the form
vanishes. In the flexible world of symplectic geometry, the Lagrangian is one of the
few irons to probe the symplectic with some kind of rigidity.

My focus for now will be on R2n with the standard symplectic form. What can
I say about compact Lagrangian submanifolds. It’s a classical result of Gromov
that necessarily L must bound a holomorphic disk of positive area. For example,
this implies that π1(L) cannot be 0. You can ask for other conditions, what kind
of topology is possible in R2n?

The simplest examples are tori. I can build a torus S1(r1) × · · ·S1(rn). Any
simple closed curve in R2 is a Lagrangian submanifold. Isotopies by which the area
is preserved can make this into a round circle of whatever appropriate radius. So the
theorems should be understood to mean via Hamiltonian isotopies and rescaling.

How can we come up with more interesting examples? There are things like
connect sum and interesting things about what manifolds can be embedded in
R2n. I’ll ask how many ways I can fit Lagrangian tori in a symplectic vector space.
That’s an interesting question, but it will be algebraic topology, very disappointing,
if you allow all isotopies. In dimensions eight and above, there exist examples of
topologically knotted Lagrangian tori. In lower dimension no examples are known.
So the question is whether we can have exotic phenomena, things that are smoothly
isotopic but cannot be moved to each other that preserves areas of disks.

I want to impose the condition of a monotone Lagrangian torus. So what is
monotone. If I have a disk β in π2(M,L), then there are two quantities I can
associate to that. One is the symplectic area

∫
β
ω. It doesn’t matter where I am by

Stokes’ theorem and the condition. The other quantity is the Maslov index µ(β)
which is an even integer. If I have a map u(D2, ∂)→ (M,L), I have u∗TM → D2.
Over the boundary of the disk I have a loop of Lagrangian subspaces in R2n,
looking at u∗TL. Now π1GrLag(R2n) = Z. One way to think of this is that this
is U(n)/O(n). This is some sort of rotation number. You ask how many times
does my line rotate and become nontransverse to a given direction. For orientation
reasons this will always be even. The standard disk I draw has Maslov index 2.
The Maslov index is defined by u∗TL.

What’s the condition of being monotone? It means that these two linear maps
are, well, the symplectic area is positively proportional to Maslov index.

This is a condition that comes up in various places. One place it comes up is Floer
homology. It helps making things better behaved. One reason this is interesting is
that classification of monotone Lagrangians turns out to be much more interesting
than non-monotone Lagrangians. I can look at the real torus in CPn. These will
be Lagrangian. Only one is monotone, which has equal sizes in every direction. If I
return to a product of circles in Cn, which ones are monotone? Disks in one factor,
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what is its area, it’s πr2, what is the Maslov index? 2. So I need all the radii to be
the same, that’s necessary and sufficient.

Besides this symmetric condition, another thing is that monotone Lagrangians
are often not displaceable. In CPn that seems to be the case.

We have one family of monotone tori, and that was it for a very long time.
Then Chekanov found another example, different in the sense that it is not isotopic
through monotone Lagrangians to a product torus, in R4.

It’s actually an explicit construction, let me explain it in one of its many in-
carnations. This might be the only other monotone torus in R4, I don’t have any
evidence except that people have tried and failed.

I can map C2 to C by taking (x, y) 7→ xy. So what does this map look like?
It will look over most points like xy is a constant. When xy = 0, it looks like
two complex planes joined at a point. I want to draw, in each of these fibers is
a preferred circle where |x| = |y|. There’s an S1 action which rotates x in one
direction and y in the other.

Take your favorite simple closed closed curve downstairs in C, not enclosing the
origin. Take all the equatorial circles in the fibers. This is Lagrangian. A small
calculation shows that it is Chekanov torus. You can always rescale these. Why is
this different from the usual ones? How do you see the usual ones in this picture?
What are the products of the two circles in this picture? They are circles including
the origin. The ones outside are isotopic via non-monotone Lagrangians to the ones
outside, so there’s more to monotonicity than meets the eye.

The invariant I want to use is a count of mimimal area holomorphic disks
bounded by L. I mean the smallest area holomorphic disk or the smallest pos-
itive Maslov index. That’s the same as Maslov index 2 disks. Why is this an
invariant and what does it mean precisely?

I’ll be in Cn for simplicity. This satisfies the holomorphic equation ∂̄u = 0. If
you’re a symplectic geometer, you can give an almost complex structure but you
want your differential to be complex linear with respect to your almost complex
structure. You also want to have [u∗D

2] = β for some fixed β in π2. We’ll quotient
by something and I’ll call thisM1(L, β). If these were disks, I’d allow holomorphic
reparameterizations. I’ll only allow those which preserve a marked point at the
boundary of the disk, say +1.

If transversality holds this will be a manifold of dimension n − 2 + µ(β) so for
µ(β) = 2, this has dimension n. Then monotonicity ensures that M0,1(L, β) is
a closed manifold which has no boundary because there can be no bubbling. I’m
looking at the smallest possible area so I can’t split my area into two pieces. That’s
the technical reason that monotone is nice.

If L is oriented and spin, then this is also oriented. The other thing I should tell
you is about a natural evaluation map. Then I can look at deg(ev :M0,1(L, β)→ L)
which is nβ(L) ∈ Z. If I don’t have transversality, perturb a bit. In practice
the standard complex structure is always regular but in general you can make an
argument that this is invariant of perturbation.

Okay, so nβ , β ∈ π2 such that µ(β) = 0 are invariant under monotone isotopies.
Okay in R4, I have standard product torus, there are two classes in S1 × S1,

either D2 × pt or pt×D2.
If you take the Chekanov torus you only have one class with nβ = 1.
For R4 this is all we know at this point.
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Let me jump ahead to R6. You can do S1×Chekanov, which gives you two fam-
ilies. You can do products and you have three families. You can look at something
similar to Chekanov, (x, y, z) and look at the map to xyz and this gives a family.

There are also monotone twist tori from Chekanov-Schlenk. These tori seem to
bound fewer families of disks. In fact, the claim is that in R6 you can build infinitely
many.

How am I going to do it? I won’t construct it for you in R6? I’ll do it in a
different manifold that’s the same, X = {(x, y, z, w) ∈ C4 such that xy = h(z, w) =
10zn + 1

10w − 1} where here 10 is your favorite number bigger than one (maybe

bigger than three or so). This has the restriction of ω0 from C4. These are sym-
plectic demormation equivalent. In particular, arbitrarily large bounded subsets
are symplectomorphic. Why are they the same? You can solve for w. You can
think of this as C3, complex diffeomorphic anyways.

How do I build a torus in there? I use a projection map in there, project to C2

in the z and w coordinates. What’s going on above a general point? I have xy
equal a number, so I get a cylinder. I get some branch curve, my fiber looks like
this singular surface. I have again a family of cylinders. What is the claim? If I
take a monotone Lagrangian torus, I can lift it and get again a Lagrangian torus. If
it were monotone in the reduced space that upstairs one will be monotone. Simple
constructions like this did not exist, this is just an indication of how immature
symplectic topology is. I’ll draw Tred some torus. My numbers were chosen, my
reduced torus is (isomorphic to) the product of unit circles in R4. It’s a monotone
Lagrangian torus. Then my favorite torus will be (x, y, z, w) so that |x| = |y| and
(z, w) ∈ Tred. I’m lifting the torus downstairs back to the space by taking the
equatorial loop in the fibers. [Something very quick about why you want to use an
isomorphism for Tred.]

Proposition 14.1. T is a monotone Lagrangian torus which bounds holomorphic
disks of µ = 2 in n+ 2 different classes and the total count is 2n + 1.

In particular, if you do this for many n, then you get different classes.

Remark 14.1. The case n = 0 is S1 × Chekanov. The case n = 1 is likely the
product torus.

The projection of a holomorphic disk is again a holomorphic disk. We know that
in R4 you bound two kinds of holomorphic disks. How many ways can you lift back
to X? Every time you pass a singular fiber you get a choice, independently in each
point. The other one doesn’t interstect the curve at all.

So that’s all I have to say about R6. Let’s talk quickly about CP2. So in CP2

the classical monotone torus is the Clifford torus but you have to choose the size
right. What do I want to say? The Clifford torus is the set of points (x : y : z) so
that |x| = |y| = |z|. It bounds three families of disks, disk times point, point times
disk, and a third one from the other chart.

There is a Chekanov torus as well. In R4, this bounds fewer but here you bound
more, here actually five. So my student Vianna a couple of years ago constructed
one that bounds 10 families with the total number of disks 41. Where do these come
from? There are toric degenerations to weighted projective spaces CP(a2, b2, c2) for
all a, b, and c such that a2 + b2 + c2 = 3abc, called Markov triples. What is the
structure of Markov triples? They’re related by mutations. Replace one with, well
(a, b, c) 7→ (a, b, 3ab − c). Inside this you have an orbit which is monotone, all you
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need to do is deform it back to get a monotone thing in CP2. This will very quickly
get more complicated. The Clifford torus is in (1, 1, 1). The next one is (1, 1, 4).
The next one is (1, 4, 25). These come in infinite families.

It’s not unreasonable to conjecture that in CP2 this is the complete list. I think
I should conclude now.

15. Mohammed Abouzaid: Untitled

I see that there wasn’t a background on Floer theory. You can interrupt if you
want. The setup I care about is that I have smooth closed manifolds that I’ll call
Q and I want to look at its cotangent bundle. This has moment coordinates q
and p and I’ll write the Liouville form λ = pdq =

∑
pidqi and this is a symplectic

manifold with ω = dλ =
∑
dpi ∧ dqi.

What additional ingredient do we need to define Floer homology? It’s AH :
LT ∗Q→ R given by

AH(x)

∫
x∗λ−

∫
S1

H ◦ xdt

Floer noticed you can do Morse theory here. Critical points are time −1 Hamilton-
ian orbits. Associate to H : T ∗Q→ R the form dH, and then you can dualize with
ω to get a Hamiltonian vector field XH , so x is a map S1 → T ∗Q with dx

dt = XH .
So you can make H time dependent and then you add t to all your H. This is

the setup for most definitions of Floer homology.
We should take gradient flow lines between critical points. I can just see what

those loops trace out. So gradient flow lines in the loop space of the cotangent
bundle correspond to cylinders in T ∗Q with certain asymptotic conditions. The
asymptotic conditions are given by these Hamiltonian orbits. In fact, the gradient
flow equation corresponds to the holomorphic curve equation, meaning that writing
our cylinders as S1×R, saying this is (t, s), then we pick an almost complex structure
J on T ∗Q and require that u : S1×R→ T ∗Q satisfy the equation ∂u

∂t = J ∂u∂s −XH .
The point is that, if I had no XH , this would intertwine little j on the cylinder with
big J , but the Hamiltonian twists this. The main warning is that in general this is
not well defined as a “Morse homology.”

[Picture example].
Here these coordinates are zero by inspection, but you could do the following

stupid thing, remove a small neighborhood of one of these and it’s still a Morse
function, it’s an open manifold but d2 is no longer zero. If you think about the
geometry, the geometry, in the proof that d2 = 0 you look at one dimensional
trajectories, you are looking at things that, you prove the boundary are these
specific situations that appear algebraically. Here there is some other thing that
appears in the boundary of the moduli space, which is a curve that, well, you have
to say something about compactness in order to be able to say something about
manifolds with boundary.

So pick a Riemannian metric, require that H = b|p| is not the length of any
closed geodesic outside a compact set.

The symplectic form gives a diffeomorphism between the tangent bundle of Q
and the cotangent bundle of Q. The Riemannian metric gives us a geodesic flow.
On the other hand I have the flow of the, the Hamiltonian flow of norm |p|2. This
diffeomorphism intertwines these two flows. The presence of a geodesic of length b
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gives you a time one flow line of norm p2. By using linear growth with this slope,
I get exactly the geodesics of length b, but I get infinitely many copies of them.

In the linear case I use rescaled geodesic flow.
[Picture].
In particular, if there were a geodesic of length b, you get infinitely many periodic

orbits of the flow XH . They’re sitting on top of each other.
Okay. So any questions? Whenever I say geodesics, I mean closed geodesics.

Is that okay? Fine. Whenever you encounter this, I think it’s relatively natural
to expect that the Floer homology of this Hamiltonian which is something we can
write down, we can define to avoid the bad phenomena Viterbo expected, the Floer
homology of such a Hamiltonian, HF (T ∗Q,H), where H has this “slope” b, is
isomorphic to H∗LbQ, where this is the subset of the loop space consisting of loops
whose length is less that b.

This is not a critical point of the length functional so there’s no bifurcation
crossing b. Maybe my lectures will be boring becaus what I’m focusing on is the
fact that this is true but with sign. Kragh noticed that this was not quite right,
and Seidel formulated something that was correct, that this works if Q is spin, and
I’ll talk about what happens in the non-spin case. My main goal will be to explain
what is the answer in general. Today is “what is the answer?” Next time is how to
prove it?

Okay. Questions. No? Well, before giving the answer, if you take the limit
as b → ∞ of the homology of the loop space, of course you get the homology of
the loop space itself. The limit as the slope goes to ∞ is called the symplectic
cohomology of T ∗Q. There are many definitions in the literature of the group.
This is convenient for constructing various algebraic structures and minimizing the
amount of analysis that needs to be done. This was originally introduced by Floer
and Hofer, but this version was introduced by Viterbo.

So there are statements whether or not Q is oriented.
Okay.
[Back and forth about homology versus cohomology.]
Before going further, what are we going to construct? We can start by saying in

complete generality, it’s only Z/2Z-graded. That’s how it comes in nature. On the
other hand, the homology of the loop space is Z-graded. So why is there a difference?
We need to use the special feature of cotangent bundles that 2c1(T ∗Q) = 0. The
next thing you have on the loop side is that S1 acts on the loop space. So we
obtain a degree +1 operator on this homologically graded thing. So we also have
a nice circle action on SH∗. To define it we’re supposed to count cylinders. By
considering marked points, we should call them asymptotic markers on the cylinder
which moves in a circle, you get something, you always have a ring structure on
SH∗ given by pairs of pants. If you use the natural way to lift the Z/2Z grading
to a Z-grading, this is not compatible with the product if c1 is not zero, if Q is
non-orientable.

There is also something fishy about the product on the loop side. Laudenbach
extended Chas and Sullivan’s product structure to one on the homology of the
loop space with coefficients in the orientation line of Q, and I’ve pulled back the
orientation line by evaluation.

But that’s not the group with S1 action. This does not have the S1 action.
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You see that this won’t work out in the non-orientable case. You can try to fix
the problem on the string topology side by considering w : LQ → {0, 1} be the
orientability function. This is 0 on orientable loops and non-orientable loops. I
can look at the homology of the loop space but H∗(L(Q), |Q|⊗1−w). The fantastic
thing is that this has a product and a circle action. It looks like something you
could compare to symplectic homology. It does not satisfy the usual axioms. This
usually gives a BV algebra structure, it’s a twisted one.

That’s a little bit unfortunate because on the symplectic side with the usual
Z/2Z-grading, it’s got an honest BV structure with no twisting, but it can’t be
lifted to Z.

Theorem 15.1. If w2(Q) = 0, then there is an isomorphism of twisted BV algebras
between H∗(LQ, |Q|1−w) and SH∗(T ∗Q) where the Z grading on this does not lift
the Z/2Z grading. It fails to lift in a totally explicit way. Instead of lifting in the
natural way, you subtract 1 from the nonorientable components.

I should stop. Next time I’ll discuss the nonorientable case.

16. September 4: Abouzaid, Part II

Let me correct some conventions I said about other peoples’. One way to fix
conventions is to say that there are German conventions, where the symplectic
homology of the cotangent bundle is isomorphic (up to the corrections we’ve been
talking about) to the homology of the free loop space. These are used by Floer and
Hofer and others.

Then there are French conventions, used by Viterbo, Seidel, etc., and in these
conventions, the symplectic cohomology of the cotangent bundle is H−∗LQ. I use
n− ∗.

It may appear strange that we have different conventions. One reason it’s easy is
you start studying it on compact manifolds. There it satisfies Poincaré duality. So
H∗(Q) ∼= Hn−∗(Q). Over a field you would not know what you are doing if you’re
using a closed manifold. If you leave the compact world it makes a difference.

The second thing, I wanted to say something about Z2 gradings. I want to say
something explicit. I didn’t work this out when I was working out the whole theory.
I wasn’t planning to do computations. This specific example was explained to me
by my student J. Zhao. Look at nonorientable geodesic in a Riemann surface of
negative curvature. I want to identify two things flipping the surface. Look at the
cotangent bundle of the surface and there’s a Hamiltonian flow coming from the
geodesic flow. There is a time one orbit, which gives you a generator of 4SC(T ∗Q),
the complex computing symplectic cohomology.

If were discussing loop homology, this would contribute in degree 0. In the
symplectic theory we need to compute the Poincaré return map. The grading, take
this return map and count the Z2 grading in Floer theory. Count the number of
eigenvalues of the return map that lie in the interval (0,−1). When you compute
this you get, you split the tangent space as the direction along and the direction
normal to the geodesic. You get something like eiθ

−eλ 0
0 −e−λ
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So how many eigenvalues are there in that range? There’s only one. The contri-
bution is in odd degree. But in ordinary homology it’s in degree zero. So there’s a
degree mismatch.

Now I want to talk about the orientable case. First I want to use some terminol-
ogy. I’ll say that a local system of rank one on the free loop space is transgressive
if the corresponding class lies in the image of H2(Q,Z2) → H1(LQ,Z2). There’s
a natural map in the other direction, H1(LQ,Z2)→ H2(Q,Z2). If you try to take
the Serre spectral sequence for the loop space, it’s this kind of guys.

Now my claim, which I’ll try to elaborate on a little bit. Maybe I should call
it a theorem but it doesn’t deserve the name theorem. If ν is a tarnsgressive local
system on LQ, then you can make a group SH∗(T ∗Q, ν), and you can also form
Hn−∗(LQ, ν), and these are both BV algebras. As far as I know, this is a question,
the definition that I use, relies on this, but the question is, does the BV structure
depend on the choice of a lift to H2(Q,Z2). Let’s think of it on the loop space. Of
course you can compute loop space homology with twisted coefficients.

How do you construct these? There are two ways of constructing these theories.
Let me focus on the symplectic side. The first one is a brute force construction.
It has the advantage of being the most explicit. Fix a cycle V in T ∗Q represent-
ing a class v in H2(Q,Z2) = H2(T ∗Q,Z2) which is our lift of ν. When you go
through the definitions of Floer cohomology, in defining the Floer complex, I will
assume or rather choose the Hamiltonian generically so that all time one orbits are
disjoint from V . The complex is generated by orbits. The differential is obtained
by counting cylinders. There’s some recipe for counting the cylinders from x to y
with some recipe for signs if you’re doing usual Floer theory. Now you twist the
sign contribution of every cylinder U : R × S1 → T ∗Q by the intersection number
with V . This is one way of defining the group SH∗(T ∗Q, ν). This is how you twist
the differential. Then you can twist every operation in Floer theory in exactly the
same way. We can define a product by counting pairs of pants. If you twist what-
ever signs you encounter by looking at what happens when you intersect with V ,
it works, so on and so forth.

This was the brute force method. There is also the more theoretical method.
It’s easier to describe the more theoretical method if we make a couple more as-
sumptions. Assume that v ∈ H2(Q,Z2) is the second Stiefel-Whitney class of E
where E is an orientable vector bundle on Q. I can do this in general. If you know
a little bit about topology, you can prove that on the three skeleton of Q you have
such a vector bundle. Let’s just assume we have such a global vector bundle. Then
there is a very nice way of describing the local system on LQ corresponding to the
transgression w2(E). It has fiber at a loop X : S1 → Q, I can pull back E and now
every vector bundle on S1 is trivial. You form the local system generated by the
two stable trivializations with the relation that the sum vanishes.

If you have a local system, you have these fibers, but you can also compute
monodromy. The monodromy around a loop in LQ is +1 if you can take one
trivialization and extend it across the whole family of loops, that is, if E is trivial
on the corresponding torus. It’s −1 otherwise. That’s how you make the connection
between this point of view and the previous point of view.

Now how will I use this? The different point of view is, instead of defining, let
νE be this local system. By abuse of notation, I will write this as a local system
on LT ∗Q. Remember that when we define Floer homology of T ∗Q, it came from
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an action functional on the loop space of T ∗Q. When you do the twisted theory,
the generators, the complex that you use is the direct sum over all orbits (time one
orbits of some Hamiltonian) of the fibers of the local system at that point. This
is a rank one free Abelian group. How do we get a differential? There’s a recipe
for associating signs to holomorphic cylinders. You can (more importantly from
our point of view) use parallel transport to move our local system from one end
to the other. You can make this explicit. We have this vector bundle, if I fix a
trivialization at one end, I can move it to the other. The same works for curves with
many inputs and one output. If I just knew I had a local system on the loop space,
I wouldn’t know hat to do in this case. I have some x1, x2, and x3 going to y, and
I map this to T ∗Q. The one skeleton could be these loops plus the arcs connecting
them. If I fix the trivialization on the three loops, then you get a trivialization on
the one loop. So then you get a map νE |x1⊗νE |x2⊗νE |x3 → νE |y. The theorem is,
for any local system we have an isomorphism between the symplectic cohomology
SH∗(T ∗Q, ν) and Hn−∗(LQ, ν ⊗ νTQ). If we fix v in H2(Q,Z2) which lifts ν, then
this is an isomorphism of BV algebras.

17. Richard Hepworth, Part III

My aim today is to tell you something about how to do computations and give
examples of nontrivial higher operations. Here’s how to understand spaces like
BGX . Here’s a definition.

Definition 17.1. A set of basepoints for an h-graph X is a finite subset P ⊂ X
such that P meets every component of X.

Definition 17.2. Let X be an h-graph with basepoints P . Then GP is the group
of all maps g : P → G.

Π1(X,P ) is the fundamental groupoid of X with objects P .
Now GΠ1(X,P ) are functions from Mor(Π1(X,P )) → G such that f(δγ) =

f(δ)f(γ) when this makes sense.
Now GP acts on GΠ1(X,P ) via (gf) = g(q)f(γ)g(p)−1.

Example 17.1. Let X be the circle S1 and P = {1}. In this case, GP ∼= G under
the map g 7→ g(1).

If I choose my favorite generating loop γ, then Π1(S1, p) has only the one object
1 and the morphisms are γn for n an integer.

So what’s GΠ1(S1,P )? It’s isomorphic to G via f 7→ f(γ).

In this case the action of GP on GΠ1(S1,P ), let’s have a look, gf(γ) = g(1)f(γ)g(1)−1,
which becomes conjugation.

We see from the theorem I’m about to state that BGS
1 ∼= Gad//G, which is well-

known. This is the disjoint union over the orbits of the action of the classifying
spaces of the stabilizers. Here, these are the centralizers so this is tBC(h) over
one h in each conjugacy class.

Theorem 17.1. (H-Lahtinen)
This is not a massive surprise, it took some work to get it the way we wanted it.
There is a natural zig-zag of homotopy equivalences

BGX ↔ GΠ1(X,p)//G.

Okay, how to compute operations.
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Remember that the interesting bits of my field theory are , for S : X →/ Y a
morphism, to compute φ(S) : H∗(BhAut(S))⊗H∗(BG∗)→ H∗(BG

Y ).
So choose basepoints P ⊂ X and Q ⊂ Y and look at the terms in the domain

and range of that map and write my combinatorial models of them.
So for exampleBGX becaomesH∗(G

Π1(X,P )//GP ) andBGY becomesH∗(G
Π1(Y,Q)//GQ).

I’ll replace H∗(BhAut(S)) with H∗(BAs) where As = π0hAut(S).
So I’ll call this replacement ΦS . So what is this? It’s

H∗BAs⊗H∗(GΠ1(X,P )//GP )
×→ H∗(G

Π1(X,P )//As×GP )
α∗→ H∗(G

Π1(S,P )//As×GP )

β−1
∗→ H∗(G

Π1(S,PtQ)//As×GPtQ)
γ∗→ H∗(G

Π1(Y,Q)//GQ)

where I’m using both sets of basepoints because a priori I have basepoints on the
left and on the right and they fight.

The maps come from the diagram

GΠ1(X,P )//As×GP GΠ
1 (S, P )//As×GPαoo

GΠ1(S,PtQ)//As×GPtQ

γ

))

β

OO

GΠ1(Y,Q)//GQ

You can see that β is an equivalence so I can invert it. This still looks very messy so
how do I deal with this? I choose orbit-reps and so then β is an actual isomorphism
and I can invert it, don’t have to mess around. In this setting α∗ is a group transfer
map and γ is induced by homomorphisms.

Any questions? In the question session this afternoon I could try to carry out
this procedure in some example.

Example 17.2.

• ((
66 •

Here I’m looking at S : pt →/ pt and φ(S) : H∗(BAs) ⊗ H∗(BG) → H∗(BG). It
turns out that the group, which I said was Zn{±1} is the free product of two copies
of Z/2Z. One of these acts trivially and the other one doesn’t. So let me replace it.

H∗B{±1} ⊗H∗BG→ H∗BG

So here ±1 acts on S by flipping strands. Call this map ψS. I’ll tell you what Ψ(S)
is.

I need some notation. We have ±G acts on G by (ε, g) · h by sending it to ghεg.
So you are conjugating either h or its inverse. The orbits of these things are called
extended conjugacy classes. The extended conjugacy class includes the conjugacy
class of the inverse. The stabilizer is called the extended centralizer Ce(h). If h is
not conjugate to its inverse, it’s just the centralizer. If it is conjugate to its inverse,
it contains two copies which are the same size.

There’s a map ξh : Ce(h) → {±1} × G which is inclusion. There’s also ηh :
Ce(h) → G which sends (1, g) → g and (−1, g) → hg. Why is this a homomor-
phism? I have no idea.
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Then Ψs is

H∗(B{±1})⊗H∗(BG)
×→ H∗B({±1} ×G

⊕
Bξ∗h→

⊕
H∗BC

e(h)
⊕
Bηh∗→ H∗BG.

I’d love to show you how this follows from what was written above but there’s not
time, I’m afraid.

Let’s take G = {±1}. Then let’s work this out.
I start with H∗(B{±1}) ⊗ H∗B{±1} → H∗(B({±1} × {±1}). What are the

extended conjugacy classes of ±1 ? Each extended conjugacy class contains one
element and there’s two of them. So H∗(BC

e(1)) and H∗(BC
e(−1)). I take their

direct sum, and map both to the homology of B{±1}. For the former it’s Bη1
∗ ◦Bξ∗1

and for the latter it’s Bη−1
∗ ◦Bξ∗−1.

So the centralizer is the whole group, it’s H∗B{±1}. The transfer Bξ∗1 is the
identity map. The same is true for the centralizer of −1. What does η∗ become?
Recall that ηh(1, g) = g and ηh(−1, g) = hg. So g is my second variable, ±1 is my
first variable. So η1(1, g) = g, and η−1(ε, g), well, let me just give the answer. η1

is prjection on the second variable. The first factor doesn’t do anything. So η−1

becomes the addition map. Everything looks like it’s the same, trivial, but we get
two different things. What happens? Let F be the field of order 2. then we have
F2[a0, . . . , ]⊗F2[a0, . . . , ]→ F2[a0, . . . , ] and this sends ai⊗aj, the first one to aj if
i = 0 and 0 otherwise. The second sends me to ai+j if i and j have disjoint 2-ary
expansions and 0 otherwise.

So for all i > 0 there are infinitely many j such that ai ⊗ aj 7→ ai+j. Here
in string topology where we’re accustomed to higher operations being trivial, the
simplest cobordism, the simplest automorphism, the simplest group, give us infinitely
many nonzero higher operations.

One final remark, Lahtinen has shown that the situation is similar for products
of cyclic groups of order two, for certain dihedral groups, for S1, and for SU(2). I
think this is a nice outcome. We find nontrivial structure everywhere.

H∗B({±1} × {±1})
Bη1∗

((
H∗B({±1} × {±1})

Bξ∗1

44

Bξ∗−1 **

B({±1})

B({±1} × {±1})
Bη−1
∗

66

becomes

H∗B({±1} × {±1})
Bπ2

((
H∗B({±1} × {±1})

id

44

id **

B({±1})

B({±1} × {±1})
B+

66

.
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18. Mohammed Abouzaid: Part III

I made basically two statements, one about what happens in the nonorientable
case and one about an isomorphism for the orientable case.

How do you prove these things? At the level of homology, ignoring the BV
structure, I know six different maps between these spaces. The first is due to
Viterbo, the second due to Salamon-Weber. The third is [unintelligible]-Schwarz,
the fourth is Cieliebak-Latschev, and then two more maps } and V. I’m confident,
even though I won’t talk about all of these, that any of these will be able to do
the same things. From my point of view the Cieliebak-Latschev is best to get the
BV map. The second and third are most convenient for checking you have an
isomorphism (there’s a bijection between generators for the chain complexes and
the flow lines for the differentials) while in those that I prefer use degenerations of
moduli spaces.

Let me start by describing Cieliebak-Latschev.
Recall that the definition of the Floer homology of T ∗Q with respect to the

Hamiltonian H, this used maps R× S1 → T ∗Q with asymptotic conditions on the
orbits of the H. The basic idea of the map is that instead of doing R × S1 we no
consider [0,∞) × S1. We think of this as a positive half-cylinder and what you
can do on the half-infinite end is put your Hamiltonian orbit. On the other side
you impose Lagrangian boundary conditions and make your Lagrangian be the zero
section.

There’s a distinguished starting point of your Hamiltonian orbit. Follow along
this and you get a distinguished point on Q. This gives me a moduli space. I’ll
call this M(X). It’s the space of things like this that also satisfy an equation that
I won’t write down.

The main feature of this is that it has an evaluation map M(x) → LQ which
sends u to u|0×S1 .

Let me draw a schematic picture for what’s happening. [Picture].
What you basically want to say is, in general, by doing the usual things we do in

Floer theory (by choosing perturbations), we can ensure that M(x) is a manifold
with boundary and that the boundary is basically obtained by the inclusion—well,
I should be a little bit more careful, the boundary is stratified by things like this.
Top dimensional strata areM(y)×M(y, x), whereM(y, x) is the moduli space of
cylinders.

[Picture].
If we don’t worry about orientations, life is straightforward at this point. If we

use a chain theory where “degenerate” chains don’t contribute, then you observe
that the evaluation map can be restricted to the boundary ev :M(y)×M(y, x)→
L(Q) which cannot give you any contribution unless M(y, x) consists of points
(has dimension zero). Why is that? In either case, this evaluation map factors
throughM(y). With Z2 coefficients, we get a chain F(x) := ev∗[M(x)] which lives
in C∗(LQ) and this satisfies, because the only contribution to the boundary, the
boundary ∂F(x) = F (∂x), since this is the Floer differential which counts rigid
M(y, x). Only the zero dimensional ones contribute so you get a chain map.

If you want to work with Z-coefficients you have to orient things, and you get
that M(X) is naturally oriented relative to the pullback ev∗ of some local system
on the loop space. That local system is νTQ ⊕ |Q|1−w. That is, we have a natural
equivalence to |TM(x)|. So you should evaluate into the loop space with twisted
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coefficients. These were discovered independently, where does this come from?
You try to see orientations of holomorphic curves and the first time it appeared
explicitly in the literature was in Vin de Silva’s thesis (you have to go to Oxford and
find it) and also was done by FOOO’s book, which worked out the corresponding
orientations for holomorphic disks, and this was not different.

Are there any questions before I continue? So. I will continue. Whatever
construction you do, this ensures that all the moduli spaces I will be drawing are
naturally oriented. There was really no reason to prefer Cieliebak-Latschev’s point
of view. We can see very easily that the map is compatible with operations. By
the way I assumed everyone knows what a BV algebra is. I said there exists an
operator ∆ of degree one, in my theory of degree +1 on SH∗. I won’t give it in
detail but it basically corresponds to moving the starting point of X : S1 → T ∗Q
along the circle.

If you do that, how do you define this evaluation, follow this starting point along
the cylinder. If you move the point on the right, you move the point on the left.
You draw this picture, I’m not even sure what to say, if I move the point once
around, then the point downstairs will also move once around. This is the proof
that ∆ ◦ F = F ◦∆. This is the proof as long as these moduli spaces are oriented.

The proof for the product requires a nontrivial cobordism and is more interesting.
We want to show that F( x ∗ y︸︷︷︸

pair of pants

) = F(x) ∗ F(y)︸ ︷︷ ︸
Chas-Sullivan loop product

.

So let’s start with the pair of pants and then look at the half-cylinder. We take
x and y, we look at the moduli space, get z, and then look at the moduli space and
evaluate at a base. We glue them and get a moduli space of pair of pants that only
involve x and y. It loks the same but we have the Lagrangian boundary on Q. One
has punctures and this has boundary.

Now the claim is that this is just one boundary of this moduli space. This is
the part where these go infinitely far away. You can model this in different ways,
think of x and y getting very close together. Instead let the saddle go down to
where the Lagrangian lives. The other boundary is there. [Picture]. If you arrange
it correctly, you see that this is what will happen, if you have chosen perturbations
that were sufficiently generic, if ev :M(x)→, let me say this is ev0 now, evaluation
at the marked point. Say ev0 : M(x) → Q and ev0 : M(y) → Q are transverse,
then the other boundary stratum is the fiber product M(x) ×QM(y). The fiber
product has its own evaluation map to the loop of Q, where you follow the loops.
The assertion is that the moduli space I’m drawing in the middle, P(x, y) is a
cobordism between M(z)× P(z, x, y) and M(x)×QM(y). This equality holds at
the level of homology.

The main question is why this map is an isomorphism. Once you have a map
of BV -algebras, you only have to check it on the linear part, we just have to build
left and right inverses. I won’t check that these are [unintelligible] maps. You get
something up to sign. At some point you figure, why bother checking it directly.

Okay, so what’s, here’s a different kind of map that will use Lagrangian Floer
theory, V (named for Viterbo). It will go from the homology of the loop space to
symplectic cohomology. It’s better to think of it as going from the homology of
the part of the loop space in which the length is bounded, which you can model by
piecewise geodesics. What is this LrQ. Assume that the injectivity radius of Q is
bigger than 4. So LrQ ⊂ Qr, which you should think of as d(qi, qi+1) < 1. This is



NANTES: LOOP SPACES 47

a submanifold of Qr. How do I want to go from a chain, what do I want to do with
this? The main observation is the following. Pick a function h : R → R that has
the following properties. I want h′ to grow from zero to two. What will I do with
h′? I’ll do what I did last time, I’ll take h of the norm, consider h(p, q) = h(|p|),
why do I consider this? If I look at a cotangent fiber at a point q and at q′, I
want to flow along the Hamiltonian flow of h, so I get something like this picture.
[Picture]. What I see is a unique intersection point here. If the distance between
q and q′ is less than one, there exists a unique intersection point of T ∗q′Q and the
image of T ∗qQ under flow. So there exists a unique Hamiltonian chord of Xh with
these boundary conditions, that the cotangent fiber of q and the cotangent fiber of
q′.

So what will I do with these chords? Before I had orbits, but now I have chords
built in. The sequence of points, I can put Lagrangian boundary conditions on
each on of these points. My asymptotic conditions are orbits, between these I want
to put these chords. [Picture]. I’ve drawn a Riemann surface. I can put x at the
bottom which is a Hamiltonian orbit. This means that for any point in the space
of piecewise geodesics, there’s something to study. We can then do this for families
of points. Given a cycle Y ⊂ LrQ, we get a moduli space R(x, Y ) for all orbits x.

This gives a chain map, the evaluation gives a chain map from Floer, from
homology of the geodesic space to, my product will take five minutes of the question
session and why the composition of this map with the one I described earlier is an
isomorphism.

19. Ralph Cohen: Calabi-Yau categories, string topology and the
Floer field theory of the cotangent bundle

I do not take notes during slide talks.

20. Alexander Berglund: Loop spaces and Koszul algebras

This talk will be very algebraic, I don’t know if that’s a good thing or a bad
thing.

The goal of the talk is to try to see how to compute loop space homology H∗(ΛM)
using Koszul algebras.

We’ve certainly heard a lot about loop spaces, let me slowly review the Koszul
algebras. Let me discuss the relation between formality of dgas and Koszul algebras,
then present some calculations.

Okay, so these were introduced by Priddy in 1970 and since then a lot has
happened. If you want some references, this is close to the presentation in Loday–
Vallette’s algebraic operads. It’s late and I’ll keep this elementary, I’ll talk only
about associative algebras, which will be enough for free loop spaces.

What is a Koszul algebra? It’s a kind of quadratic algebra, TV/(R), with k a
field. Much of this works integrally if you’re torsion free but let’s work with a field
for simplicity. Here V is a graded vector space, either cohomologically graded and
concentrated in degrees 2 and higher or homologically graded and concentrated in
degree 1 and higher. So the relations should be within V ⊗ V .

Example 20.1.

H∗(BT 2) = k[x, y] = T (x, y)/xy − yx
with x and y in degree 2.
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If we look at the bar construction on such an algebra, we say BA is a tensor
coalgebra on the suspension of A, the augmentation ideal, with a differential b, so
(TsĀ, b).

This is bigraded by weight and the bar length. For instance, in my example,
the elements of the bar construction might look like [x|xy], which has weight 3, the
sum of the polynomial degrees, and the bar length is 2.

Then the way the differential works, I have something in degree zero and stuff
on the diagonal and above the diagonal, and the differential goes to the right.

In general it’s hard to compute the homology of the bar construction but in
general, well, you can look at the homology of the diagonal, call that A¡, which is
the kernel of the differential intersected with the portion where the weight is equal
to the bar length. This sits inside the bar construction BA. This will not be all of
the homology in general but it’s computable because, if you take the linear dual of
the coalgebra you get an algebra A! and that admits a quadratic presentantion of
the form T (s−1V ∗)/R⊥. What do I mean by R⊥? A pairing between V ∗ and V
extends to (V ∗)⊗2 ⊗ V ⊗2. So 〈α⊗ β, x⊗ y〉 = ±〈α, x〉〈β, y〉.

In the example, the Koszul dual, the quadratic dual of my algebra is T (α, β)/(α2, β2, αβ+
βα), which is the exterior algebra on α and β. So these are degree 1 things.

To answer Richard’s question, with wishful thinking, if the homology is concen-
trated on the diagonal, let’s give that a name.

Definition 20.1. A is Koszul if the inclusion A¡ → BA is a quasi-isomorphism.

Will this ever happen? Checking this, you’d have to calculate the bar construc-
tion. If I compose this with the universal twisting cochain from BA → A, I get
a twisting cochain A¡ → A. This composite pulls back, it’s a twisting cochain κ.
Then you can form the twisted tensor product.

Proposition 20.1. A is Koszul if and only if A¡ ⊗κ A is equivalent to k.

The proof is, think of this as an A-bundle. You have

A // A¡ ⊗κ A

��

// A¡

ψ

��
A // BA⊗tB A ∼= k // BA

and you can prove a sort of two out of three thing so that the middle is an equiva-
lence if and only if the right is.

Remark 20.1. A is Koszul if and only if A! is Koszul, since (A!)! ∼= A.

That was my crash course on Koszul duality. Any questions?
Now I want to move to formality, which originates in rational homotopy theory.

Definition 20.2. A differential graded algebra A is formal if it is quasi-isomorphic
to its homology as a differential graded algebra.

We view homology as a differential graded algebra with 0 differential. Quasi-
isomorphic means there is a zig-zag of quasi-isomorphism connecting them. You
can always find a guy in between if A is formal so that A

∼← A′
∼→ H∗A. I’ll say X

is formal (over k) if C∗(X,k) is a formal differential graded algebra.
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Remark 20.2. If the characteristic of k is 0 then one usually works with the com-
mutative differential graded algebra Ω∗X, which is quasi-isomorphic to the cochains
if the characteristic is zero. I don’t know whether formality as differential graded
algebras implies formality as commutative differential graded algebras. I doubt it.

For example, Deligne-Griffiths-Morgan-Sullivan showed that every compact Kähler
manifold is formal in this sense.

To give you an idea that this is something that happens, Miller showed that an
(n− 1)-connected closed monifold for n ≥ 2 of dimension at most 4n− 2 is formal
over Q. In particular, all simply connected manifolds of dimension at least 6 are
formal.

There’s a dual notion of formality that hasn’t been studied to the same extent.
So

Definition 20.3. We say that X is coformal (over k) if the chains on the based
loop space C∗(ΩX,k) is a formal dga.

When k = Q and X is simply connected, then one should really be working with
Quillen’s differential graded Lie algebra lambdaX instead. The universal enveloping
algebra is equivalent to the chains on the based loop space.

I’m restricting the structure to just the E1 structure to simplify a little bit.
Now I want to connect this to Koszul algebras.

Theorem 20.1. Let X be simply connected of finite type and k a field. The first
three are equivalent and they imply the fourth:

(1) X is formal and coformal.
(2) X is formal and H∗(X,k) admits a Koszul presentation.
(3) X is coformal and H∗(ΩX,k) admits a Koszul presentation.
(4) H∗(X,k) and H∗(ΩX,k) admit Koszul presentations that are Koszul dual

to one another.

I don’t have a counterexample for the fourth implying the first three.
The direction I’ll be focusing on today is a way to calculate the loop space

homology when X is formal and coformal. Then you might ask for examples that
are both formal and coformal.

Example 20.2. • Sn is formal, and we know its homology is T (x)/(x2),
which is Koszul, and so H∗ΩS

n = (H∗Sn)! = T (α) where the degree of α
is n− 1.
• The products and wedges of formal spaces are formal. So for instance, in

the wedge of two spheres, I get that H∗(Ω(Sn ∨ Sm)) ∼= T (α, β)
• Here’s an example that I like, not related to the rest of my talk. Take the

configuration space of k points in Rn, this is formal and coformal. The
comonodromy, actually let me, the comonodromy is generated by xij for
indices between 1 and k modulo xijxjk + xjkxki + xkixij = 0, x2

ij = 0,
and graded commutativity. For formality let’s take Q coefficients. The loop
space homology, if you calculate, you get a free algebra on dual generators,
modulo infinitesimal graded relations, [αij , αk`] = 0 and [αij , αik+αjk] = 0.
• Every (n − 1)-connected manifold closed manifold of dimension at most

3n− 2 is automatically formal and coformal if the dimension of H∗(M) is
at least four. Rationally this was observed by Neisendorfer-Miller. They
prove this statement in that paper, but Koszul duality is what’s new here.
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• CP2 is formal, but its homology is a truncated polynomial algebra, there’s
no quadratic presentation of this algebra, so it’ can’t be Koszul. So it’s not
coformal.

So sometimes this lets you calculate based loop space homology. Now I’d like to
go on to free loop space homology.

The Hochschild cohomology of C∗ΩM is isomorphic to H∗+d(ΛM). Here on the
left we have a cup product and a Gerstenhaber bracket. On the right we have the
loop product and the loop bracket.

So you can use HH∗(C∗ΩM)→ HH∗+dC∗ΩM → H∗+dΛM .

Theorem 20.2. Let M be formal and coformal. Then H∗(M) has some generators,
H∗(ΩM) has some dual generators. We have κ =

∑
i xi ⊗ αi in H∗M ⊗H∗ΩM .

This is a twisting cochain which means that it squares to zero. It’s an exercise
that this holds because of orthogonality. We can twist the algebra with the Maurer-
Cartan element and get a differential, so H∗M ⊗H∗ΩM, [K, ] is a dga model for
Hochschild cochains on C∗ΩM .

Proof. First of all, since, well, let U be H∗ΩM . Since M is coformal, we have
U ∼ C∗ΩM , so we can look at Hoch∗(U), which is equal to the twisted Hom
complex HomtB(BU,U). We can twist the structure here. This is always true for
Hochschild cochains. Since U is Koszul, we know that the Koszul dual coalgebra
injects quasiisomorphically into B and a spectral sequence says that this is the same
as Homκ(U ¡, U) ∼= (U ! ⊗ U, [K, ]). �

There will always be an A∞ model for these things that has this as an underlying
chain complex. But this is saying we can make the algebra structure very explicit
in this situation. Okay, I’m running out of time here.

Let me just finish by discussing this in the case of highly connected manifolds.
Let me restrict to the case where M is an (n−1)-connected 2n-dimensional closed

manifold ad n ≥ 2. Choose a basis x1, . . . , xr of HnM , and let me assume that
the rank is greater than or equal to 3. Then M is formal and coformal and if you
calculate the orthogonal relations, then H∗ΩM is isomorphic to T (α1, . . . , αr)/(w)
where w =

∑
i,j cijαiαj and cij = 〈xi ∪ kj , [M ]〉.

Theorem 20.3. (B-Börjeson) Under these hypotheses, for k a field and r ≥ 3,
you get

H∗+2n(ΛM) ∼= k⊕ s1DerU

AdU
⊕ s−2n U

[U,U ]
.

So this is a description of the loop space homology. We can also describe the
loop product. Up to sign, the loop product of two such derivations,

θ · η =
∑
i,j

cijθ(αi)η(αj) ∈ U/[U,U ]

with all other products zero. The Gerstenhaber bracket has

{θ, η} = θ ◦ η ± η ◦ θ, {θ, u} = θ(u)

We have a BV-operator if the characteristic is zero, ∆ goes from U/[U,U ] →
DerU/adU where ∆(u)(α#

i ) = ∂cyc(U)
∂αi

where α#
i is

∑
j cijαj and ∂cyc is [too fast].

Kai has worked out explicit formulas for the dimensions here and you can see
that you have this exponential growth for the Betti numbers for the free loop space.
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There has been previous work on this by Seliger-Beben, who use slightly different
techniques. I should end, thanks for listening.

21. September 5: Nancy Hingston, Part III

It’s amazing to hear all these different ponts of view. We talked about the ideas
of llop spaces, loop products, and Poincaré duality, which I’m just about to get
to. We began this discussion of loop products, we have the Pontryagin product on
based loops and the Chas-Sullivan product on free loops. The free loop space is
infinite dimensional, but many things work the same if you turn the energy upside
down. I’ll give some evidence for Poincaré duality and you can decide if you believe
it or not. Report back to me if you see other examples of this.

The other product is joint work with Mark Goresky, who happened to be at the
institute when I heard this definition.

Poincaré duality predicts another product ~ : Hj(Λ)⊗Hk(Λ)→ Hj+k+n−1(Λ)
and there’s also a product on the based loops of the same degree, Hj(Ω)⊗Hk(Ω)→
Hj+k+n−1(Ω). These should have the same relationship to one another as the
Pontryagin and Chas-Sullivan products.

Mark and I wrote definitions of these, they’re defined, they’re non-trivial, they’re
finitely generated rings for spheres and projective spaces. Now Cohen, Jones and
Yan described the relation of these two to one another and it follows the same
relationship.

These are related to Sullivan’s coproduct on the homology.
We used, there’s a nice finite dimensional approximation to the free loop space

by piecewise geodesics. We took two cohomology clases. We restricted them to the
finite dimensional approximation, did Poincaré duality, took the Chas-Sullivan or
Pontryagin product, undid Poincaré duality, and then forgot the finite dimensional
approximation. It turns out that you want to use curves parameterized according
to arc length.

This is, that’s the first piece of evidence for Poincaré duality. But the finite
dimensional approximation doesn’t play nicely with arc-length parameterization.
That’s what makes writing this down difficult.

I talked a little about this in the question session, but next is Poincaré duality
and index growth. Now γ is a closed geodesic. The formula for the index of
γm, the most it can be is m ind γ + (m − 1)(n − 1) and the least it can be is
m ind γ − (m− 1)(n− 1).

You might think this looks symmetric, that looks like Poincaré duality. Actually
it’s not really symmetric, let’s use the sum of the index and the nullity.

m(index+ null)(γ)− (m− 1)n ≤ (index+ null)(γm)

Dual to index is not coindex but coindex plus nullity, that’s where the 1 comes from.
When you have equality on the upper bound you have maximal index growth,
meaning that there is a nontrivial cohomology product. When there’s minimal
index growth, and then you get a nontrivial Chas-Sullivan product.

Okay I wanted to say something about Poincaré duality and critical levels. So
from last time the critical level of a homology class is inf{a|h is supported on Λ≤a}.
[Picture]. The critical level of a cohomology class Cr(x) = sup{a ∈ R : x is supported on Λ≥a}.
We have a formula

Cr(g ∗CS or P h) ≤ Cr(g) + Cr(h)
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on homology but

Cr(x~ y) ≥ Cr(x) + Cr(y)

So the cup product does not have this property. This is supposed to be more
evidence for Poincaré duality.

There are a number of theorems that were proved before the products were
defined that are manifestations of what is happening with these products. So here
are some old theorems rephrased.

Assume that M is compact orientable, and Riemannian. Here’s a theorem of
Bott, rephrased, from 1956. If all closed geodesics on M are nondegenerate then
every homology class is level-nilpotent. There’s a dual theorem that says every co-
homology class is level nilpotent. That means that for some N , Cr(hN ) < NCr(h).
For some N , Cr(xN ) > NCr(x).

The next pair of theorems is due to me, one in 1993 and one in 1997. They
say that if there is a class in H∗(Λ) or H∗(Λ) that is not level nilpotent, then M
has infinitely many closed geodesics. These fit together with the Bott result. The
proofs are very different. The cohomology version is a lot harder. The reason I
believed the second one was true was because of Poincaré duality.

Let me draw a picture of the picture of these. [Picture].
That’s the end of Poincaré duality. A few applications to dynamics. So this

theorem, I mean this pair of theorems is useful, is used in the following proofs, that
there exist infinitely many for any metric on S2, it’s not the only way of seeing
it, it’s the only way of proving it with a bound on [unintelligible]. There’s one
argument for the nondegenerate case and in the degenerate case you have limiting
index growth.

I also wanted to mention some relationships with things on the Floer side.
There’ll be another theorem rephrased in a minute. The Floer stuff, there are
all kinds of different connections, So Abbodandolo and Schwarz, Viterbo, Salamon-
Veber, Cohen-Hess-Verana, Cohen with his collaborators, says there’s an isomor-
phism betweenH∗(ΛM, ∗) ∼= HF (T ∗M, pair of pants). I want to say that Abbondandolo-
Schwarz have located the cohomology product on the Floer side. The second thing
is another long list of names, Conley-Zehnder, Salamon-Zehnder, lots of other peo-
ple dealt with the following question. You have a π2 = 0 compact 2n-dimensional
symplectic manifold, and we look for periodic orbits of a periodic Hamiltonian.
Conley-Zehnder said that in the nondegenerate case there are infinitely many pe-
riodic orbits. This left out the degenerate case. You use the statement that in the
nondegenerate case, you cannot have limiting index growth.

Another restated theorem due to myself and Ginzburg-Gürel, there are infinitely
many periodic orbits when the pair of pants product is level-nonnilpotent.

I have about ten minutes left? I want to mention some more recent work.
There’s recent work, the resonance theorem, with [unintelligible]. Look at the

set of critical levels as a function of degree, this is the critical profile of a manifold.
There’s a theorem about this, it’s very interesting, but let me tell you just the
consequences for dynamics.

There are other nice versions, but if n is odd and you have a metric where the
curvature is between 1

4 and 1, well, there’s a number ᾱg, a slope, which has unites
of conjugate points per unit length. If you plot all these points, critical levels as
function of L, they lie within a small distance from a line (if this is a sphere) then
at least one of these is true:
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(1) There exist at least two closed geodesics with ᾱγ = ᾱg, or
(2) There exists a sequence of closed geodesics with ᾱj → ᾱg.

You don’t want a theorem that just tells you the numbers, you want something
that tells you how they’re organized. It would be nice to say either one is true or
the other is true.

I just wanted to mention briefly some other recent joint work, recent and ongoing.
I’ve been working with Alex Oancea on the Chas-Sullivan product on path spaces,
particularly paths in CPn with boundaries on RPn. I briefly want to say, it’s
related to a lot, what I’ve been doing with Nathalie, something about higher order
operations. We’ve heard that it’s hard to define higher order operations, so for
example you can draw a picture of the Chas-Sullivan product and you consider the
ones where the basepoints are equal. So the Chas-Sullivan product has degree −n
because of the two loops and the one intersection that you’re imposing. So this is
a picture, and you can fatten this up and get a picture that’s like a pair of pants.
If you want to draw a picture of the associated coproduct, you have one loop and
you do some intersection within that loop. You want γ(0) = γ(t). If you don’t let
t vary you get a trivial coproduct. If you thicken this up, you get a pair of pants.
You have a nontrivial cproduct from this one, degree 3 − 2n, it’s nontrivial which
is a nice quality for a coproduct.

22. Fukaya, Part III

In this talk I wanted to talk about open closed maps. I talked twice and spent
the last lecture about the closed open map. Today I’ll say open closed. I haven’t
made much progress on the higher genus stuff. This open closed stuff is five years
old but somehow not well known.

So let L ⊂ X, and p`,k : E`ΩX ⊗ Bcyck ΩL → X. So we have differential forms
on the ambient manifold and cyclic differential forms on the Lagrangian. The
cohomology of the cyclic bar complex is related to the equivariant loop space.
There are some delicate differences. Basically this map is dual to q. I want to
explain the main reasons we came to this map.

I’ll explain soon, but here’s the theorem we got.

Theorem 22.1. Consider the map H∗(L) → H∗(X), and assume the even part
is injective, then Floer homology of L is defined and is isomorphic to the ordinary
homology of L.

The main motivation to introduce the open closed map is to prove this kind
of theorem. A typical example is X as the diagonal in X × X. The homology is
injective. So the Floer homology of the diagonal is defined and is equivalent to the
ordinary homology of X.

This is a kind of important case. One typical idea is that you have this map
τ(x, y) = (y, x), the antiholomorphic involution to try to prove this. That works
over Z/2 coefficients. Then if you try to prove this isomorphism over rational
numbers, you need to calculate signs carefully. We failed to do so. In some cases,
things cancel but in some cases the involution gives you two of something. You
need some other argument, which is this inclusion.

Why is the open closed map useful to understand this kind of thing? Well-
definedness of Floer homology is related to m0(1), which is the homology class of
a bubble. This is M1,0(β), where 1 means one marked point on the boundary, 0
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means no marked points in the interior, and β is the class. There is an evaluation
map at the marked point. So m0(1) =

∑
[M1,0(β)]T β∩ω ∈ S∗L

This makes things not well defined. We havem1m1x = m2(x,m0(x))±m2(m0(1), x).
If you pick the smallest possible [unintelligible] then [M1,0(β)] is a cycle in S∗(L)

and the claim is that i∗[M1,0(β)] is 0 in H∗(X). If you go to the ambient space the
cycle is zero. The proof is the following. Consider M0,1(β). I only have marked
points on the boundary. The boundary is M1,0(β). This is basically an argument.
You want to use this moduli space which has an interior marked point. SoM0,1(β)
is basically p0,1,β(1, 1). Our assumption is that the homology map is injective, if
your cycle is a boundary here then it’s a boundary on L. That’s an argument.
It’s a bit funny. Usually cyclic homology, you have

⊕
Bcyck ΩL. What do we use?

Actually Bcyc0 ΩL. In a sense, we can restrict the map B to the part with a trace
1 marked point, the story is somewhat similar, the most interesting applications
came from the 0 part.

As I explained, the algebra works nicely for the > 0 part, but the = 0 part
introduces new phenomena.

This is somehow some motivation. Now I write down the formulas. So pk,` :
E`ΩX ⊗Bcyck ΩL→ ΩX.

Suppose you have Q1 ⊗ · · ·Q`, then you have ∆Q =
∑
Qc,1 ⊗Qc,2. This is the

shuffle. The formula for pk,` is

pk,`(∂ ~Q, ~P )± ∂pk,`( ~Q, ~P )±
∑
c

pk1,`1( ~Qc,1, q̂`2( ~Qc,2, ~P )) = 0

Here q is a map EΩX ⊗ BΩL → ΩL and q̂ is the extension to a coderivation on
BΩL.

[Picture of pk,`].
The simplest case is ∂p0,0(1, 1) = p1,0(1, q(1, 1)), this is like ∂M1,0 is M0,1.
This formula looks complicated, but you can interpret it in a simple way as

follows. Look at the boundary of the moduli space. We can still use this formula
to get results.

The best way to say what this is is the following thing. I mentioned this the
first day but I’ll repeat it. The cyclic bar complex of ΩL is an L∞ module over the
Hochschild cochain complex.

You have like ϕ : BkΩL→ ΩL, then ϕ acting on x1 ⊗ · · ·xn is∑
ϕ(x1, . . . , xk)xk+1, . . . xn+· · ·+x1+· · ·ϕ(xm, . . . , xm+k−1) . . . , xn+

∑
φ(xj . . . xnx1 . . . xa)xa+1 . . . xj−1

[missed some].
So now we have BcycΩL→ Ω(X) by p, and then (E`ΩX)⊗BcycΩL→ ΩX are

an L∞-module homomorphism.
Let me remind you why this is an L∞ module. So q : EΩX → CH(ΩL) is an

L∞ homomorphism. Then Bcyc(ΩL) is a Lie module over CH(ΩL), then we can
regard this as having a trivial structure. You have these two modules, and the
claim is that this is an L∞ module homomorphism.

However, actually, I have ten more minutes. Up to here, the story looks rather
transparent. Then there are several things you have to be a bit more careful.
The first thing is the following. The formula needs to be modified if we include
Bcyc0 ΩL = Λ0. In the geometric way, this should correspond to this [picture]. So
you have p`,0 : E`Ω(X) → Ω(X). This is a kind of natural enhancement. This
guy is actually one of the most interesting ones. For positive k, this is actually
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correct, for these guys you get corrections. I’ll write the formula for this zero
case. For the extra term, I want something like GW ` : E`(ΩX) → Ω(X) where
〈GW `(Q1, . . . , Q`), Q0〉 = GW (Q1, . . . , Q`, Q0). What is the Gromov-Witten in-
variant? It’s a count of [picture]. Then you turn this around and get this map.

The new formula is p`,0∂ ~Q, 1)+∂P`,0( ~Q, 1)+
∑
p`,1(Qc,2, q(Qc,1, 1))+GW `+1([L], ~Q) =

0.
We never found the meaning of this formula. The potential application, there

are some cycles that are Lagrangian cycles that aren’t algebraic, this gives some
information about those. I don’t know how to use this for example. But this gives
some formulas. A corollary of this is the following thing.

Corollary 22.1. When Q is empty, if GW1([L]) 6= 0 then the Floer homology is
obstructed and can’t be defined.

When GW1([L]) = 0, some how [M0,1 ∈ Ker(H(L)→ H(X)).

This GW term has an origin, consider a simple case [picture]. There are actually
two pieces of boundary for one marked point in the interior. There is another case,
where the loop shrinks to a point. This looks a bit like a sphere bubble, but this is
codimension 1. This guy you can see from the Gromov-Witten invariant. This is
also studied by [unintelligible] and Liu. This phenomenon comes when you have no
marked point on the boundary. If you forget these cases, the story is usually less
interesting. The most interesting cases are sometimes the ones where this occurs.
You have to include these cases to get [unintelligible]

Then the homology of the cyclic bar complex when we hav k > 0, this isHS1(ΛL).
I don’t know what the k = 0 component means. It’s probably some central exten-
sion.

Maybe my time is up, I stop here, thank you very much.

23. Octav Cornea: some properties of the Grothendieck group of
the derived Fukaya category

The talk is joint with Paul Biren. I want to talk about monotone Lagrangians.
Look in your notes for the talk of Denis Auroux. He discussed that there are
infinitely many and constructions to provide them in various spaces.

Let me start a little bit on the geometry that appears in my subject.

• You want to classify monotone Lagrangians, up to:
(1) Hamiltonian isotopy, maybe the most important one
(2) Lagrangian isotopy, one parameter deformations of Lagrangians to La-

grangians, and
(3) my focus, Lagrangian cobordism (introduced in 1979 by Arnold)

Let me discuss this idea. To an algebraic topologist, cobordism in natural to con-
sider. The picture I want to describe right now is a cobordism between two families
of Lagrangians. This is a smooth manifold V with boundary divided in two classes
of components (L1 ∪ · · ·Lk)∪ (L′ ∪ · · ·L′s). This sholud be a Lagrangian embedded
in a Lagrangian way in C ×M and there is a projection onto C and under this
projection I want my Lagrangians to look linear away from a compact set, and I’ll
say what I mean. I label the two ends L1, L2, and L3, and then on the other side
L′1 through L′3. So there it should look like R× {xi} × L′3, et cetera.

So any question about just this definition?
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Now, so what can you do with this stuff? If you think in terms of algebraic
topology.

The next stage is, why not define a Lagrangian cobordism category (of M) Here
it’s a little subtle but it’s not too bad. The objects are Lagrangians. I fix a
specific class of monotone Lagrangians, but this is a technical issue. What are the
morphisms? They will be a little different from what you maybe expect. I want to
go from one L to an L′, so the most natural thing to pick is to have one L and one
output L′. I’ll actually allow some other ends. The top one should be L′. I want
to do this because I want this cobordism to be not too simple. For this to be more
complicated, that’s well, [unintelligible]

You can continue these things if you want to worry about composing. All right,
and once you get there you can define a cobordism group, a natural thing to do,
let’s call it ΩLag(M) which will be Z/2〈L〉/Rcab, where if you have a V with ends
L1 + · · ·L4, you put the relation that the sum of these is 0.

Now let’s move into algebra. I’ve been greatly helped in the last week with what
people have said about Floer homology. If one looks at the algebra, then the thing
is, how can one see what the Lagrangian is? If I have any subset, I can look at the
intersection of that subset with L. If X is variable, if I move X a lot, I’ll recover L
completely. I’ll assume X is a Lagrangian transversal to L. This will still recover
L completely. I can take the vector space spanned by the intersection points. This
is not yet algebra, just a vector space.

The natural structure is the Floer differential. You’ll put dF on this. Now I’ll
make the picture of the Floer differential. You count strips between the intersection
points.

Now the coherence with respect ot X leads to the Fukaya category and let me say
how. There are many people who have been involved in this [quick list of names].
So we’ll define this A∞ category. The space for Floer homology will be CF (X,L).
Then the objects are just Lagrangians and the only thing left to talk about are
operations µK : CF (L1, L2) ⊗ · · ·CF (LK , LK+1) → CF (L1, LK+1). The higher
operations can be described by a picture which just generalizes the strips. We treat
the points as inputs and the one point as an output. This defines, you’ll have the
relation µ ◦ µ = 0 and this will have the structure of an A∞ category.

What does this have to do with L and our dependence on X? The important
thing here is that L, our complex, the Floer complex relative to L can be viewed
as an A∞-module over this A∞ category.

So the upshot is to look at L algebraically, we could look at it as a module over
this A∞-category.

Now there is some bad news in this story, which is that this A∞ category depends
on many choices. You get a family depending on choices. They’re all comparable
but it’s a huge construction.

There’s something you can do. I want to talk about how to pass to the derived
Fukaya category. If you have modules over F(M), M → M′, with a morphism,
then you can construct the cone over the morphism. Why can you do this and why?
You can always attach cones, you can always get a new chain complex. You get the
sum of the chain complexes with the map as a new component of the differential.
This space is already a chain complex, and A∞ modules are chain complexes. It’s
great that you can deal with them as with chain complexes. It’s almost automatic.



NANTES: LOOP SPACES 57

Now we’re going to define this new category in the following way. We’ll take
all geometric objects, L̃ = CF ( , L). We take DF(M) which, well you complete

with respect to these triangles, 〈L̃〉∆. So you have this geometric object and take
all possible cones. You have new objects, new cones, and completed means you put
in everything that can be generated with these.

DF(M) = H∗(〈L̃〉∆)

Taking homology identifies all the choices I made up to equivalence.
Now, what’s a great property of this? It’s triangulated. It’s clear it is, sort of,

morally, you just pass to homology. Then the K0 group I mentioned in my title,
that’s the Grothiendieck group attached to this category K0(DF(M)) = 〈A〉/(A→
B → C) A+ C = B.

All right, good, so now we want to go from geometry to algebra. That’s the
purpose of the talk. So the first thing is that there is a functor from this Lagrangian
cobordism category with image in the derived Fukaya category of M .

The functor on objects sends geometric objects to themselves. Why is this of
interest? In particular if you want to look to Floer homology relative to L, then
you can view it as a sort of topological field theory except it’s not quite that, you

take HL(X) and view this functor f̂ , the Floer homology HF (X,L). This writes
Floer homology relative to L as a thing defined on a cobordism category, monoidal,
lands in linear spaces. It’s kind of a systematic way to look at this.

So what else? The next stage that I wanted to mention, a very important
property for this category, is that it’s triangulated. In fact, this functor behaves
sort of nice with respect to the triangulation. One property that’s important is a
group morphism from the cobordism group into the K group,

F̂ : ΩLag(M)→ K0(DF(M)).

On objects all this stuff is trivial. This is induced by F . However, of course the
content of the statement is that the relations match. We had these relations that
looked like multiple ends of the cobordism. This is non-trivial. Now it turns out
that this sort of setup allows you to prove some additional facts concerning this
group K0.

So then I wanted to mention a few properties. One way to look at this morphism
is to say, you have something geometric on one side and something algebraic on
the other side, and this is π1 of the classifying space of the triangulated category.
I read that this thing exists. It’s some sort of π1 of something. So the reason it’s
maybe interesting is that you could look to the higher parts.

What else do I want to say? Sometimes these groups are, in symplectic topology
mirror symmetry is very important. When mirror symmetry applies, you can put
things on the B-side. Tang did this for T 2. In that case he showed that this
morphism is an isomorphism.

Now essentially I have twelve more minutes. I can do two things. I can talk about
what I was supposed to talk about, some properties of K0, or I can go and talk
a little about how this is related to the free loop space. Let’s say the properties
I wanted to talk about, I’ll talk about them some other time. One property is
that it’s an algebraic cobordism group. You have relations given by cobordisms
that you complete algebraically. This lets you write the whole thing as a sort of
algebraic cobordism group. They also satisfy a stability condition. Then there’s
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some more stuff if you look at Lefschetz fibrations. Now I’ll show a simple example.
The simple example is related to the m1,0 space that is associated to some almost
complex structure. In this case I fix my Lagrangian, I put that on the side, and my
point right now is that the constructions, there is an interplay between symplectic
topology and the free loop space. We’re in a very special case. When I write a
moduli space it’ll be of a disk with boundary on the Lagrangian. If you remembered,
we wanted also the Maslov class. I don’t even separate them.

This space, Denis computed the dimensions, it’s n. Kenji made the picture of
the disk with one marked point on the boundary. I can evaluate m1,0(J) → L,
which is a map of n-manifolds, so I can take its degree, call this nL. Denis called
this

∑
n.

Remark 23.1. (Chekanov) If you have a cobordism and want to compare the num-
ber at one end to the other ends. The nL should be the same as all the other ends
nLi (assuming connectivity of V .) Monotonicity ensures that the manifold is closed.

The proof, you can look at a point in the fiber, and another point in the fiber
over the other. Join the points by a path. By reasons related to monotonicity,
this will be a manifold. There is one more step, a priori you don’t know that all
these holomorphic disks are in the fiber. They need to be in the fiber for nL. First
I prove that the number of disks is the same. Otherwise I don’t have. . . Take an
almost complex structure with holomorphic projections. A disk going through this
point goes through the straight line, so apply the open mapping theorem. Then
it’s infinite area. They’re vertical. That’s Chekanov’s beautiful argument.

We still haven’t gotten to free loops. So now I want to take L to be a torus,
maybe of dimension two, and here I want to take a triangle. I mean I have three
points, and three simple curves. I’ll look to the disks that pass through a vertex
that cross the opposite edge. It’s a strange number. So nA is the number of
disks through A crossing BC. This I can define. Then I write a number ∆ =
n2
A +n2

B +n2
C − 2nAnB − 2nBnC − 2nCnA +nABC . Here you need a spin structure

and everything is over Z. Now what’s the statement about this? I should assume
that the triangle is contractible. The claim is that this number is invariant with
respect to all the choices. Then ∆ is invariant with respect to ABC, if I split
one end with my cobordism, then ∆ on the single end is not a perfect square.
I can take m1,0(J) and send the boundary to the free loop space. Then this I
can rewrite in terms of Hochschild homology or cohomology. This is a ridiculous
space, HH∗(C∗(L), C∗L), so I get this to be a bilinear map on the cohomology and
to this bilinear map I can associate a quadratic form and ∆ is the discriminant.
I’m done for my talk, but I want to say a work. So the basic idea is this is
a very bizarre invariant. Kenji said these open closed maps can live in certain
enumerative invariants. This is an example of a thing you can do. The things that
made up ∆ are not invariant but ∆ is an invariant. The reason is that one one
side you can look to the moduli space of disks. In the free loop space, you get
Hochschild cohomology which parameterizes deformations classically. The product
in the algebra that shows up here, the deformations that show up are the quantum
products. Then this invariant is the same as the discriminant of the quadratic form.
Okay, that’s one little example how the loop space is related. The map is related
to open closed and closed open. This is an example of an enumerative invariant.
Thank you very much.
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24. Dennis Sullivan: Algebraic models of manifolds

I had to leave early and was not present at this talk.


