
MAX PLANCK TOPOLOGY SEMINAR

GABRIEL C. DRUMMOND-COLE

1. June 22: Benjamin Matschke: Arithmetic topology (Part I)

[Welcome to our MPI topology seminar. This semester we’re running it in a
more unusual way. We arranged for people to get together to learn about certain
projects and together to give a talk about that topic. The talk today will be in two
parts.]

I see many experts in topology and also number theory. I will give a lot of detail
for the number theory since this is a topology seminar.

This is about arithmetic topology, particularly about primes and knots. There
is an older story about who looked at the relationship between primes and knots.
It started probably with Mumford, Manin, and Mazur, who found an interesting
relationship. Well, arithmetic topology tries to relate topology to algebraic number
theory. In particular, it turns out that certain 3-manifolds, usually oriented and
closed, correspond to number fields. If you have not seen this before, this is not a
bijection, more of an analogy, somewhat weak, but if you take the right definitions
in three-manifolds, you will be able to translate them.

In some sense, knots, that is, tame embeddings of the circle into R3, correspond
to specFp in specZ. In order to speak about the number theory side, let me define
spec.

Throughout the talk, rings will always be commutative with 1.

Definition 1.1. Let R be a ring. As a set, specR is the set of prime ideals p in
R. This is topologized to become a topological space. Take the basis given by Ua,
the prime ideals p that do not contain a.

There is a sheaf, which associates to Ua the set { f
an ∣f ∈ R}.

Here are examples. The easiest example is when F is a field. Then Spec F is
just {0}, so topologically it is just a point, but it has extra structure which makes
it much more rich than just a point. From the point of view of, well, of Galois
theory, of the associated étale cohomology, it’s reasonable to consider it not just as
a point, but the quotient field of some finitely generated ring. So if F = Quot(R)
for R a domain, then you can regard F as the limit of S−1R over finite subsets of
R/0.

If you look at the spec of all these localizations first, they will be much closer to
the fundamental group that I will define later. Maybe I should come back to this
later.

The next example, specZ contains the prime ideals {pZ} and {0}.
If you take Fp[t], It has spec equal to {(f)} for f monic irreducible and 0.
I said that knots in R were like specFp inside specZ. In topology, what is S1?

It is K(Z,1). If I look at finite connected covers of S1, I get just S1. So π1(S1) = Z
and higher homotopy groups vanish. The covers are multiplication by n, and there
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is a universal cover R. Is there a spec that has fundamental group Z? I haven’t
defined that yet.

For each prime, and each prime power, there is a field with that many elements,
I can look at field extensions Fpn/Fp, and I will consider them as coverings. Maybe
I should define π1 to make this picture. I should also define what is an étale map.
Suppose I have two rings.

Definition 1.2. An A-algebra B where A ↪ B is a ring homomorphism, is called
finite étale if

(1) A→ B makes B into a flat A-module, that is, B⊗A is exact as a functor of
A-modules, and

(2) for each p ∈ specA, we have B⊗AK(p) is a finite product of finite separable
extensions of K(p), where K(p) = Quot(A/p).

In our correspondence, coverings correspond to étale morphisms.
When we talk about covering spaces and π1, we’d like to talk about normal

coverings, the image of π1(Y ) inside π1(X) is a normal subgroup. How is the
corresponding thing on the other side, a Galois covering, defined? First we need a
basepoint. A base point for specA at p ∈ specA, is a morphism specΩ → specA,
where Ω is an algebraic closure of K(p).

So a basepoint of specFp is a choice of an algebraic closure of Fp with a morphism
of Fp into it.

The fiber Fx0(Y = specB) = HomX=specA(x0, Y ) = HomA(B,Ω). We call Y →
X a Galois covering if it is finite étale and Gal(B/A) acts on the fibers simply
transitively.

Definition 1.3. The étale fundamental group π1(X,x0) is the inverse limit of
Gal(Yi,X) over all Yi which are finite connected Galois covers of X.

Before I continue this picture, let me give you an example.
π1(F) is the Galois group of F over F, where F is the separable closure. This

turns out to be generated for Fp by the Frobenius operator σ which sends x to xp.

This group is Ẑ, the profinite completion of Z, that is, the inverse limit of Z/nZ.
For each n there is the field Fpn , which is an extension over Fp and has Galois
group Z/nZ. So an irreducible polynomial, the roots are just permuted cyclically.
Similarly, the points in the fiber in the finite cover of S1 are permuted cyclically.

What is the inverse limit of these groups? It’s just Ẑ, the profinite completion,
the group that comes closest to Z.

What is an étale map between, suppose I have two number fields K over F ,
then the ring of integers OL → OK is finite étale if and only if L/K is unramified,

so p ∈ OK , and I can write p = ∏P ej
j and this is a finite product, and unramified

means that ej is 1 for all j.
Then π1(OK), well, for K = Q and OK = Z, this is the Galois group of the

maximal unramified extension of K over K.
So does this make sense, to think of Fp as the circle?
[some discussion].
So what does one study in knot theory? Knots and their complements and the

fundamental group of the complement. If you have a manifold M , and you take
away the knot, call the complement XK , and this corresponds to π1(specOK/{p});
in topology this is called the knot group, and some people call this the “prime



MAX PLANCK 3

group.” On the side of topology, one also considers a tubular neighborhood. Why?
For example, if you have a knot and take a tubular neighborhood,, one is interested
in the meridian generator.

First of all, what is the tubular neighborhood of a prime ideal? Before answering
this, there is an analogy that number theory people consider very very often, which
is the analogy between number fields and function fields. So Fp[t], or let me go
further to C[t], if I consider power series, C[[t]], what would spec of this be? It’s
basically an infinitessimally small disk. Power series are defined on a small disk and
determined by what they look like on it. How is this constructed? It’s the inverse
limit of C[t]/⟨tn⟩. What does this correspond to on the number theory side? I can
take OK , the ring of integers if Z = Q and mod out, limOK/pn = Op, the p-adic
integers. This is a good candidate (well its spec is) for a neighborhood of specFp.
What is specOp? It’s just {(O), (pOp)}. Our two residue fields are Kp and Fq. If
we remove specFp you get specKp as desired. If K = Q then Op = Zp and Kp = Qp.

I hope I can convince you somewhat that this is a good candidate for a tubular
neighborhood of S1 in M . What is a tubular neighborhood? It’s S1 ×D2, so the
last equation should remind you that V /S1 you get something that is homotopy
equivalent to the boundary of V which is just a torus. If you take π1(∂V ) and map
it to π1(V )→ 1, this is a surjection with kernel a meridian and image a longitude.
So π1(∂V ) is ⟨α,β⟩, where the only relation is that they commute.

What’s the number field analogue? It goes like this. We have π1(specKp)
mapping to specFp, which was generated by ⟨σ⟩, the Frobenius element. The
kernel is some inertia group IKp . I want a particular element of this group that
corresponds to β. Previously I told you that specKp, well, you should take the
separable closure of Kp. Below we have K and its maximal unramified extension
Kun

p . Then you can further extend to the maximal tame extension, defined so that
at each prime, does this make sense? All the exponents you get, they should be
prime to p. Of course an unramified extension is tame since all the ei are 1. So
Kun

p = Kpp(ζn)∣(p,n) = 1. Then you have Kt
p = Kp( n

√
π) for π a prime element in

Kp and (p,n) = 1. Then π1(specKp) projects down to πt
1(specKp) ∶= Gal(K/pK),

where τ( n
√
π) = ζn n

√
π and τζn = ζn.

Let me also write down the fundamental group. So π1(Kp) is generated by σ
and τ subject to στσ−1 = τp. So how does this correspond to the torus? This is
in some sense a reason why the boundary of this tubular neighborhood looks like
a surface. If we didn’t have p, er, if p = −1 then this would be the Klein bottle. So
someone suggested I should think of this as a Klein bottle because it’s unoriented.
There’s some Poincaré duality that is 2-dimensional, but with a twist, so this is an
analogue of that.

I should also say, I didn’t define it, but the étale cohomology of Z and arbitrary
number rings, satisfies some three-dimensional duality, and this also suggests that
actually number rings are three-dimensional, at least up to higher étale cohomology,
which may have 2-torsion. Okay, thanks, time’s up.

2. Mikhail Kapranov: Arithmetic topology, Part II

[In the second half of the seminar, Mikhail Kapranov will tell us more about this
fascinating connection between topology and number theory.]

I will also be elementary, maybe even more elementary. Let me summarize the
first hour.
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(1) spec(F) is not a point, but something like the classifying space ofGal(F/F,1).
So

(2) spec(Fq) is something like a circle, because a circle, the coverings are clas-
sified by natural numbers and so are the extensions.

(3) spec(Qp) is something like a Riemann surface.
(4) spec(Z) is something like a three-manifold, not fully compact.

That’s basically the point of view. So a prime number in Z is something like a
circle in a 3-manifold.

[Why is #3 true?]
Let’s look instead at specFp[t], well specF[t] where F is algebraically closed,

this is like A1
F, this should be 2-dimensional. So then you have a circle fibration,

you have like specFp and over it you have a fibration with 2-dimensional fibers, an
affine line over something should be 2-dimensional.

So p can be knotted, linked, et cetera. We can try to understand such phenomena
in an elementary way. Let me discuss how we can say if two such circles can be
linked.

Let me start with an elementary survey of the linking number in topology.

2.1. Linking numbers. If you have two circles in a sphere or other three-manifold,
M3 a compact oriented 3-manifold, and C and D two disjoint oriented circles.

There are several definitions, some better suited to arithmetic than others.

2.1.1. via intersection. Assume that [C] = [D] = 0 in H1(M,Z). Then take a chain
σ whose boundary is C and then lk(C,D) = σ ●D. If you choose a different σ′, then
σ − σ′ is a 2-cycle and ((σ − σ′) ●D)hom = 0 by triviality.

It’s important that this is symmetric, we can use τ such that ∂τ = D. We can
also do a version of this modulo n. Then we need only the class of [C] = [D] =
0 in H1(M,Z/n), which is H1(M,Z)/n. This generalizes to cycles of arbitrary
dimension, dim M , dim C, and dim D arbitrary except that dimC + dimD + 1 =
dimM . For M = Sn this gives Alexander duality. For any K this gives a pairing
Hi(K)⊗Hn−1−i(Sn −K)→ Z or in otherwise Hn−1−i(Sn −K) =Hred

i (K). This is
the most common point of view but requires a working homology theory.

2.1.2. via coverings. Fix C and D. Take a Z-covering of the complement of C, call
it S̃

pÐ→ S3 −C. This uniquely exists by the knowledge that πab
1 =H1. Then C and D

don’t meet and we can take the monodromy along D and that’s the linking number.
Similarly, there is a (mod n) version, where we take a Z/n covering. There is a

bonus, which is that S̃ extensd to a compact manifold ramified along C like for
Riemann surfaces.

Let me mention a particular case. For n = 2, we have lk2(C,D) is 0 if the
monodromy is trivial, that is, if p−1(D) is two circles. It’s 1 if p−1(D) is one circle.

This is for a sphere. For a manifold, it’s similar. We used the existence of the
covering, which is equivalent to the fact that the knot is homologically trivial. For

the modulo n version, the existence of M̃
p;Z/n
ÐÐÐ→ M ramified along C is equivalent

to the fact that [C] vanishes in H1(M1,Z/n). Compare that a double cover of
S2 = CP1 is ramified at an even number of points.

2.1.3. via cup product. Let me make a picture [picture]; so we take two clases γ, δ
in H1(S3 − C − D) which is by Alexander the same as H1(C ∪ D) generating the
circles. Then z ∈ H2(S3 − C − D) is the same by Poincaré–Lefschetz duality as
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H1(S3,C ∪D). Then γ ∪ δ = lk(C,D)z. Why is this symmetric where cup product
is antisymmetric? Because we had to orient from C to D to get z.

So now let me discuss the arithmetic analogue

2.2. Legendre symbols as linking numbers. Instead of M3 we consider specZ.
Instead of C and D we consider p and q. We take n = 2. So first of all, what is

the analogue of a double cover π ∶ M̃ 2∶1Ð→ M ramified along p? Suppose I have
X = spec(A) and inside we have Z ⊂ spec(A) which is {f = 0}. Then naively, a
double cover ramified along Zf is spec(A[

√
f]). [Picture]

So we take M̃ = spec(Z[√p]) which projects to M = specZ inside of which

we have specFq = D. So we look at π−1(specFq). That’s specZ[√p]/q. That’s

specFq[
√
p]. Originally, this is (Z[y]/(y2 = p))/q = Fq[y]/(y2 = p). So I should ask

if this is one circle or two circles?
If it’s one circle, it should cover twice and be specFq2 ; otherwise it’s two circles

spec(Fq + Fq). We say respectively that the linking number of p and q is 1 or 0.
But this is precisely, more or less, how the Legendre symbol is defined.

So one circle means y2 − p is irreducible in Fq[y] which means that p is not a

quadratic residue (mod q) (that is, (p
q
) = −1); two circles means it is a quadratic

residue ((p
q
) = 1). But this is not symmetric. Gauss’ reciprocity tells us that

(p
q
) = ( q

p
) (−1)

p−1
2

q−1
2 while linking numbers are symmetric.

I did something naively before which is why this is happening. When I adjoined
a square root of p, it’s not clear that things will only be ramified along p. Let me
explain this.

So the explanation is that Z[√p] is not only ramified along p. How can we

understand more precisely where it is ramified? Say you have F (x, y) = 0 ⊂ C2.
Then spec(C[x, y]/F (x, y)) maps to specC[x] = A1. The ramification locus is
given by the set of x for which DiscryF (x, y) = 0. For any A (not just A1) and
F ∈ A[y], spec(A[y]/F → spec(A) is ramified along DiscryF = 0 in A. Now let’s
try to apply this to our polynomial y2 − p.

In our case, A = Z, F (y) = y2−p, and so the discriminant of F is 4p. This always
vanishes at 2. Moreover, if I do something, like spec(Z[√p]) may not be smooth.
So far we have not distinguished by what happens at 2.

In elementary number theory, there’s the concept of the “full ring of integers”
and we need to desingularize, passing to all integer elements in Q(√p), a bigger ring
we’ll call Ap. We remember from elementary number theory how this is defined. It
actually depends on whether p is a prime of the form 4k + 1 or 4k + 3.

For p = 4k + 1, the singular behavior happens but in specAp, this behavior goes
away.

For p = 4k + 3, the behavior, the extra ramification, cannot be removed.
So the prime p should be thought of as homologically nontrivial (mod 2).
For p and q both of form 4k + 1, we have (p

q
) = ( q

p
). One can similarly define,

I shouldn’t go there, modulo higher n, this corresponds to power residue symbols
and this is sort of similar.

I should say at this point, one can approach this from various points of view. You
can prove étale cohomology to prove reciprocity which as I understand it was the
original motivation of Mazur. Let me discuss another subject of intuitive appeal,
which is
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2.3. Higher linking numbers. So you might have pairwise unlinked circles which
together are linked.

The most algebraic approach is via Massey products. we have (R,d) an associa-
tive differential graded algebra. Suppose we have three elements in H1

d(R), α,β,γ,
such that αβ = βγ = 0. Then choose 1-cocycles a, b, c, representing α, β, and γ.
Then we can write ab = d(u) and bc = d(v). We can write z = av +uc, then d(z) = 0
by associativity. This 2-cocycle is denoted [α,β, γ], and is defined modulo some
indeterminacy, modulo αH1 + H1γ. When such things vanish, we can dig even
deeper and get finer and finer homology classes.

So more generally, we can write [α1, . . . , αn] ∈ H2 modulo some indeterminacy,
defined when all [αi, αi+1, . . . αj] are 0 modulo indeterminacy.

We represent α1 by a0,1, αn by an−1,n, then we have a0,2, all the way through
a0,n−1 and a1,n. Here we should have d(aij) = ±∑i<k<j aikakj and [α1, . . . , αn] is
the class of a0,n−1an−1,n ± a0,1a1,n.

The pattern here is something like (C∗Lie(n), d) where n is the strictly upper
triangular (nilpotent) Lie algebra. If you let aij be dual to zij then you get precisely
that d(aij) = ±∑aikakj .

This can be applied to knot complements.
Suppose I have three knots in S3, C1, C2, and C3, and their linking numbers are

pairwise 0. Then αi ∈ H1(S3 − C) is the same by Alexander duality as ∪Ci and
γij ∈ H2 is by Lefschetz duality a path from Ci to Cj . Let R = C∗(S3 − C). I’m
cheating a little but it will take time to do correctly. Then [α1, α2, α3] = λγ13 and
then λ is lk(C1,C2,C3). In the literature, if lk(Ci,Cj) =≠ 0 then lk(C1,C2,C3) is
defined module the gcd.

We can do this via unipotent coverings. lk(C1,C2) = 0 if and only if there is a

covering Σ → S3 − C1 − C2 with Galois group N3(Z) = {
⎛
⎜
⎝

1 a c
0 1 b
0 0 1

⎞
⎟
⎠
∶ a, b, c ∈ Z}.

Look at the monodromy of C3, then a is lk(C1,C3), the b is lk(C2,C3), and c is
lk(C1,C2,C3).

You can also do this via Fox calculus.
This definition is such taht it can be generalized to the arithmetic case which

has also been done in the classical literature.
I’m out of time, can I have like ten more minutes?

2.4. Higher Legendre symbols. These were defined by Redei in 1939. Suppose
that p1, p2, and p3 are all primes, let’s assume all are 4k + 1 for simplicity. Assume

that ( pi

pj
) = 1 for all i, j. Then there exists a [p1, p2, p3] ∈ {±1} defined via Heisen-

berg extension (mod 2). One can go further and this was done by Morishita using
Fox calculus. One can probably also use Massey products in étale cohomology.

I want to say a little more, how those symbols have been applied to the problem
of understanding homology of étale coverings.

2.5. 2-class groups of quadratic fields and cohomology of ramified covers
of S3. So for M3 we have spec(A) for A a ring of integers in k and H1(M,Z) as
Cl+(A), the divisors on A modulo princial divisors.

Look at the class group of the field k = Q[√p1⋯pn], If we take Cl+(Ak) ⊗ Z/2
you get a vector space over Z/2 of dimension n − 1.
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This has a topological analogue that is a pleasant exercise. Take a two to one
map S̃3 → S3. The dimension of H1(S̃3,Z/2) = n − 1. What is the structure of

the 2-primary part of Cl+(Ax) or of H1(S̃3,Z)? How many Z/4 or Z/8 are there?
This problem was studied by Redei who proved the following thing. The number

of Z/2a for a ≥ 2 in Cl+(Ak) is (n − 1) − rk∣∣ ( pi

pj
) ∣∣ adjusted appropriately on the

diagonal so that the sum over the rows is 0. The same is true for S̃3, proven by
Morishita. The number of Z/8 is governed by triple symbols.

Now just one last thing I want to say, is that all of this can be understood in
the context of the moduli space of representations, an Abelian analogue of local
systems.

How can one see that something like this will actually appear? Conceptually,
Z/2n is ((Z/2)[t]/tn)∗, the Witt vector. This is, if M = S̃3, consider local systems
of dimension 1 of F2 over M , then LSdim1

F2
(M) is a scheme over F2. This scheme

has only one point but possibly infinitesimal structure. The tangent space at the
trivial representation is H1(M,F2), and deformation theory tells us, these are first
order deformations, that the second order deformations are given by the condition
ξ ⋅ ξ = 0. The third order via [ξ, ξ, ξ] = 0, and so on. These have to do with how
many nilpotent curves can be put there. All this part is like the Abelian theory of
local systems. Part of this is again, very common in number theory, but there are
more questions. Thank you very much.

3. June 30: Francois Charette, Ana Ros Camacho, Hiro Tanaka:
Introduction to Homological Mirror Symmetry via Examples

3.1. Hiro. Thanks for letting us study in triplets instead of in pairs. I want to
state the theorem that we will prove if we have time.

Theorem 3.1. There exists an equivalence of A∞ categories — I’ll put four cat-
egories on the board that you may not know. We have two hours to give some
examples in these categories. The first category is the Fukaya category Fukλ(CP1).
The second is matrix factorizations on C× with respect to W − λ for a function W
which is more or less 1

z
+ z. So the second category is MF (C×,W − λ). These two

are equivalent. Then the category DbCoh(CP1) is equivalent to the Fukaya–Seidel
category of C× with respect to W .

What is our rough outline? François will talk about Fukλ, Ana is our matrix
factorization artist, and if I have time I’ll talk about the second equivalence.

Conveniently, someone wrote down a Hodge diamond. Let me give a brief history
of the evolution of mirror symmetry.

0 It’s kind of like saying a poem about love when you’ve never experienced
it, but you can still recite it. So first, there are N = 2 supersymmetric
conformal field theories. So you could think of this as vector spaces with
operators F , and there’s a conjugation that you can do, and if you do
that conjugation, you get a new field theory F∨. Some of these arise from
Calabi–Yau threefolds X. There’s a mirror Calabi–Yau threefold X∨ so
that their conformal field theories are mirror.

So there are topological sectors where you can extract information about
the field theory, doing calculations, and see that these depend on informa-
tion about the Calabi–Yaus.
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a So for example, you can figure out their Betti numbers and see that
hp,q(X) = hn−p,q(X∨) where n is the complex dimension of X. This is
the origin of the word “mirror symmetry.”

h3,3

h3,2 h2,3 ⋅

h3,1 h2,2 ⋅

yyyyyyyyyy
h1,3

h3,0 h2,1 ⋅

yyyyyyyyyy
h1,2 h0,3

h2,0 ⋅

yyyyyyyyyy
h1,1 h0,2

⋅

yyyyyyyyyy
h1,0 h0,1

h0,0

b Counting rational curves on X turns out to correspond to computing
periods of variations of Hodge structures on X∨.

c More generally, H∗(X,⋀∗ TX) ≅H∗(X∨) with the quantum product.
1 The next stage was Kontsevich. For every Calabi–Yau manifold X, there
is a Calabi–Yau manifold X∨ such that DbCoh(X) and DFuk(X∨) are
equivalent, the computations of mirror symmetry are a reflection of this.

Complex subvarieties of X are interchanged with Lagrangians because
of the mirror symmetry, this tells you about (a). Then the other two
calculations have to do with Hochschild cohomology, HH∗(DbCoh(X) is
H∗(X,⋀∗ TX), and (at least in some cases), HH∗(DFuk(X∨)) is H∗(X∨)
with the quantum product.

2

Conjecture 3.1. (Kontsevich) For any Fano (hyperspace of projective
space), Calabi–Yau, or general type X, there is a mirror X∨ and W ∶X∨ →
C, such that

Fukλ(X) ≅MF (X∨,W − λ)

and

DbCoh(X) ≅ FukSei(X∨,W ).

Because our categories are nice, you want to find generators for the
categories, and then compute the endomorphism algebras of them, and
then that’s enough to show that they are equivalent.
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3.2. François. All right, so um, I will talk about the Fukaya category. Any talk
about this that wants to be precise is impossible. I’ll give the spirit behind it. I’ll
mostly focus on the generator and we’ll try to do computations with that. Once
you reduce it to something computational your life becomes easy. So what is the
setting? Let (M,ω) be a compact symplectic manifold and consider L, closed
Lagrangians. Why would we care about Lagrangians?

Theorem 3.2. (Gromov)

● In (Cn, ω0 = ∑dxi ∧ dyi), any closed Lagrangian satisfies H1
dR(R) ≠ 0, so

thot β1(L) > 0.
● There is an exotic symplectic structure on Cn so that Sn is Lagrangian.
For n > 1, this shows that Lagrangians can distinguish certain symplectic
structures

Theorem 3.3. (Chekanov) Under small physical perturbations φ, (we should think
of a symplectic manifold as where we do mechanics), that is, a Hamiltonian, then
#L ∩ φ(L) ≥ ∑βi(L). You might call this the Arnold conjecture.

The topological bound is χ(L). When you study Lagrangians, something sym-
plectic and not purely topological happens.

Now we do a big leap to the present and study Fuk(M,ω). Let me give two
references, one to Auroux, a beginner’s introduction to Fukaya categories and if this
is too easy, SEidel’s book Fukaya categories and. . .

Let me hide what I can. The objects are Lagrangians. We’ll need some tech-
nical restriction on the objects. The morphism space should be thought as, well,
HF (L0, L1), the Floer homology groups. I’ll define only HF (L0, L0). What one
should know is that these admit a product structure like composition, you have
a product HF (L0, L1) ⊗ HF (L1, L2) → HF (L0, L2). What do we do with this
category? It’s not triangulated so we can’t speak about generators.

Now I’ll use the same notation but work at the chain level, MorFuk(L0, L1) =
CF (L0, L1). You get an A∞ product on the chain level. There’s one little difference
that I won’t write. Let me attribute this to Oh. µ2 = λ(L0)−λ(L1). So we restrict
to the objects where λ = 0. That’s the only case where experts don’t argue. If
you restrict to this then everyone’s happy. So we restrict to Fλ(M), where the
Lagrangians have fixed obstruction number λ.

Now we use some theorems.

Theorem 3.4. (Kontsevich–Seidel, Auroux, Sheridan)—I’ll give a baby version.

For CPn, Fukλ(CPn, ωFS) is trivial unless λ = (n + 1)e 2πik
k+1 for k = 0, . . . , n. Here,

trivial means that HF (L,L) = 0.

This is not obvious. For n = 1 this is λ = ±2.

Theorem 3.5. For CPn, when nonzero, Fukλ(CPn) is generated (under triangu-
lated closure) by one Lagrangian, the Clifford torus.

Let me write CF (L1), not as a complex but as a vector space, as C⟨L0 ⋔ L1⟩,
when transversal. There are technicalities when these are not transversal.

Now we move to the theorem that we aim to prove, the endomorphisms of S1,
well, CP1 is a sphere and so Lagrangians are circles. The technical conditions make
this the equator. In this case, you can see why this is necessary; you can make two
circles that are not equators disjoint by a physical motion.
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Now let me talk about the superpotential. This is undegraduate complex analy-
sis. This will be a function encoding holomorphic disks with boundary on L. There
are two, the top and the bottom. Let me define a moduli spaceM(A) andM(B),
where these (A and B) are in π2(M,L). Then

M(A) = {u ∶ (D2, S1)→ (M,L) ∶ [u] = A, ∂̄u = 0}

and likewise for B.
So for the two-sphere there is one disk in each class. Now I will define a function

W ∶ {ρ ∶ π1(L) → C×} → C. So for the circle, the representations are precisely
determined by C× itself. So I’ll write z for ρ([1]). Then z ↦ #M(A)ρ([∂A]) +
M(B)ρ([∂B]). This will be finite in general if L is nice enough. So ρ of the top
disk gives us 1 ⋅ z + 1 ⋅ 1

z
. If L is a torus, you’ll get (C×)n.

Let’s solve Hiro’s exercise,
∂W

∂z
= 1 − 1

z2

which has critical points ±1 with critical values ±2.
Let’s compute some homology of this. So one model (not Sullivan model) for

HF (S1, S1), called Lagrangian quantum homology, due to Biran–Cornea, is based
on ideas of Fukaya later treated by Oh.

Take a good model for homology and take a Morse–Smale function f ∶ L→ R.
So I’m out of time so I’ll write the answer, End(S1) = C⊕C, that is, ⟨P ⟩oplus⟨Q⟩.

Now Q is a unit, and for ρ = +1 we have P 2 = Q. This is evidently not the singular
cohomology. I didn’t have time to motivate this model. I wanted to introduce the
model because it’s easier than Floer homology. For CPn one can do the same thing.
There are many things that one can do for endomorphisms of one object using it.
In the second part we’ll see C[h]/h2 − 1 again in a different disguise.

3.3. Ana. So I come from a very different area, I’ll explain in a bit how matrix
factorizations work and do some calculations, and show a little bit how the magic
goes.

To begin with, fix a ring R = C[t, t−1] and take W ∈ R and we’ll define

Definition 3.1. The function W is called a (super)potential if dim(R/∂tW ) is
finite. This quotient is the Jacobian ring of W .

There are several choices about how to do this, if you are curious about gener-
alizations ask me or Toby.

Definition 3.2. A matrix factorization of W is a pair (M,dM) where M is a
Z/2-graded free finitely generated module over R and dM is an odd morphism
such that (dM)2 =WidM . I’ll also call these twisted differentials and denote them
by M . A morphism of matrix factorizations M → N is an R-linear map, well,
MF (R,W ) has objects matrix factorizations and morphisms which are morphisms
of matrix factorizations which are compatible with the twisted differentials modulo
nulhomotopic morphisms.

So these were studied starting around 1980. This category is monoidal, admits
a triangulated structure, and these can be related to certain things in physics, con-
formal field theories, D-branes, maximal Cohen–Macauly modules, path algebras,
and a practical result for our purposes is
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Proposition 3.1. (Dyckerhoff 2009) The Hochschild cohomology of MF (R,W ) is
isomorphic to the Jacobian ring, concentrated in even degree.

This will give the first contact with Mirror symmetry.
So like François and Hiro, we will focus on W = t+ 1

t
. Predicition 1 of homological

mirror symmetry is that End(S1, p = 1) is Jac(W ). Then ∂tW = 1 − 1
t2
= t2−1

t2
, and

then Jac(W ) ≅ C[t]/⟨t2 − 1⟩. So this matches.
Let’s let S be

(R⊕2,( 0 t
t

t−1 0
)) .

with W = t2

t−1 (after the change of variables t↦ t − 1).

Proposition 3.2. (Dyckerhoff, 2009) S generates MF (R, t + 1
t
).

The proof is long so I’ll skip it but we can compute something nicer. We want to
compute End(S). I’m going to write down explicitly what the matrix factorization
looks like

R

f0
��

t //

f1

��@
@@

@@
@@

@ R

g0

��

g1

  A
AA

AA
AA

t
t−1 // R

f0
��

R
t

// R
t

t−1

// R.

Maybe I should have said that the moprhism space has a differential. δ0 ∶ hom0 →
hom1 is given by

δ0 = (g0t − tf0,
t

t − 1
g0 − f0

t

t − 1
)

and

δ1 = (
t

t − 1
f1 + g1t, tg1 + f1

t

t − 1
).

Let’s compute hom0, first we take the kernel of δ0, this is (f0, g0) such that g0t = tf0
so that f0 = g0, which is the image of R

∆Ð→ R⊕R so is R. Then Imδ1 is the set of
f0, g0 such that f0 = t( f1

t−1 + g1) and g0 = t f1
t−1 + g1 and this is tR. So the homology

is C.
Similarly, hom1 is the kernel of δ1 modulo the image of δ0, which is (f0, g0) such

that t( f1
t−1 + g1) = 0 which is again R, and the image of δ0 is pairs (f1, g1) such

that f1 = t(g0 − f0) and g1 = t
t−1(g0 − f0) wihch is again tR. So we get again that

the quotient is C and the endomorphisms of S, we have again the same calculation
C⊕C.

4. Hiro II

I have twenty minutes left. I can do one of two things. I can prove the equivalence
of the other categories or I can summarize what actually happened and clarify, get
our heads out of the trees and see the forest.

What we were supposed to have proven is that Fukλ(CP1) is equivalent ot
MF (C×) with respect to W − λ where R = O(C×) = C[t, t−1].

Once you pass to the homotopy category the right hand side has a triangulated
structure. On the left hand side we should be taking a completion to match up with
this, so that they are both Z/2Z-graded dg categories. Then the strategy is first to
find generators. How do we do that? Ana stated a proposition or theorem of Toby’s
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which is that this matrix factorization S = RVV
t

t2−1t

��
R

where R′ = C[t, (t − 1)−1]

and this generates MF (R′, t2

t−1) and that’s the same as MF (R, t + 1
t
). Then from

François’ talk, Abouzaid, [missed names] showed that equatorial circles in CP1 with
ρ = ±1, generates Fuk±2. We stated these theorems, these are the objects we know
we want to test.

Corollary 4.1. The Fukaya category of CP1 is equivalent to DEndFukλ
(S1).

This is a souped up version of the Mitchell embedding theorem for dg categories.
Once I find a generator, I can take modules over the endomorphisms of the gener-
ator, This is usual mumbo-jumbo. Again, MF (C∗,W − λ) ≅ DMod(EndMF (S)).
Once we show the right hand sides are equal we’ve got what we want. How do
we show that these categories are equal? Maybe you get God-damned lucky and
EndFuk(S1) ≅ EndMF (S) as Z/2-graded A∞-algebras. You might say that we
didn’t prove anything that looked so intimidating. François didn’t have time to
compute what he wanted to compute, but we got the cohomology of the right hand
side. We didn’t show an equivalence at the level of Z/2-graded A∞-algebras, we
computed that they have the same homology. In this case we’re saved.

Lemma 4.1. Both of these algebras are formal.

We can get an explicit map on the right hand side to realize formality. On the
left hand side (the Fukaya category) it actually isn’t formal in characteristic 2.
So we’re reduced to showing an isomorphism of graded algebras H∗(End(S1)) ≅
H∗(End(S)). For François, we heard that H∗EndFuk(S1) ≅ C[h]/(h2 − 1) where
h is odd.

The claim is when you compute the algebra of EndMF (S), you can just compose
using the presentations of the kernel and image that Ana wrote down, and see you
get the same thing.

Corollary 4.2. Once I have this isomorphism H∗(End(S1)) ≅H∗(End(S)), and
so you get a lift to an equivalence at the level of dg algebras.

You can tell that already there’s a lot of nontrivial mathematics, but hopefully
this illustrates some of the immense category of math that mirror symmetry brings
together and hopes to relate. All of this is much more general. We did a great
disservice to Toby’s theore, for instance.


