
MAX PLANCK WORKSHOP ON HOMOTOPY THEORY,

MANIFOLDS, AND FIELD THEORIES

GABRIEL C. DRUMMOND-COLE

1. June 15: Charles Rezk: Elliptic cohomology and elliptic curves

[Good morning everybody, I welcome you here at the Max Planck institute. Most
of you know are coming from HIM and so I wanted to steal five minutes of Charles’
time. I want to talk about research in Germany outside universities. There are
four societies, ordered from basic to applied. Max Planck is 1.6 billion euro per
year, but all subjects, law, history. That’s about the budget of Stanford. It’s
like one small university. The Fraunfhofer society does basic research looking for
applications, 1.7 billion. The Helmholtz society works directly with industry, with
budget 3.4 billion. The Leibniz association has budget 1.4, Oberwolfach is part of
this. This is a mix of basic and applied. That’s research in Germany. Max Planck,
each institute is built around people who run research institutes, with exceptions
like here. The private grants are like five percent of our budget. Every state has
roughly the same number of Max Planck institutes because the money is half and
half federal and state.

We in Bonn are the only Max Planck institute that doesn’t have groups, we want
to do all of mathematics. We do our guest program. We have 20 grad students
who do three to four years. They’re funded here but might be advised elsewhere.
We work closely with the big Bonn graduate school. We have 30 postdocs, with
positions from one to five years. The rest is 50 people who do whatever they want
to do. We’d prefer if they worked together. You should come here, relax from other
duties, and do mathematics. You apply, we pick you, and then you come.

We have administration. You don’t see them but they’re really good. We have
IT and people you may meet if you want money. We have a small but officient
staff.

I wanted to show you this great picture, the institute was opened 30 years ago,
this is a picture of Hirzebruch and Lüst, who was president of the Max Planck
society at that time. One does admin for 2 or three years. I want to show the
opening of the arbeitstagung in 1987, the index of the signature operator on loop
space is on the board. This will be the fifth Felix Klein lecture but he promised to
catch us up.]

I hope this talk will be understandable even if you haven’t heard the previous
ones. The talk on Wednesday will be on a completely different topic.

I’m interested in the following setup. I’ll take R a commutative S-algebra, so a
spectrum with a highly structured multiplication, representing a cohomology theory
if you want. I have the unit spectrum gl1(R), which is a (−1)-connected spectrum.
You take the underlying space Ω∞R, which projects to π0Ω

∞R = π0R. I take inside
of that (π0(R))×, and the pullback is GL1(R). This has an ∞-loop space structure
built from the multiplication on R. If I take [X,GL1R], this is the units of R0(X).
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2 GABRIEL C. DRUMMOND-COLE

The question is what we can say about the homotopy type of gl1(R). As a space it’s
GL1(R), which is basically the same as Ω∞R, but this has all this other structure.
One famous example is the sphere spectrum.

Think about, say you have E,F spectra. You can take [F,E]sp, or you can
take [Ω∞F,Ω∞E]Top∗ , and there’s a functor Ω∞ between these. Among the maps
Ω∞F → Ω∞E are the H-space maps, and this is where this has to land. These
are exactly the ones that induce cohomology operations which are Abelian group
homomorphisms. The question is, what can you say about this functor? The answer
usually is that there’s nothing in particular to say. It’s not generally surjective or
injective. An easy example where it’s not injective is when these are Eilenberg–
MacLane spectra, suspended appropriately. In special cases, though, you can say
more.

Example 1.1. I’ll suppose that F is 0-connected and E is rational, that is,
π∗E = π∗E ⊗Q. Then Ω∞ ∶ [F,E] → [Ω∞F,Ω∞E] is injective and has a canonical
retraction. This is not deep. It’s easy to compute stable maps for a rational spec-
trum. So [F,E], the stable maps are homomorphisms of graded Abelian groups
π∗F → π∗E, because a rational spectrum is a product of the rational Eilenberg–
MacLane pieces. I’ll define

r ∶ [Ω∞F,Ω∞E]→ [F,E]

where f ↦ [π∗f]. You know if you have a stable map, well, it’s a tautology that
it’s a retraction. Also, in fact, the image of this inclusion lands in H-maps, and in
this case that’s an equivalence [F,E]→ [Ω∞F,Ω∞E]H .

We can apply this to R a commutative S-algebra, say rational. I can take, I can
use the map s ∶ GL1(R) → Ω∞(R). This was defined as a subspace. I wanted to
have pointed maps, the cartoon version of what it does is take x to x−1. The space
GL1(R) is not necessarily connected, so I’ll replace it with its 0-connected cover,
its base point component.

Let me go back and say that r is an idempotent E on the set of unstable maps
with these hypotheses, with image [F,E].

I’ll take s and apply this idempotent Es ∶ gl1(R)⟨0⟩ → R. This is an isomorphism
of π∗ for ∗ ≥ 1.

Let me do this again but in a more complicated way.
So I have this idempotent again E on [Ω∞F,Ω∞E], with the first connected and

the second rational. So I get f ∶ F 0(X)→ E0(X). I want to compute Ef .

Proposition 1.1. If X is connected and finite dimensional then

Ef)x = ∑
n≥1

(−1)n−1

n
Crnf(x, . . . , x).

Now Crn is the cross-effect, if f ∶ A → B is a function between Abelian groups,
then Cr1f(x) = f(1) − f(0), Cr2f(x1, x2) = f(x1 + x2) − f(x1) − f(x2) + f(0). In
general

Crmf(x1, . . . , xm) = (−1)m−∣I ∣ ∑
I⊂{1,...m}

f(∑
i∈I
xi)

Now Crnf ∶ (Ω∞F )∧m → Ω∞E.
If I have a function between Abelian groups, I can factor f ∶ A → B through

Z[A] → B which is a homomorphism, taking a to [a]. I only need to do this for
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maps δ ∶ A → Z[A] and because B is rational I can do this for Q[A]. I will write

down the right hand side explicitly, Eδ(x) = ∑ (−1)
n−1

n
Crmδ(x, . . . , x), but the Cr

term looks like ([x] − 1)n so the sum looks like “log([x]).” In practice, I only need
to apply this to f for which large cross effects vanish. If cross-effects vanish for all
n ≥ N , that’s the same as saying that Q[A]→ B factors through Q[A]/IN+1. Now
you can use the property of the natural log that you know, that it takes products
to sums. Then you can show directly that Eδ(x + y) = (Eδ)(x) + (Eδ)(y).

I wanted to show this so that later I can do something similar, linearize a function
if I can make some series converge.

Let me apply this now to the case I was interested in, GL1, I’ll apply this to the
map s on the other board. You’ll get an answer that’s not much of a surprise in
retrospect.

I have s ∶ GL1(R)→ Ω∞R. I want to look at (Es)(x), and this is only a formula
for connected spaces, and this turns out to be given by the series

(Es)(x) = ∑
n≥1

(−1)n−1

n
(x − 1)n = logx

which is an operation R0(x)× → R0(X).
Somehow this looks like a curiosity, it wouldn’t work if it wasn’t rational. Sur-

prisingly, you can do something.
Now I want to look at K-theory, p-adic K-theory. I’ll actually be able to read

off something interesting.

Example 1.2. Now I want to have E = F =K∧P . Then

[Kp,Kp]
Ω∞ÐÐ→ [Ω∞Kp,Ω

∞Kp]H ⊂ [Ω∞Kp,Ω
∞Kp],

which is maybe easiest to see by a computation. These are, respectively, Zp[[Z×p]]
and Zp[[Z]] which is the limit of Zp[[Z/pn]] and this is the obvious map (which is
not a ring map) induced by the inclusion of Z×p into Zp.

The element [λ] is the Adams operations (ring operations) ψλ ∶ Ω∞Kp → Ω∞Kp

and these are also the [λ] on the left hand side.

What I want to concentrate is the idea that there is a retraction.
It’s getting near to where I should take a break. Let me construct one retraction

and then we’ll see, maybe take a break. The first thing I’m going to use to get things
set up for what I’m going to say later, the first method is to use Bott periodicity

for p-adic K-theory, Ω∞Kp
βÐ→ Ω2Ω∞Kp. So I also have Ω2f which is β−1(Ω2f)β,

which is already an H-map. The idea is that I’ll take an unstable map and turn it
into a stable map by iterating ω, sending it off to ∞.

The first method, given f an H-map, I’m going to take limk ω
(p−1)pk(f) = Ef .

I claim that this is idempotent and exhibits a retraction. The proof is easy once
you know how to compute everything.

I know all I need to do is compute ω on Adams operations, because everything
is a linear combination of these. It turns out that if you do the calculation, you
only need to look at what Adams operations do on the 2-sphere. It turns out that

ωψλ = λψλ. So limλ(p−1)p
k

ψλ. This turns out to be ψλ if p doesn’t divide λ and 0
if it does.
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2. Charles Rezk: Lecture 2

The idea of method two is to make use of transfers. If I have a finite covering

map Y
fÐ→ X, then stably there is a map the other way Σ∞+ X → Σ∞+ Y which is

K0(Y )
τfÐ→ K0(X). Stable maps have to commute with all transfers. However,

unstable maps need not. So you can determine which H-maps are stable maps just
by seeing where they commute with transfers.

Proposition 2.1. A map f ∈ [Ω∞Kp,Ω
∞Kp]H is Ω∞ if and only if f ○ τp = τp ○ f

where τp is transfer with respect to X ×ECp →X ×BCp:

K0
p(X ×ECp) K0

p(X ×ECp)

K0
p(X ×BCp) K0

p(X ×BCp).

f

τp τp

f

The proof is a calculation, since we know about K-theory, the K-theory of
X ×BCp is an extension of K0

p(X) by T mod T p − 1. The transfer in K-theory is
easy to compute. You get that τp(x) = xN where N is the regular representation.

So for f = ψλ, then τpψλ(x) = ψλ(x)N ; on the other hand ψλτp(x) = ψλ(xN) =
ψλ(x)(1+Tλ +⋯+Tλ(p−1)), which is either px if p∣λ or ψλ(x)N if p doesn’t divide
λ.

I’ve been describing things in terms of idempotents. Let me describe something I
can do there that picks out the infinite loop maps. We can produce an idempotent
E on [Ω∞Kp,Ω

∞Kp] with image the stable maps by saying (Ef)(x) = f(x) −
1
p
⟨f(τp(x)), c⟩. This formula is only good mod torsion. I just should check this

on the universal example, which is torsion free. What is ⟨ , c⟩? Remember that
f(τp(x)) =K0

p(x)[T ]/(T p−1), and this sends T ↦ ζp, so we land in K0
p(X)⊗Z(ζp).

If you want to check a formula like this, you check it on Adams operations, and
I’ve given you all the ingredients.

Let’s now apply this to GL1. This is a construction originally due to Tom Dieck
in 1989. I rediscovered it and it sometimes gets my name attached but it was
known.

Applied to GL1(Kp), I’m interested in maps of stable

[gl1(Kp),Kp]
Ω∞ÐÐ→ [GL1(Kp),Ω∞Kp]H → [GL1(Kp),Ω∞Kp].

The structure on GL1(Kp) is multiplicative, not additive.
There’s a theorem of Adams and Priddy that says if I take the 4-connected cover

of gl1(Kp), that’s equivalent to the 4-connected cover of Kp. This is not something
that usually happens. That meas that I can feed this thing into the machine because
it’s not very far from K. I will just replace this in my commutative diagram. This
is also proved by Madsen–[unintelligible]. Start with f ∈ [GL1(Kp),Ω∞Kp]H , this
is an Ω∞ loop if and only if

K0
p(X)× K0

p(X)

K0
p(X ×BCp)× K0

p(X ×BCp).

f

Pp τp

f
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Here Pp is a power operation, something you define without looking at the unit.
This uses the product E∞ structure. This gives a reliable way to check whether or
not a map is an infinite loop map.

tom Dieck gave the formula ℓ ∶K0
p(X)× →K0

p(X) defined by

ℓ(x) = 1

p
log

xp

ψp(x)
= ∑
n≥1

(−1)npn−1

n
(θ

p(x)
xp
)
n

is representend by a spectrum map ℓ1 ∶ gl1(Kp)→Kp which exhibits the equivalence
on 3-connected covers. I’ll leave this as an exercise using the above. Use the fact
that Pp(x) = ψp(x) − θp(x)N ∈K0

p(X ×BCp).
[more hints.]
Adams and Priddy did this in a different way, using completely different methods.

Other people wrote down infinite loop maps. [Unintelligible].
I defined a more general construct for rational things. In fact, the following is

true.

Proposition 2.2. Let F be a spectrum and E be p-adic K-theory. Then the map
[F,Kp]→ [Ω∞F,Ω∞Kp] is injective with image equal to the image of an idempotent
E. It’s computed on finite dimensional X up to torsion by

Ef)(x) = ∑
n≥1

(−1)n−1

n
(Crnf(x, . . . , x) −

1

p
⟨Crnf(π∗1τp(x), . . . , π∗nτp(x)), c×m⟩) .

The πi are projections from X ×BC×np →X ×BCp. So ⟨ , c×n⟩ corresponds to some

sort of evaluation, I’m not going to write it down, it goes K0(X ×BCnp )→K0(X).

Once you’ve proved this, it turns out that tom Dieck’s formula,

Proposition 2.3. Remember I have the shift map s ∶ GL1(Kp) → Ω∞(Kp), and
Es = ℓ1, tom Dieck’s map.

In fact, Kp is not crucial, you really need the target to be a K1-local ring
spectrum. Let me state a generalization, using Bousfield–Kuhn. If you liked method
one, using a limit involving Bott periodicity, that silly trick is actually much more
general and lives at the level of homotopy. I start with a space V and a map

ΣdV
αÐ→ V , of pointed spaces if you like. We’ll say d is positive, and we’ll make a

functor ϕV,α from Top∗ → Sp. It’s a slightly startling construction.
So a spectrum is a sequence of spaces connected by maps. I can use, given the

space X, I should tell you that E is spaces underlineEk and maps Ek → ΩEk+1.
I’ll tell you ESkd ∶= Map∗(V,X) and the map to ΩdEkd+d = ΩdMap∗(V,X) =
Map∗(ΣdV,X) is ○α. We can define TelV,α ∶ Sp→ Sp by TelV,α(X) = hocolimF(ΣdkΣ∞V,X).
We find that the stable telescope TelV,α ≅ ϕV,α ○Ω∞.

We can use this idea to factor Sp
LK(n)ÐÐÐ→ Sp, through an inverse limit of telescopes

Sp Sp

Top∗

LK(n)

Ω∞ ϕn

where ϕn is the Bousfield–Kuhn functor.
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Now if E = LK(n)E, we get get a map

r ∶ [Ω∞F,Ω∞E]H
ϕÐ→ [LK(n)F,LK(n)E]sp ≅ [F,E]sp

is a retraction of Ω∞. [missed a little.]
Let me just write down an example for Morava E-theory. Then we’ll call it a

day. There’s a general formula. Let’s take E to be a Morava E-theory, an example
of a K(n)-local spectrum.

I’ll write down the formula for the idempotent

Proposition 2.4. The Bousfield–Kuhn idempotent E on [Ω∞F,Ω∞E]H is com-
puted by

(Ef)(x) =
n

∑
r=0
(−1)rp(

r
2
)−r∑

[α]
⟨f(τ rp (x)), α⟩

where τpr ∶ E0 → E0(X × B(Z/p)×r) is [missed] and α ∶ (Zp)×n → (Z/p)×r, with
⟨ , α⟩ is a character map evaluated at α, a map E0(X×B(Z/p)×r)→ E0(X)⊗E0D.

From this, you can determine whether something is an infinite loop map by
checking that it commutes with τpr transfers.

Finally, the motivation was gl1. There’s a version that I can apply to non-
H-maps, so I can apply it to the shift map from GL1(E) back to Ω∞E to get
ℓn ∶ gl1(E)→ E. Let me do the n = 2 case. Then

ℓ2(x) =
1

p
log

xpN2(x)
N1(x)

.

I’ll remind you that Morava E-theory has power operations where E0(X) ψrÐ→
E0(X)⊗sE0

Ar. So N1 is

E0(x) ψ1Ð→ E0(x)⊗sE0
A1

normÐÐÐ→ E0(X).
Since I didn’t talk about Hecke operators, I’ll say this is the multiplicative version
of the first Hecke operator. N2 is even easier. In this case there’s a distinguished
subgroup of order p2 which is the p-torsion. So

N2 ∶ E0(X) ψ2Ð→ E0(X)⊗sA0
A2

id⊗πÐÐ→ E0(X)
where π ∶ A2 → A0 classifies G[p] ⊂ G. It turns out thatXpN2(x) ≡ N1(x) (mod p).

On homotopy groups, where ∗ is positive, let’s say even, we get

f ↦ f − Tyf + pk−1f.

Then Tpf is 1
p
times the additive version, the trace of ψ1. The Hecke operators

show up in modular forms. If I put in an Eisenstein series I get 0. This is related
to calculating the string orientation of tmf. Since I’m out of time, I can’t give you
a punchline. The punchline is that there’s something suspicious that indicates that
there’s something equivariant going on.

[question]
There’s a K(2) local spectrum, you can compute, up to torsion, you can write

it as gl1(tmf)
ℓ2Ð→ LK(2)tmf and this factors through tmf∧p . The conjecture is

that this happens because tmf has this fancy structure in the background, this
equivariant structure, these operations that I’ve argued should exist.

[Let’s thank Charles again and see you back at 3.]
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3. Nathalie Wahl: three points of view on string topology

[So before we start the afternoon session, let me say that everyone who registered
has a folder with the list of abstracts, please pick that up if you did register. Please
fill out a sheet so you can get reimbursement if there is one in there.]

I will start by saying what I mean by this. I’ll talk about string topology on
manifolds. I mean the space of maps from S1 into M , LM . Then this goes back to
Chas–Sullivan, what they did is to construct a product, when we have based loops,
you get a product by concatenation of loops. If we go to chains on the loops, take
Cp(LM) ⊗ Cq(LM). You should think of your p-chain as a family of loops, your
q-chain as a family of loops. Think of the chains of basepoints in the manifold,
and where they intersect you can take a product. When I do this, this should give
me a map to Cp+q−n(LM), where I lose the dimension of the manifold because I
am taking an intersection. There is a product here, some sort of graded product.
There is also a circle action by rotating loops. What they show is that together
these two things form a Batalin–Vilkovisky structure, they satisfy a relation with
too many terms to write down.

The question I will address today is, are there more interesting operations on
chains or the homology of LM? Charles has been talking about operations. I’ll be
mixing, mixing some things from the homology and things that we are taking the
homology of.

So inspiration from string theory, string theorists think that there should be
operations parameterized by the moduli space (chains on) the moduli space of
Riemann surfaces. You have your strings, they are circles, they evolve, they interact
somehow, they form surfaces, you maybe get genus, and then they output. The
Batalin–Vilkovisky structure have some number of inputs and one output in genus
zero.

The first point of view, the Chas–Sullivan, I wanted to call this geometric, and
that turns out to be very difficult, very tricky, you can ask Gabriel, who has just
posted a paper on this approach, this physics approach, I don’t know much about
this, and then I’ll say, let’s do something more easy, let’s do algebra.

There are several things that one could do, I’ll assume M is 1-connected and
work over a field and there’s a model that says C∗(LM) can be modeled by the
Hochschild chains on C∗(M) valued in themselves. We already know that the S1

action we had here is modeled by Connes’ B operator. The idea here is the algebraic
structure of cochains onM should give structure on this Hochschild complex. Then
you say okay, so what is this algebraic structure on cochains on M , so on H∗(M),
this satisfies Poincaré duality, and is what is called a Frobenius algebra and therefore
cochains on M should be some homotopy version of Frobenius. Somehow making
this precise is not so easy. I’m going to keep simplifying. I don’t have a good
way to give a homotopy Frobenius algebra. Over the rationals I can cheat and use
[Lambrechts–Stanley] who say that C∗(M) are quasi-isomorphic as a commutative
differential graded algebra to a strict commutative Frobenius algebra. You can do
this even if the manifold is not formal. It’s an actual Frobenius algebra. So what
do I want to do with this? I want operations on this Hochschild complex. With
Craig Westerland I built a machine for doing this. We input in the machine a
type of algebra and what comes out is a chain complex acting on C∗(A,A) of such
algebras.
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If my input was “symmetric Frobenius algebras” (saying that the pairing is
symmetric) the output is the chain complex of “Sullivan diagrams” which I will
describe in a second. If my input is a “commutative Frobenius algebra,” a slightly
stronger condition, then the output was calculated by Klamt and it’s called “loop
diagrams” which I’ll talk about in a little bit. I could also input an open conformal
field theory and get as output a closed moduli space, and I don’t know how to use
it in string topology.

Let me explain Sullivan and loop diagrams and the harmonic compactification
of moduli space.

So SD(p, q) will be a space of p to q Sullivan diagrams. I hav p inputs and q
outputs and this is an equivalence class of fat graphs of p disjoint circles with q
other boundaries modulo edge collapse away from the p circles.

A fat graph is a graph with a cyclic order at the vertices. Maybe something like
this: [picture]. You can fatten this. the outputs should have start points. This is
an object of this sort. I make the equivalence relation, I can collapse edges but not
loops.

Sullivan diagrams are equivalence classes of such graphs, and the topology is the
metric on the p circles. The rest of the graph is, the metric is just on the circles.

What do these have to do with moduli space?

Theorem 3.1. (Egas–Kupers) Metric fat graphs on p circles with q outputs have
a quotient to SD(p, q), the domain models moduli space of Riemann surfaces with
p+q marked boundary components (this is what fatgraphs were invented for); this is
a special version of that old theorem where we only take certain fat graphs, and the
space on the right SD(p, q) is a model for Bödigheimer’s harmonic compactification
of moduli space, unimodular compactification.

We’re starting to know more and more about this quotient map π, on homology
it’s an isomorphism on the Batalin–Vilkovisky components, genus zero with one
output, and on the other hand, kills all stable classes in the homology of moduli
space. We also know more things, there ar classes in the compactification that are
not in the moduli space.

Going to the Sullivan diagrams, they actually model some specific compactifica-
tion, this is a compactification where you allow, say you have a surface with genus,
you allow some handle to go to a very thin one, or you allow an output to become
a point, as long as you can think of water having to go through.

I owe you a definition of loop diagrams. I remember when I went to algebra, I
took the simplest model I could find. Some might say I took too simple a model,
and yet I come out with something having to do with moduli space.

I said if we started with a Frobenius algebra I get loop diagrams LD(p, q), an
element there is (∆, P,w, ℓ), and what are these things? So ∆ is a set of points on
p circles (including the base points of each circle). Let me draw a picture. [picture].
Then P is a partition of ∆ into a number of subsets. The w is a set of weights
on each partition subset, and ℓ is a map from the disjoint union of q circles to
the disjoint union of u circles modulo (∆, P ). These are my loop diagrams. The
topology is that from the metric on S1, the placement of these points, with the
weight increasing if two points of the same partition subset collide. They become
one point, if the partitions were different they join and if they were in the same
subset the weight increases by 1. That’s the topology on the space.
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As I have been trying to suggest with the pictures, there is a map SD(p, q) →
LD(p, q), we sort of know this from the algebras, and this takes a Sullivan diagram,
and it remembers the points on the inputs where the graphs are attached, and the
weight is the genus of the graph that is forgotten, and the output loops are given by
the outputs of the string diagram. This map is not surjective at all. In particular
you could start doing many things with loop diagrams. It seems to be quite close
to being injective. On the components that it hits, these spaces seem to be quite
close to each other.

I wanted to go back to string topology now. I said I would take three different
poitns of view. I want to go back to string topology and the geometric approach.

I started by this geometric approach to string topology, we intersected these
chains of loops and this is tricky to do in practice. There’s a construction of Cohen–
Jones, they have a construction of the Chas–Sullivan product and the construction
is a product on the loop space. We start with LM × LM , and we can look at this
as LM ×M LM , this maps from two disjoint circles into M accepting a map from
the space of maps of two circles that agree at the basepoint into M . If I am in this
subspace, then I can go to the loop space by taking the concatenation product.

Maps(◯◯,M)↩Maps(∞,M)→Maps(◯,M)

We need to reverse this first map, they use Pontryagin–Thom, and to do this they
construct a tubular neighborhood of LM ×M LM , a neighborhood that looks like
a bundle, you go LM × LM , collapse whatever is outside that neighborhood, and
land in the Thom space of that bundle, and at the level of chains you get a map
(at the level of homology an isomorphism) to LM ×M LM , and then from there to
LM . That’s the Cohen–Jones construction.

LM ×LM → Th(N(LM ×M LM))xrightarrowc∗LM ×M LM → LM.

Now I want to argue that loop diagrams are precisely the right kind of thing to do
this construction. What do I mean? Suppose I want to generalize the Cohen–Jones
construction? I started with maps from 2 loops toM and we are now thinking about
p loops. We have some points on the loops, and then, this is LMp×∆d1−1×⋯×∆dp−1,
and then we do self-intersection, given by my condition, where I go to maps from
my circles where, these are loops satisfying the intersections given by the partition
at time t If they satisfy such an intersection, then I can use my map ℓ, the outputs,
to go into LMq, I just read off some new loops, these things we’re assuming that
the intersection is satisfied. This looks like what I’ve written for Cohen–Jones. I’m
missing w, and the weights, there’s a problem with this construction, these are to fix
the non-tubular neighborhood. What we had in the original Chas–Sullivan situation
we had a nice tubular neighborhood, we don’t have a tubular neighborhood but a
stranger object. What we had, let me do an example to show what goes wrong.

If I start with a coproduct diagram, label my outputs 1 and 2, I’m looking at LM ,
and I cross with ∆1, which is the position of the non-basepoint attaching point,
I’m looking at (γ, t), looking at the space where γ(t) = γ(0). This is codimension
n when t ≠ 0,1 but it’s codimension 0 if t = 0 or 1. If we do this on S1 instead of
the ∆1 factor, it looks like codimension n everywhere except at zer, where I have
two fibers. The reason for this, I’ll say this, well, let me finish this instead of trying
to go too quickly on other things. At time t = 0, every loop satisfies γ(0) = γ(0).
A neighborhood of that looks like two copies of, well in general it’s TM . I can use
the tangent vector to push my two points apart, using a geodesic. I get a different
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point in the space, I can do this in two ways, I can do this in the beginning or the
end of my loop. If I do something nontrivial, I have two choices. What happens
in general, we can describe these as colimits of tubular neighborhoods, of bundles,
and you can thicken up bundles that are too small. This is something I’ve been
doing, joint with Nancy Hingston.

I’m at the end of my talk. Let me say a couple more things. I was supposed to
do three points of view on string topology, Sullivan and then Poirier, and recently
Poirier with Gabriel and Nathaniel Rounds, that’s a slightly different model. Here
I showed two points of view and get the same space. There’s a model of Kaufman
(sp?) and Penner giving strings interactions, and they’re using arcs in surfaces, and
this also gives a model for string topology. I should stop.

[Loop diagrams form a prop? Can you see that this acts on the negative tangent
bundle over the loop space?]

I don’t know.
[What if you took the entire prop?]
There’s a bigger thing that comes out, a huge thing, and it’s a bit, it’s surprising

that this huge thing, most of it collapses down and it becomes this nice simpler
complex. As a homotopy theorist the big thing is okay, but it doesn’t look too
much like moduli space.

4. Thomas Niklaus: a universal description of global spectra (or
cohomology theories on stacks)

[Tomorrow evening you’re all invited to a reception. So that will be the only
official dinner this week.]

It looks like a crowded audience, I’m happy to speak here. I want to report on
a joint project with David Gepner. We wanted to understand things related to
elliptic cohomology.

I’m teaching a course about ordinary homotopy and homology. I’ll pass to sta-
ble homotopy theory. One question you have to answer is “why stable homotopy
theory?” Sometimes this is painful. Why would you want to pass to spectra? I can
think of two reasons you want to do this.

(1) There are lots of phenomena that stabilize, like the Freudenthal suspension
theorem or the cohomological suspension isomorphism. So stabilization
feels like it’s leading to the core of something.

(2) Maybe you want to represent cohomology theories. If you have a cohomol-
ogy theory it’s represented by a spectrum. This lets you compute natural
cohomology operations. In motivic homotopy theory this was used by Vo-
evodsky.

One you formally invert the suspension functor on pointed spaces, this solves both
1 and 2. You have these two a priori independent motivations and this solves both
of them.

I want to talk about this in an equivariant version. You could look at spaces with
an action of the compact Lie group G. You have equivariant cohomology theories or
the equivariant Freudenthal theorem. Now you have to invert more things. Stabilize
with respect to ∧SV , where V is a G-representation. Again once you’ve done that,
cohomology theories become representable, which are graded cohomology theories
graded on representations, not integers. Those occur all over the place. The most
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important one is equivariant K-theory. In degree zero these are vector bundles,
and that becomes representable.

I want to take the global setting where morally we encounter things that respect
all Lie groups. Schwede has studied this but I will take a different approach. I
will work with topological stacks, some kind of functor from spaces into groupoids.
Instead of giving definitions, I’ll give examples

Example 4.1.
BG, the category of G-bundles.
X, which sends X to continuous functions into X, which gives an embedding of
spaces into stacks.
quotient stacks [X/G] where X has a G-action. This gives a functor, not fully
faithful, from G-spaces to stacks.
there are orbifolds (it’s open whether they can always be written as [X/G]).

Just as G-spaces have a homotopy theory, stacks have a homotopy theory, and
that’s what I want to contemplate. This homotopy theory I’ll just denote Stacks.
Say it’s model categories or infinity categories or homotopy categories you prefer,
I’ll say that’s what I mean by Stacks. This happens to be equivalent (Gepner–
Enriquez) to orbispaces, which is equivalent (Schwede) to global spaces. In other
words, these are different ways of describing the same homotopy theory. This has
an inclusion from all equivariant homotopy theories but it has more.

For example, what are the cohomology theories I will care about? K-theory will
be one. I can just as before define K-theory groups for stacks. Because they restrict
to equivariant K-theory they have stability phenomena.

(1) X → BG mean that ΣV X , for V a G-representation, which is the same as
SV ∧BG X , this is a suspension isomorphism. I’m smashing over BG, it’s a
relative smash. Then this stabilizes restricted like this.

(2) The cohomology theories I have in mind restrict to RO(G)-graded theories
on G-spaces.

I have the stabilization phenomena and cohomology theories, how do I represent
them, as I asked in the beginning.

Theorem 4.1. (N., Gepner)

(1) We can “stabilize relatively” SV → BG in Stacks to obtain a homotopy
theory StabV(Stacks) and in a formal way we can stabilize, but in a relative
way. I’ll describe that later, and it’s equivalent to stabilize with respect to
all one point compactifications of V → X where V is a vector bundle.

(2) An object E ∈ StabV is informally given by an assignment which assigns to
a vector bundle V over X an ordinary spectrum EV (X ). Whenever you

have Y → X it produces a map EV (X ) → Ep
∗V (Y). Whenever you have

SV → SW over X it will give you EV (X ) → EW (X ). It will satisfy some
axioms. It will be a functor, I’ll write down the axioms later.

(3) Every cohomology theory on stacks is represented in StabV(Stacks). By a
cohomology theory I mean something that assigns an Abelian group to each
vector bundle over each stack. That will become representable by such a
thing.

(4) StabV (Stacks) is modelled by a model category called orbispectra Sporb

which is Quillen equivalent to Schwede’s global model structure. Now every
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guy that Stefan has produced gives us a cohomology theory of spectra. That’s
the thing we were really after, and why? Because:

(5) There are objects related to TMF in StabV (Stacks), which has the prop-
erty, for example, built using ideas of Jacob, that, well, TMF 0(BT ) =
Γ(Muniv,G

top). Also, there is like inertia K-theory and its cousins (for
orbifolds only) and I define the value KV

inert(X ) to be KΛV (ΛX ). So we
use the theorem twice, once to define K-theory of ΛX (the inertia groupoid)
and then to say what we want about the left hand side that we have defined.

The inertia group [Λ([M/G])] is the disjoint union of [Fixh(M)]//G,
which is functors from pt/Z to [M/G], this is a version of elliptic cohomol-
ogy, K-theory of the loop space, some version of Tate K-theory.

Now I want to describe what this means, to relatively invert representation
spheres. I want to talk about stabilizing with respect to a functor and how to make
that precise.

The thing I want you to take away, when you want to go from stacks to a global
setting, you need to localize in a relative setting.

I’ll have to get more precise and thus more abstract. Now PrL will be presentable
∞-categories and left adjoint functors.

One important piece of structure is the tensor which makes this symmetric
monoidal, and this corepresents Quillen bifunctors. A morphism from that product
is the same as a Quillen bifunctor. If I fix one object it preserves colimits in the
other variable, and vice versa.

The category of spaces is the unit. This is very useful. It was introduced by
Jacob Lurie.

I want to take C a Cartesian closed presentable∞-category, and S a set of objects
or rather a class of objects in C generated by a set closed under smashing, retract,
and equivalence. These are the objects you kind of want to invert. For example
I can let C be spaces and S be S1. I can let C be G-spaces and S representation
spheres. For motivitic homotopy theory, you have C be motivic spaces and S is P 1.
ModC is presentable∞-categories tensored over C. By this I mean you can tensor

objects in M with objects in C. An object tensored over G-spaces is a G-enriched
model category, for instance.

Definition 4.1. I say M in ModC is S-stable if

(1) M is pointed and
(2) ∧s is an equivalence M →M for every s ∈ S.

In the first case, where I let C be spaces and S the circle, then this is ordinary
stability. For G-spaces I get G-stability. So we want to impose S-stability for an
appropriate class S.

Theorem 4.2. (Mostly Robalo, but also Lurie, Hovey, many others, Voevodsky)

(1) You can formally invert the inclusion ModCS−stable into ModC
(2) explicitly, if S = {s} then StabS(M) ≅ colimModC(M∗

∧sÐ→M∗
∧sÐ→M∗ → ⋯)

if s satsifies cyclic invariance. so this is the same thing as sequences of

objects m0,m1, . . ., with equivalences mi
∼Ð→ Ωsmi+1.

Let’s look at our examples. We get spectra, as expected.
(3) The stabilization of any module category M happens to be equivalent to

the stabilization over S of C tensored over C with M . We use that this
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tensoring commutes with colimits. Now we have an endofunctor of stable
categories, it’s called smashing localization StabS( ) ∶ ModC → ModC.
Then StabS(C) admits a unique symmetric monoidal structure such that
C → StabS(C) admits a symmetric monoidal refinement. This gives pre-
cisely one structure on spaces with unit the sphere, which is something that
Jacob does.

(4) If tensoring with s preserves compact objects and everything (C) is com-
pactly generated, then we can understand compact objects in the stabiliza-
tion, which will be important for Brown representability. Then every com-
pact object of StabS(C) is of the form Σ∞+ c⊗S−n. If you have a cohomology
theory defined on compact spaces, you extend it to compact spectra and then
use a version of Brown representability to prove that it’s a cohomology the-
ory. This is under some well-known assumptions on a triangulated category,
satisfied in our setting. In the motivic setting this was proved by Spitzweck
and [unintelligible].

Now we want to move to the more complicated setting where we relatively sta-
bilize things. Let me say that the setting is more complicated but all these things
still hold true.

What is the setting here? C is locally Cartesian closed and should be thought of
as stacks. I want to fix a class F of pointed morphisms, which you should think of
as spherical fibrations.

Definition 4.2. Let c ∈ C and M ∈ModC, then M/C =M ⊗C C/c where C/c is the
slice category.

Example 4.2. (1) If C is spaces andM is spectra thenM/c is just the category
of parameterized spectra over c.

(2) If C is G-spaces and M is G-spectra, then I can take M/(G/H) and that
turns out to be SpectraH . That’s why I call it the slice category.

Now I want to say what I mean for a category to be stable with respect to my
class.

Definition 4.3. I say that M ∈ModC is F-stable if

(1) M is pointed and
(2) ∧SE ∶M/S →M/S is an eqeuivalence for E → S in F

For example, take F = {s→ ∗} for s ∈ S, and then we get the old stability.
There is now the following question. We inverted smashing with spheres in spaces

and got spectra. What about all SV → X for all vector bundles. We know that
in parameterized spectra these and in fact all spherical fibrations are equivalences.
This is a formal way of showing this thing we already knew.

Here’s a lemma:

Lemma 4.1. IfM inModC is F-stable then it is F-stable where F is the saturation
of F under

(1) A→ S,B → S ∈ F if and only if A ∧S B → S ∈ F
(2) pullbacks and being a summand or factor is a smash product (I guess this

latter is already in the first case).
(3) if C is an ∞-topos, then descent
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(4) (something) which tells me that in equivariant homotopy theory (May–
[unintelligble]) which tells you [missed]

Proposition 4.1. (N., Gepner)

(1) ModCStabF →ModC is universally invertible via StabF ,
(2) StabF is smashing, and
(3) there is a formula I might not get to write down, basically what I said at

the beginning, you can write this as a colimit. This is important because
this is what we use to describe the examples.

Corollary 4.1. Compact objects (let me specialize to stacks) in StabV(Stacks)
(where V is one point compactifications of vector bundles over stacks with the ∞
section) is of the form

(Σ∞+ X )−V

where V → X is a vector bundle.

Corollary 4.2. Brown representability.

Corollary 4.3. The Picard category, the objects which are invertible in StabV(Stacks)
is just Z, we run the usual object that says this has to be a retract of a sphere which
is a sphere.

I’ve only showed you this very formal part. We formally inverted representation
spheres and got some Brown representability things. This can be easily modelled by
a very nice model category that looks like orthogonal spectra, it’s a functor category,
and then we can write down an explicit equivalence to Stefan’s model category and
then import his examples. Or for the TMF or Tate K-theory example, this is what
we do. For TMF we follow Jacob’s ideas. This is how you can use this relative
inversion. Sorry for going overtime.

5. June 16: Owen Gwilliam: Factorizing the index

[Welcome to the second day of the workshop.] Today I’ll talk about how ideas
from factorization algebras might connect up to the index theorem. In the eighties
there was a frenzy of activity about this, and this is a first attempt to find a
factorization algebra version of index theorems.

There are two parts, a kind of warmup and then a more sophisticated analogue.
The simplest version of the index theorem, I have two vector bundles over a

closed manifold

V 0 V 1

X

There is an ellictic operator Γ(X,V 0) PÐ→ Γ(X,V 1) and the index of P , which is
the difference between the dimension of the kernel and cokernel of P is the same as
the integral over X

∫
X
Td(X)ch(P ).

I’m going to do some factorization version of this. I need to introduce some ideas
from the Batalin–Vilkovisky formalism. The input is a shifted symplectic vector
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space. I want to deal with dg modules over R and have a symplectic pairing of
degree 1. I’ll say the category Prsymp1(R) is the pullback of the following:

Presymp1(R) Ch(R)/R[1]

Ch(R) Ch(R) ×Ch(R)

The bottom horizontal map is ∧2×R[1] and the right vertical map takesM → R[1]
to (M,R[1]). So these are complexes with a pairing to R[1]. If you have M,ω ∶
∧2M → R[1] in Presymp1 then I can get a bracket { , }ω ∶ M ⊗M → Sym(M)
which takes m⊗m′ to ω(m,m′) and you can extend by Leibniz to get a Poisson0-
algebra. Now BV quantization, you deform the differential, you take dSym M and
deform by ∆ω. I won’t say what it is, but you can ask me after the talk.

Let me summarize what this construction does, and let me say that doing this
carefully is joint work with Haugseng–Scheimbauer.

Proposition 5.1. There is a symmetric monoidal functor from Presymp1 with
⊕ to Ch with tensor product. We have this for Sym, and the deformation of the
differential goes along for the ride. When R is a field of characteristic zero, k, then
for M a symplectic object with finite dimensional cohomology, then bvq(M,ω) has
one dimensional cohomology.

Let me summarize that in a picture.

dgV ectfin

Sympfin1 Chinv

Presymp1 Ch

V↦V ⊕V ∗[1]
cq

bvq

bvq

Here cq(V ) ≅ det(V )[δ(V )] where there’s this funny shift depending on the Betti
numbers of V .

There’s an action of Gm on V where λ takes v to λv. Then on the dual λ takes
v∗ to λ−1v∗. You can check that Gm acts on cq(v) by λχ(v).

So I’ve given you this functor and now I want to show how to use the functor
to make a factorization algebra. So unlike the determinant, the bv functor makes
sense on large complexes. If I look at the index theorem, I might have infinite
dimensional kernel and cokernel.

Before, remember, I had V ● which has V 0 and V 1. I’m going to explain how
to take V and do everything open set by open set on X. Let me define a cosheaf
on X, I have the category of open sets on X, and there’s a functor to Presymp1,
which puts in degree 0 and 1 the compactly supported sections over V 0 and V 1,
and then in degree −1 and −2 the compactly supported sections of V 0 ⊗Dens and
V 1 ⊗Dens. Then when I pair I can integrate my densities. The differentials use P
and P ∗. Call this sheaf EP .

Now I can consider the following composition bvq ○ EP . this takes U ⊔ U ′ to
bvq ○ E(U ⊔U ′) ≅ bvq ○ E(U)⊗ bvq ○ E(U ′).
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The upshot is that bvq ○ EP is a factorization algebra on X. Then we know that
bvq ○ Ep(X), for X closed, there’s a natural action by Gm by λind(P ), but this is

the same as Hfact
∗ (X, bvq ○E), which I can write of the homotopy colimit over disks

of bvq ○ E . So this is a local to global object that recovers the index.
That was the first part of the talk. Thanks to BV quantization you can give

a local construction that globalizes. So I want to pursue something more like
Riemann–Roch. I’ll do a complex geometry version, there are other versions.

What is an elliptic complex that lives on every complex d-dimensional manifold?
We have a shy student in the front who didn’t want to speak up. But there are
tensor bundles over every complex d-fold, T (m,n) = (T (1,0))⊗m⊗(T 1,0)∗⊗n. Consider
Ω0,∗(X,T (m,n)), the Dolbeaut complex. I’ll do the exact same procedure on this
thing.

I want to construct a presymplectic vector space. Again I’ll work with compactly
supported sections. I want to work in a funny degree to match the conventions from
physics. So E(m,n) will be Ω0,∗

c ( , T (m,n))[1]⊕Ωd,∗( , T (m,n)∗)[d]. The d is my
replacement for twisting by the density bundle. So I get

−2 −1 0 1 2

⋯ ∂ // Ωd,d−1(X,Tm,n∗) ∂ //

RRR
RRR

RRR
RRR

R
Ωd,d(X,Tm,n∗)

lll
lll

lll
lll

l

Ω0,0(Tm,n) ∂̄ // Ω0,1(Tm,n) ∂̄ // ⋯

.

What does BV quantization produce from this? I have the moduli space of closed
complex d-foldsM(d), and sitting over it is Cd, the universal d-fold.

We have that bvq ○ E(m,n) is a line bundle on M(d). Can I identify it? What’s
its Chern class? This is called an anomoly in physics?

Grothiendieck–Riemann–Roch tells us how to compute the Chern class of this

line bundle, ch(T (m,n)
c/M ) ∧ Td(Tc/M). Our strategy to try to recover this kind of

result is to follow Alessandro’s suggestion. We could put a connection on it and
compute the curvature, which represents the first Chern class. I can do a formal
geometry version. To compute the curvature of a connection on this line bundle,
let me fix a point in the moduli space and over it the line bundle. The formal
neighborhood of this point x in the moduli space, thanks to Kodaira and Spencer,
this is a dg Lie algebra, specifically Ω0,∗(X,T 1,0

X ) =∶ TX . If you continue using
this Koszul duality dictionary, then a voctor bundle is a module of TX , and c1
corresponds to the action of TX on this module. If you have an action, you can
postcompose by trace to get a map to your base ring, and this composition is a
1-cocyle in the Chevalley–Eilenberg chains of the Lie algebra, which you can think
of as a cohomology class in the Lie algebra cohomology of the Lie algebra. I won’t
explain this dictionary but I want to use it.

Since TX is local onX, we can consider the problem forX a polydisk of dimension
d. The action is via the Lie derivative, and so it’s a local action. There’s a local
version of Lie algebra cohomology for these. The c1 lives there. This is a version
of Gelfan’d–Fuchs cohomology. We’ll piggyback on others’ computations of this. I
won’t describe this Lie algebra cohomology other than saying it’s topological, so
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you can write down continuous cochains and you can look only at cochains with
support on the small diagonal.

With Brian Williams, who is somewhere in here, we computed, and let me in-
troduce some notation. Consider the universal bundle EU(d) over BU(d). I can
look at the 2d-skeleton and pull back to P (d). For any complex d-fold, I can do a

Borel construction, take P (X) = P (d) ×U(d) TX .

Theorem 5.1. (Gwilliam–B. Williams)
First,

● there is a natural isomorphism Hk
loc(TX)

≅Ð→H2d+k
sing (P (X),C).

● The more interesting part is that we actually identify the cocycle for bvq of
this E(m,n) thing.

For bvq ○ E(m,n) (a factorization algebra as before), if I just compute
the first Chern class when X is a polydisk, well, let me say, for X con-
tractible we have H2d+1(P (d)) ≅ H2d+2(BU(d)). Then that maps under
this isomorphism to

c1(bvq ○ E(m,n)) ≅ [Td ∧ ch(Tm,n)] ∈H2d+2(BU(d)).

So there’s a corollary of the statement that may or may not be familiar to
you. It’s quite punchy. You’ve certainly heard people assert in some cryptic way
something like this.

Corollary 5.1. Let’s go to the simplest interesting case, with d = 1 and n = 0, so
these are just tensor powers of the tangent bundle. Then the central chare of “free
βγ” for T⊗m is 6m2 + 6m + 1. For m = 1 you see that c = 13, for m = 0 the central
charge is 1. If you try to do holomorphic bosonic string theory, where the target
is Ck, then the central charge is k − 13, which means you need the target to be 13
complex dimensional or 26 real dimensional. Physicists called this the holomorphic
anomaly.

I have just a few minutes. I got something that looks nice from the point of
view of the index theorem. There’s a consequence in the language of factorization
algebras, which I’ll sketch to finish off.

As we remarked before, since E has a +1 presymplectic pairing, the functor
Sym(E()) is a Poisson0-algebra. Then T maps as a Lie algebra to Sym(E(−1)[1]).
This map sends a vector field v to (γ, β)↦ ∫ (LV γ)∧β. Then Sym(Tc[1]) maps to
Sym(E). I’m basically out of time. In words, both of these things are the associated
graded of more interesting factorization algebras. On the right this looks like BV
quantization. On the left, if I take the Chevalley Eilenberg chains, I get something
that looks like this. You might ask if I can lift to a map of the quantizations? The
obstruction to doing that is precisely this Chern class. If it does vanish, you can lift,
but if it doesn’t you could centrally extend and then do it. In the case of Riemann
surfaces, you can recover Virasoro, you get a map from the Virasoro factorization
algebra to a certain class of vertex algebra of higher dimension.

6. Claudia Scheimbauer: (Op)lax natural transformations for higher
categories and two applications

This is joint with Theo Johnson-Freyd.
Thank you very much for giving me the opportunity to speak here. (Op)lax

natural transformations, that means either lax or oplax. What is this? If I have
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two functors F and G from B to C, I want a natural transformation. If I have

B1
bÐ→ B2, I can apply both F and G to the 1-morphism, and we can require to

have maps

F (B1)
F (b) //

η(B1)
��

F (B2)

η(B2)
��

G(B1)
G(b)

// G(B2)

If the target is at least a 2-category, we could rerquire the square to fill in with an
isomorphism (called strong or pseudo) or with a map from G(b)η(B1)→ η(B2)F (b)
(lax), or the reverse (oplax).

For bicategories, this is already subtle. There is a bicategory of strong finctors,
either lax or oplax transformations, and modifications, but these bicategories cannot
be composed. These do not form a tricategory if you take lax or oplax here. So
there’s no interchange.

Why are we interested in such a thing? This will be both motivation and appli-
cations. The first application is relative or twisted field theories. Relative comes
from Freed–Teleman and twisted from Stolz–Teichner. Take B to be a category
of bordisms, and C to be some 2-category, probably a delooping of vector spaces.
Take two such functors, symmetric monoidal, field theories, and ask for a natural
transformation T0 → T . We often choose T0 to be the trivial field theory. We call T
the twist or if invertible the anomaly. In examples these are not strong. You have to
weaken this a little bit. In the language of those examples, this is a projective func-
tor; this implements the idea that to an object in the bordism category we get an
element in T (b). Another way to get at this is to do “boundary theories,” you can
go back and forth in a certain way. There was a nice paper of Fiorenza–Valentino
to go back and forth.

Another reason to want lax or oplax. If you take topological bordisms, your
category has adjoints. Then all strong natural transformations are invertible. So
you won’t get interesting examples of relative field theories unless you relax the
conditions.

The second condition is what we could call Morita theory for (op)lax structures.
You take an algebra (object in some higher category C) and now morphisms, we
normally require φ(ab) = φ(a)φ(b). If I have a morphism φ ∶ A→ B, I can consider
the square

A⊗A //

��

A

��
B ⊗B // B

and I can decide how to fill this. I can request this to be strong, lax, or oplax. We
can play the same game with bimodules. For bimodules M and N , I can take

A⊗M ⊗B //

��

M

��
A⊗N ⊗B // N.
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Now I can make a category with objects algebras, morphisms bimodules, and 2-
morphisms morphisms of bimodules, and here I should again choose strong, lax, or
oplax.

Now to preview the results,

(1) we build such a framework and then can give a definition in this setting
and prove, interpret this element in T (b) for oplax, or for lax

Theorem 6.1. “lax trivially twisted field theories are untwisted”

(2) We can also build the higher category Alg∗1(C) using strong, lax, or oplax
for ∗. This will give Ed-algebras, we’ll see that later.

The basic idea, let me call this “the oplax square.” Given a (possibly symmetric)
monoidal (∞, n)-category C we construct an again (possibly symmetric) monoidal
(∞, n)-by (∞, n)-category C◻governing the desired diagrammatics. By C◻, I have
two indices and get an (∞, n)-category if I fix either one of the two indices.

All you need to know about this for the purposes of this talk is that there is an
(∞, n)-category C↓ ∶= C◻⋅,1 of “vertical” 1-arrows and an (∞, n)-category C→ ∶= C◻1,⋅
of “horizontal” 1-arrows. These have source and target maps to C that will let us
build natural transformations.

For an (∞, n)-category B and an (∞, n + 1)-category C, a lax natural transfor-
mation η ∶ F → G between strong functors is a strong functor η ∶ B → C↓. An
oplax natural transformation η ∶ F → G between strong functors is a strong functor
η ∶ B → C→, in both case so that s ○ η = F and t ○ η = G.

Let’s do examples. The lax case first. In this category C↓, the objects are vertical

arrows in C, a 1-morphism. Then in C◻, a one morphism between C1
cÐ→ C2 and

D1
dÐ→ D2 is a pair of morphisms ai ∶ Ci → Di and a 2-morphism a2 ○ c ⇐ d ○ a1.

The two-morphisms are [picture].

C1 D1

C2 D2

So let’s test the definition. Given F and G from B to C, then η ∶ B → C↓,
s ○ η = F, t ○ η = G. To β we get an object in C↓, that is a morphsim in C between
F (B) and G(B). I can look at what happens to the source and target of a one-
morphism, and then there should be a 2-morphism in C↓.

So for the first application, to relative or twisted QFTs, we have

Bordn C
F

G

Definition 6.1. Let T ∶ Bordn → C be a symmetric monoidal functor. An (op)lax
T -twisted field theory Z is a symmetric monoidal (op)lax transformation 1⇐ T .

Theorem 6.2. (Johnson-Freyd, S.) The lax trivially twisted theories

Bordn C
1

1
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are the same as untwisted field theories valued in the looping of C, ΩC.
Bord→ ΩC

Okay so let’s go back to our pictures on the top. We want the source to be 1
and the target to be b, so we have 1→ T (b). The 1-morphism will be

1 1

T(B2) T(B2)

1

T (b)

Z(b)

The two-morphisms I won’t draw but you get something from 1 to T (b).
For oplax, everything is switched. [pictures, missed some.]
Let me move on to the second application, the “even higher” Morita category

of Ed-algebras. Let C be a symmetric monoidal (∞, n)-category. Constructions by
Haugseng using∞-operads and by myself and Calaque using factorization algebras,
lead respectively to unpointed and pointed bimodules.

What is the category that is constructed here? It’s an (∞, d)-category, whose
objects are Ed-algebras, morphisms bimodules of Ed-algebras, 2-morphisms bimod-
ules of bimodules in a certain sense, and so on.

To give an example, for d = 1, we have algebras, really A∞-algebras, the mor-
phisms are bimodules, or actually homotopy bimodules. For d = 2, you take say, C
to be some nice category of categories. For E2 you get braided monoidal categories,
then monoidal categories, and then categories. We’ll see this later maybe in Chris
Schommer-Pries’ talk.

What can we do with this? Now we want to extend this to take (d + 1)-
morphisms, 1-morphisms of bimodules here. We’d add d2-morphisms, these should
be 2-morphisms in C. Now we can go all the way to d+n-morphisms in C. Now here,
we can choose if we want strong, lax, or oplax. We will fix this once and for all and
take the same type of morphisms all the way down. This will give an (∞, d + n),
in fact even symmetric monoidal, category Alg∗d(C). For this construction we’ll use
our oplax square which will let us use our morphisms.

Now the idea for d = 1, a lax morphism of algebras in an algebra object in C↓.
What does this mean? I have a map A⊗A → B ⊗B, and then both of these map
to A → B, and I have something in C↓ between these, which is a lax morphism of
algebras. If you do the oplax case you get the other direction.

Now we can play the game with a lax morphism of bimodules, it’s a bimodule
object in C↓. You can check that that’s exactly what you expect.

In the last two minutes, let me say some results.

Define C∗C⃗ to be C◻⋅,C⃗ for lax, C◻C⃗,⋅ for oplax, and [θ
C⃗ ,C] for strong.

Theorem 6.3. (Johnson-Freyd, S.) For both constructions of Algd(), under some

mild conditinos on C, I get (k⃗, ℓ⃗)↦ Algd(C∗ℓ⃗ )k⃗ is a symmetric monoidal (∞, n+d)-
category.

7. Chris Schommer-Pries: Extended 3-dimensional topological field
theories

I was first told about topological field theories because they gave manifold in-
variants. Here’s one, it gives you 0 if it’s not the 4-sphere and 1 if it is. But this is
stupid, it’s too hard to compute.
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A field theory invariant is supposed to be local. If you cut your manifold into
two pieces then you should be able to associate invariants to the two pieces and
reconstruct the invariant to the union. You could think that you give complex
numbers to the two halves and then multiply them. In dimension two this should
be variations on the Euler characteristic, and in dimension three always the number
1. Maybe we should associate also something to the boundary where we glue the
manifold together, maybe a vector space. To the first half maybe we get a vector
and to the second half a covector, and then I can reconstruct the invariant of the
manifold by pairing it to give a number.

This was done by Atiyah and Segal, one thing to do is axiomatize this in the
following way.

We have the category Bord(d−1,d), where the objects are d−1-dimensional mani-
folds and the morphisms are d-dimensional bordisms. Then Z should be a functor,
symmetric monoidal, to the category of vector spaces with ⊗. When we have dis-
joint union it goes to tensor product, the empty bordism gives me the trivial vector
space, locality comes from this being a functor, a symmetric monoidal one.

Extended TFTs are a variation where you cut up the manifold along higher
codimension surfaces as well. In order to do that, we had to find a home for
something more complicated. You end up getting a higher category of bordisms
Bordd−k,...,d−1,d and a functor to a higher k-category of nV ect. This is somehow a
delooping of what we had before. We started with a number and passed to vector
spaces. We had an endomorphism of the unit and that’s like a loop. For 2 − V ect
we want a symmetric monoidal two-category where the endomorphisms of the unit
is V ect. Then we would like to further deloop this.

What are some ways to deloop vector spaces?
Here’s an example. There’s this two-category Alg which is algebras, bimodules,

and maps, which showed up in Claudia’s talk. This is symmetric monoidal. The
trivial algebra, a k − k bimodule is just a vector space. You can look at extended
(one layer down) TFTs with this as the target.

This is the same as linear categories, which are Abelian, k-linear, satisfying
finiteness conditions, right exact functors, and natural transformations. You want
this to be interestingly monoidal and to do that, Deligne gives you something but
it’s only functorial for right exact things.

Let’s look now at algebras in here, keep Claudia’s machine going. Next you get
TC, the symmetric monoidal 3-category of tensor categories, bimodule categories,
functors, and transformations.

Here I’ll consider the oriented case to make things simpler. You can think of this
from the point of view of manifold invariants. These will be easier to compute. The
unfortunate thing is that as far as manifold invariants go, they have not been so
spectacular. Topologists are good at computing things and working with manifolds.
It’s really hard to come up with something to learn about manifolds that wasn’t
known in a simple way long ago. There are connections to quantum knot invariants
but you can do all of that with diagrammatics.

Recently in the past ten years there has been a rennaissance in our ability not
only to compute, to calculate, but also to classify TFTs. The surprising thing
is when you classify them, you see a structure emerge, a structure you want to
understand for reasons unrelated to manifolds. When you have higher bordisms,
you get higher algebraic structure.
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The easiest example is the statement that Fun⊗(Bord(1,2),C⊗) is the same thing
as commutative Frobenius algebras in C. With these classification results, they
proceed by combining two important basic ideas. The first is a differential topology
ingredient, Morse theory, Cerf theory, that tells you how to decompose manifolds,
and then something higher categorical, combinatorial, to classify functors between
higher categories. Combine these and you get classification results.

We have a presentation of Bord(1,2) here: [picture]. The objects are generated by
a circle. Then the morphisms are generated by the cup, cap, pants, and copants.
Reading up, you get a multiplication from the pants. You get a unit from the
cap. The relations say that this is a commutative multiplication, unital, and then
eventually see this is the universal theory for Frobenius algebras. Then any surface
gives us an equation in the language of commutative Frobenius algebras. We won’t
learn anything new about surfaces or commutative Frobenius algebras. Taking this
perspective allows us to look here and see the kind of games we can play. One thing
we can do is the process of dimensional reduction.

When I say classification, I haven’t done a complete and total classification.
Commutative Frobenius algebras are not classifiable in a precise sense. But we
can learn some things. One thing you can always do, there are maps between the
bordism categories. If I have a k-manifold, I can get a map from the d-bordism
category to the d + k-bordism category by crossing with my k-manifold. We could
consider Bord0,1 and cross with the circle. We get a functor that goes

Fun⊗(Bord(0,1), V ect)

Fun⊗(Bord(1,2), V ect)

OO

These are easy to understand, we have the objects + and − and then we have
morphisms a left and right elbow and relations that say when we compose these
we get the identity. This tells me that I should get two vector spaces and a way to
pair them, and an element in the tensor product, and I can get the identity. I can
represent the identity in the tensor product under the pairing. Then this should
be finite dimensional and that forces the value on − to be the dual of +. So you
get the elementary fact that a commutative Frobenius algebra is finite dimensional.
That’s one thing you can do.

There are different classification results. There’s a famous one, the cobordism
hypothesis. This is about fully local field theories. It says that functors from
Bord(0,...,d) to any symmetric monoidal category C is the same thing as the d-
groupoid of so-called fully dualizable objects in C plus SO(d)-homotopy fixed point
data (because we’re working with oriented versions). You can see this directly
by giving a generators and relations presentation for dimension 2. Now you get
an invertible two-morphism that witnesses the thing that used to be the identity.
But you have other morphisms, bordisms that connect and relate the two different
morphisms, and then you have new relations. [picture] This is the same as saying
the left and right elbow are adjoints. When you increase your dimension, you add
more duality to your structure. We had duality at the level of objects and now you
get it at the level of morphisms as well. If you want the oriented theory you get
extra structure there. I won’t give you a full list of generators.
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You can now classify these, we can look at

Fun⊗(Bord(0,1,2),Alg)
and this is a theorem in a paper which is now a book that this is equivalent to
the two-groupoid of semisimple symmetric Frobenius algebras, the same kind that
showed up in Nathalie’s talk.

There’s a relation between the bordism categorisBord(0,1,2) andBord(1,2), which
is the endomorphisms of the unit object. This is true in their targets so you get
a restriction map from semisimple symmetric Frobenius algebra to commutative
Frobenius algebras (by taking the center). There are many commutative Frobenius
algebras which are not semisimple, and if you take centers, that preserves semisim-
plicity. You can completely classify these semisimple symmetric Frobenius algebras.
[missed the classification]. They’re all sums of Euler theories.

Now we can move on to other classifications. This theorem lets you classify fully
local theories. Recently, well, here’s another theorem, due to Bruce Bartlett, Chris
Douglas, myself, and Vicary, a higher analogue of the situation for two dimensions.

Theorem 7.1. Bord(1,2,3) is free on an (anomaly free) modular tensor object.

We give an explicit presentation of the Bordism category. It’s the (1,2) pre-
sentation futher categorified. Identities become invertible morphisms. You get an
automorphism of the cylinder for the Dehn twist, and then you have non-invertible
generators which are handles of some kind. There is a list of relations, you ap-
ply Cerf theory and get a presentation that’s bigger than this, you whittle away
and the relations don’t look like anything, but after whittling away there are only
33 relations, all of which have clear higher structural meaning. You could look
at representations of this in a target like 2-vector spaces. You get a category, a
multiplication (a monoidal thing) and then an associator, and then a relation is
that it satisfies the triangle, pentagon, and hexagon, and twist relations, so it’s a
balanced braided monoidal category. Then you get things that tell you that these
things are parts of adjunctions. Things are both right and left adjoints. Then you
can express relations that say you are a rigid object, then ribbon category, then
eventually anomaly free. These are all things that are familiar to category theory.

So now, do I want to add anything to that? So now I’m in a good position, we can
look at functors, monoidal functors from Bord(1,2,3) into 2−V ect, and these are like
linear categories with the Deligne tensor product ⊠. Then these are anomaly-free
modular tensor categories. This is again Bartlett–Douglas–Schommer-Pries–Vicary.

You can also look at functors from Bord(0,1,2,3) into TC. There there’s a theorem
as well, joint with Chris Douglas and Noah Snyder. We identify inside the 3-
category the fully dualizable objects which are the so-called fusion tensor categories,
which are the ones that are semisimple. There’s a certain variation on this, the
spherical ones, which show up in nature, these are SO(3)-homotopy fixed points.
So these field theories contain spherical fusion categories, representation categories
of finite quantum groups. People who study finite dimensional Hopf algebras see
these a lot. So these also show up with Von Neumann algebras, people working
with operator algebras. They also come around from these TFTs. As before we
can do dimensional reduction, that tells you that the underlying category has to
be semisimple. You also get the Drinfel’d center from spherical fusion categories
to modular tensor categories. You can ask if this is surjective. The cokernel is a
group, the Witt group, and there are many interesting TFTs which have non-zero
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class inside the Witt group. The most basic example is quantum Chern–Simons
theory. For almost all choices of level they don’t extend to the point.

This is just scratching the surface. Just like every surface gives you an equation in
Frobenius algebras, every three-manifold gives you an equation in modular tensor
categories and spherical fusion categories. The most basic example that we can
extract from that is this basic three dimensional fact [picture]. This is a framed
surface in R3. This is a manifold, one that if you put two loops in SO(3), you get
the identity, the Dirac belt trick is what this picture is supposed to be. This is a
proof, a proof of something, a proof of a theorem of Etingof and [unintelligible]. If
you take, if you map to the quadruple dual, you’re canonically equivalent to the
identity. This is invertible, that tells you you have a natural isomorphism between
these two functors. What else can we show? What does the prime decomposition
of 3-manifolds tell you about modular tensor categories. The manifold invariant
picture is, I think, the wrong idea for the future of field theories. Instead we can
use what we know about manifolds to find out about these algebraic things.

8. June 17: Hiro Tanaka: A (possibly non-Thom) ring spectrum of
Lagrangian cobordisms, and the Fukaya category

[One announcement. There will be a barbecue at HIM, bring your own food and
dirnk, at 7 tonight.]

Thank you to the organizers for letting me talk at the workshop and letting me
be here for two months, I’ve gotten a lot of math done. I wanted to talk about a
relationship between a topic that belongs in stable homotopy theory and a topic
that belongs in symplectic geometry. There’s a central object in this story which is
an E∞ ring spectrum that I don’t know much about. I won’t assume that people
know any of the things in the title, except maybe E∞ ring spectrum, but let me
start by introducing Fukaya categories. I’ll do it with an example.

Consider the manifold M = C. One I’ll call γ, a curve, and the other will be
R which I’ll call P . I want to play the following game. I’m going to construct a
cochain complex. First I should tell you the underlying graded vector space. As a
vector space, or R-module, it’s generated by the intersection points between γ and
P . Let me name them p and q. Now I should tell you the differential. What is the
differential of the point p? It’s a count of the number of points in a moduli space.
You have to worry about signs but that’s a technical detail. I’ll count the number
of maps u ∶ R× [0,1]→M satisfying conditions. First, I want boundary conditions.
I want u(t,0) to be in γ. Likewise I want u(t,1) to be inside P . I want limt→±∞ to
be a constant path in γ ∩ P . There’s no way I can count the moduli space of such
things. Even smooth, there are infinitely many choices you can make. I’ll look not
just at strips of this form but strips satisfying a differential equatian ∂̄u = 0. This
has a natural ∂̄ operator because of the complex planes. I claim that there ar three
kinds of obvious maps. There are the obvious Whitney disks. There are constant
maps that go just to p and just to q. This is translation invariant in the R variable.
There’s an R-action. SO I count the number of points in the set after modding out
by this action.

I should think of these fixed points as −1-dimensional and exclude them. There
is one and exactly one strip, and so the differential of p is q. I claim that the
differential of q is 0.
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It turns out that this is a game we can play, this one is a little dumb but I
promise it’ll pay off later. In general we can fix a symplectic manifold (M,ω,J),
with a compatible almost-complex structure J . Being symplectic means that I’ve
chosen a 2-form ω which is closed and such that ωn is a volume form. An almost
complex structure J is an endomorphism of the tangent bundle of M such that
J2 = −1. What does it mean that they are compatible? It means that ω( , J )
is a Riemannian metric.

This is a lot of structure. In our example you can take M = C, ω = dxdy, and
J = i.

Now take two Lagrangians γ and P in M . In favorable circumstances, you can
define a cochain complex CF ∗(γ,P ), called the Floer cochain complex of γ and P .

Everything I’ve said in the example works here except for ∂̄, which might not
work because J might not be integrable. I can say du ○ i = J ○ du, and that’s what
I replace the Cauchy–Riemann equation with.

So I get a cochain complex generated by intersection points of Lagrangians where
the differential is given by counting a moduli space of holomorphic strips between
them.

What do I mean by Lagrangians? I mean half dimensional submanifolds where
the ω restricts to 0.

Given (M,ω,J), the Fukaya category of M is the category with objects certain
Lagrangians of M and morphisms between γ and P the Floer chains CF ∗(γ,P ).

So some remarks. You can try to do Morse theory on the paths from γ to P .
The gradient flow equation becomes the Cauchy–Riemann equation.

If P = γ, we have to make choices. In fact, the Fukaya category depends on
choices for k-tuples of objects. We deform P by a suitable isotopy and then we
compute the cochain complex with the deformed copy. I don’t want to get into
this.

[What’s composition?]
You sometimes hope that the audience won’t ask this question if you don’t want

to talk about Fukaya categories for half an hour. The infinite strip is holomorphi-
cally equivalent to a disk with two boundary points missing. The composition will
be defined by playing the same game with more points on the boundary. If I have
three Lagrangians, CF (L1, L2)⊗CF (L0, L1) needs to map to CF (L0, L2). I take
q ⊗ p to arr, so ar is the number of holomorphic maps from the disk to M such
that the three points that are missing map to p, q, and r counterclockwise, and so
on. The other question is, “is this associative?” and it is not. It’s associative up
to homotopy. You count a higher number of marked points. Was that homotopy a
choice? It was. Can I contract it? Yes, and so on. So this is an A∞ category.

This is equivalent to a strict category for us. Also, the coefficient ring depends
strongly on the geometry of M . I didn’t justify why this is Z-graded, and it’s often
Z/nZ-graded, this comes from the geometry of the situation.

Let me give some motivation. So this topic became more interesting to people
after a Kontsevich ICM address.

Conjecture 8.1. (Homological mirror symmetry) For every complex variety X
which these days people would restrict to being Fano or Calabi–Yau, there exists
another variety X∨, possibly with decorations, such that the following holds.

The derived category of coherent sheaves DbCoh(X) is a nice invariant of your
variety. On the other hand, you could also look at the Fukaya category of X if
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X is projective, it gets a symplectic structure. So the claim is that DbCoh(X) ≅
Fuk(X∨) and Fuk(X) ≅DbCoh(X∨).

This is verified in the cases we have checked. Why should you care about a
conjecture like this? One example is geometric Langlands. One way to state geo-
metric Langlands is that you can look at DbCoh(LocΣG) and DMod(BunLΣG). In
some cases, this category of D-modules should look like Fuk(T ∗BunLΣG). You’ll
see now that this looks a lot like a statement that would come out of the mirror
symmetry conjecture. You expect an SY Z-fibration between them in order to find
this duality and that’s what happns in the examples we know.

Okay, cobordisms. Let’s let L0 and L1 be Lagrangian submanifolds of M . Then
a Lagrangian cobordism is a Lagrangian submanifold Q insideM ×T ∗R. You might
like to think of a cobordism as sitting over an interval, and at the ends the things
you want your cobordism to be between. I could put this in M × [0,1] but that’s
not symplectic, so that’s why I replace [0,1] with the cotangent bundle of R.

There’s the part of the real axis that lives to the left of 0. We can ask that to
the left, we get a collared copy of L0 and likewise between 1 and ∞, we can ask
that it look like L1.

Just consider M × T ∗R projecting to T ∗R. I’m asking that its image to the left
of 0 and the right of R is the real axis with preimage L0 over each point to the left
and L1 over each point to the right.

Now we unite Fukaya categories and Lagrangian cobordism. FixM and consider
M ×C, reallyM ×T ∗R. What I can do is also fix a cobordism P , which is some mess
but looks okay to the left and right because it’s collared. Also fix a Lagrangian X
insideM . This is an object in the Fukaya category ofM . This cobordism realizes a
morphism in the Fukaya category between the ends of the cobordism. We compute
CF (X × γ,P ). What are the generators? They live over p and q. What are the
intersections about p? They’re intersections between L0 and X. So the cochain
complex is a direct sum of CF (X,L0) and CF (X,L1). For reasons that I refuse to
explain I shift the grading on the second complex. Now what about the differentials?
If I have a J-holomorphic map u →M × T ∗R and then project to T ∗R, I can look
at the image there to help classify. There were three kinds, the ones that are
degenerate at p, at q, and between them. The ones at p are in the differential of
CF (X,L0). Similarly, you get the usual differential of CF (X,L1). Finally there’s
a third piece ΞP . This is the mapping cone of a linear map. The fact that the
differential squares to zero implies that ΞP is a chain map.

In fact, this statement is true no matter what X we chose, so this is a natural
transformation, defined by a cobordism, between the functors represented by the
ends. That’s just an object in the Fukaya category by the Yoneda embedding.

Theorem 8.1. Let M be a symplectic manifold satisfying some conditions. Then
there exists a functor from Lag, well, what is that, objects are Lagrangians in M
with some conditions and morphisms are Lagrangian cobordisms with some condi-
tions, to Fun(Fuk(M),Ch) I can send L to CF ( , L) and P to ΞP

[missed some]

Theorem 8.2. (Nadler, Tanaka). For all Λ ⊂ M , the category LagΛ(M) is a
stable ∞-category.
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But cobordism categorise usually don’t have zero objects. The zero object here
is the emepty manifold. This might seem weird because not everything can be made
empty. But I can multiply by a function that pushes everything out to ∞.

Does this functor respect mapping cones? Yes, it’s an exact functor. Let me
give a geometric corollary.

It turns out that any compact cobordism in this category is an equivalence, not
because it’s an h-cobordism, but just because of topology on the space. This tells
us about characteristic classes in terms of the Fukaya category. Even if you didn’t
follow anything in this talk, this is a pretty clean statement.

Let me be a little more specific. The cartoon picture I drew earlier of Q ⊂
M × [0,1], you’ll never be able to do stable homotopy. If M is a point, you’d like
to study M ×R∞, not just M . The objects are Lagrangians inside of M × T ∗RN .
If I have Lagrangians in the wrong place, I can stabilize to push things to higher
dimensios. [missed some].

I want to make two claims about Lagrangian cobordisms.

Theorem 8.3. Consider M = ∗. Then Lag(∗)4 admits a symmetric monoidal
structure. It’s the direct prodect. Moreover, this respects finite limits and colimits
in each variable and the unit is the Lagrangian which is a point.

At first this looks dumb, but the fact that it preserves small limits and colimits
is what makes it really interesting.

Let me state a theorem that says that you’ll be linear over the category Lag∗(pt).
I want to set up a theory of modules or Lagrangian coboordisms linear over this
ring. I can take these R-linear categories.

Theorem 8.4. For ever module, there is an action respecting finit limits and col-
imits Lagpt(pt)Lag(U)→ LagΛ(M).

Corollary 8.1. Every LagΛM is linear over Lagptpt.

Let me give an example. Lagpt(pt) has that R∞ factor. It’s not hard to see that
Fun(Fukpt(pt), chain)is chainR. Sitting inside the Lagrangians is End(pt) and
then that maps to R [missed how]. I’ll end here because I’m already over time.

9. Arthur Bartels: June 18: The 3-category of conformal nets

This is joint with Chris Douglas and André Henriques. I’ll start very easy, with
the 2-category of rings. The objects are rings R, the 1-morphisms are bimodules

RMS , and the 2-morphisms are R − S-bilinear maps. TO be complete, we also say
that composition of 1-morphisms is the tensor product over R of TNR ⊗R RMS

and the unit is RRR as a bimodule.
Let’s make this a little more interesting, and go to the 2-category V N2 of von

Neumann algebras. Its objects are now von Neumann algebras, that is subalgebras
of the bounded operators on a Hilbert space B(H), closed in the ultra-weak topol-
ogy. We’ll need it later, so I’ll give the tensor product of von Neumann algebras,
their tensor product is, well, start with the algebraic tensor product. Pick Hilbert
spaces for A and B and then A ⊗B is in B(H⊗̄K) and you close with respect to
the ultra-weak topology. Then 1-morphisms are bimodules AHB where H is a
Hilbert space where A ⊂ B(H) and Bop ⊂ B(H) and the actions on H commute.
The 2-morphisms are bounded A −B linear maps.
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Composition is a little more complicated, AHB⊠B BKC , with ⊠ Connes’ fusion.
Usually this is not a completion of the tensor product. You can’t take A for the unit
since it’s not a Hilbert space, but you can take L2A, which is a canonical Hilbert
space which is an A-A-bimodule and the left and right actions have nice properties.
Often but not always, we can find that L2A is a completion of A with respect to
some inner product.

The question that started us working on this was asked by Stolz–Teichner. I’m
not sure how much they still care about the question, their program is much fur-
ther along, but the question was, are there interesting deloopings of V N2? Before
answering it, I want to come back to von Neumann algebras and point out a place
where it’s more complicated than the 2-category of rings.

Remark 9.1. Let A and B be von Neumann algebras. Then often there are
dense embeddings A ⊗alg B ↪ C but C ≠ A ⊗B. A priori this might look like the
tensor product but it’s not. In terms of this 2-category, this might mean that there
are more 1-morphisms than we bargained for in the beginning. An A⊗Bop-module
gives you an A−B-bimodule, but the converse is not necessarily true because of this
situation, it’s only true for the algebraic tensor product and not for the completed
one. For rings we just have the tensor product.

Now I’ll describe conformal nets, these are the objects of our delooping.

Definition 9.1. A conformal net is triple (A,H,u). Here H is a Hilbert space with
u ∶Diff(S1)→ PU(H). The u is C-linear (antilinear) if φ is orientation preserving
(reversing). We have A which sends every closed subinterval of our circle to a von
Neumann algebra inside the operators on H.

There are various axioms about the positions of the intervals.

(1) If I ⊂ J then A(I) ⊂ A(J).
(2) If I ∩ J is at most two points, then A(I) and A(J) commute.
(3) If I ∩ J is a point, then A(I ∪ J) is generated by A(I) and A(J).
(4) If I ∩ J is empty, then A(I) ∨A(J) = A(I)⊗A(J).
(5) uφA(I)u∗φ = A(φ(I)) and if φ is the identity on a neighborhood of the

complement of I, then uφ ∈ A(I).
(6) H ≅ L2(A([0, π]))

Example 9.1. Let G be a compact simple, simply connected Lie group. Then
there is a loop group L(G), maps from S1 to G, and there is a construction of an
action on a Hilbert space H0,k, a projective action. Once you’ve done this hard
work, you can define the algebras fairly easily. You takes LI(G) for the interval I,

where φ∣S/I is the unit element. Then A(I) = LI(G) in B(H0,k).

Okay, so before we come to the 3-category, let’s talk about representations of
A. A representation is an alternative for the Hilbert space H. So it’s a Hilbert
space K and we ask that A(I) sit inside B(K) and the only condition is that
this preserves inclusions in B(K). In particular we don’t require a vacuum axiom.
Wassermann defined in a beautiful way a tensor product for these representations,
so think of one of these representations, and another one, think of it in the circle,
split the circle in the right and left halves, and there is a canonical diffeomorphism,
reflection, between them, and this gives us a diffeomorphism A(Ir)op ≅ A(Iℓ), and
we can take the fusion product over this algebra. We forget the two intervals we
used for fusion, and in the middle we have K1 ⊠K2.
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There’s the following result about this representation category from Kawahigashi–
Longo–Müger, that if µ(A) <∞ for the net, then the representation category with
⊠ is a modular tensor category. I won’t define µ but we can define the finiteness
condition. Take the defining representation of the net, split the circle in four inter-
vals, and then group I0 and I2 to the left and I1 and I3 to the right, which means
we have to use some reflection, and then we obtain a bimodule, and the condition is
that this is dualizable in the category of von Neumann algebras. Then KLM proves
that this is a modular tensor category.

Of course, Reshetikhin–Turaev produced field theories from such things, a 1 − 3
topological field theory. Bord31 → V N2.

To summarize,

Remark 9.2. If µ(A) = 1, then the module above is invertible, then Rep(A) is
trivial, just contains {H}. So this is not injective.

Assume for a moment that A(I) are factors, that Z(A(I)) = C. Then I can
cut the cirle into the left and right halves and get A(Iℓ) and AIr , then I take the
commutant of the right side A(Ir)′, which must contain A(Iℓ). Then I get a Jones
index and that’s the number that I’d call µ(K). Then the sum over simple K of
µ(K) is µ(A), well [missed].

Theorem 9.1. (B., Douglas, Henriques) There is a symmetric monoidal 3-category
CN3 whose objects are conformal nets with µ(A) < ∞ and all objects are fully
dualizable. This deloops V N2.

Remark 9.3. Here what we mean is an internal dicategory in SymCAT, that’s a
notion that André and Chris invented. This might seem empty. To prove this, we
had to solve lots of analytical problems.

Remark 9.4. So I want to define the 1-morphisms. The 2-morphisms are closely
related to the representations. The 1-morphisms should end up being von Neumann
algebras if I take the trivial object. Let me restate an alternative definition of a
conformal net. A is a functor from the category of intervals to the category of von
Neumann algebras. The objects are closed compact oriented smooth intervals and
the morphisms are embeddings. And the von Neumann algebras also do embed-
dings. This gets rid of the additional data we have. We no longer have the Hilbert
space. We still talk about the action of the diffeomorphism group. We still have
axioms, locality, strong additivity, inner covariance, and vacuum.

Definition 9.2. A defect, well, replace the category of intervals with a slightly
bigger category, that of bicoloured intervals, red and green. The interval has at
most one color where the color changes, and there we ask for a local coordinate
near that point. Morphisms respect the colors and the local coordinate. An A − B
defect is a functor D ∶ Int●● so that on red intervals the functor coincides with A,
on green intervals with B, and for two colors it should satisfy the corresponding
axioms, locality, strong additivity as long as don’t split at the local coordinate, and
the vacuum axiom.

Briefly, if A = C = B, then what happens when I evaluate D on a large bicoloured
interval, that’sA of most of the red stuff and thenD of a little bit around the bicolor,
and then B of most of the green, this always happens. By strong additivity, I can
chop into pieces. Then if the nets are trivial these big one-colored pieces don’t
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contribute. Then all of the information is about the value on this interval, and it’s
independent of the choice of bicolored interval and is a von Neumann algebra. I’ll
stop here.

10. Haynes Miller: Localization in Homotopy Theory

[Welcome to the oberseminar. If Haynes were talking in our workshop I wouldn’t
introduce him. But this is also a colloquium. He graduated in Princeton and had
some stints, most of us know him at MIT, where he’s been for almost thirty years.
In topology he’s very well known (summary of research and teaching). I saw that
one of your first papers is a localization theorem in homological algebra from 1978
and now we’re hearing a continuation of that.]

Topologists, this is a good time to take a nap or check your email because I’ll be
doing a very gentle introduction.

Algebraic topology is a meso-scale enterprise. We’re interested in finite com-
plexes, things that are high but not infinite dimensional. For instance, we’re inter-
ested in knowing πk(Sn). When n > 1 we’ll never know more than a finite number
of these groups. Understanding maps between these complexes is a motivating goal.
There are systematic phenomena that relate these homotopy groups, often called
localization. There’s something preliminary you can do, called stabilization. If I
have a pointed space X, one thing I can do is embed it into the cone on the space,
this is contractible. I can take the cofiber of that, and that’s the suspension of X.
This is a sequence that’s set up so that the connecting map

Hn+1(ΣX) ≅Hn(X).

This destroys cup products in cohomology but it remembers the location of the
cells. We want to start by inverting the suspension operator. The most elementary
way to do this is the Spanier–Whitehead category. We start by defining the stable
maps from a finite complex to a pointed space as the direct limit of what happens
when I suspend both sides

lim[ΣkX,ΣkY ].
I can enlarge this by formally appending desuspended objects. I want to regard
(X,n) as the formal n-fold suspension ofX. This is a very primitive way of inverting
suspension.

This is fine working with finite complexes, but you do want to consider infinite
complexes at some point. You need a further process of adjoining colimits, and you
get to the stable homotopy category which I’ll call S. The basic domain of activity is
the stable homotopy category. It has many standard things defined on it, homology,
homotopy, oh, I should say, an object here is called a spectrum, that’s a terrible
choice of word. I can define πn(X) as {Sn,X}. That’s a homology theory, called
stable homotopy theory. You can define homology, which respects this limiting
process. This is a non-Abelian derived category. It’s got a triangulation, it’s an
additive category, a triangulated category. It has a smash product X×Y

X∨Y =X ∧Y . I
just want to work stably. You’ve eliminated the fundamental group, and then you
can often analyze things one prime at a time.

The next localization I want to do is localizing one prime at a time. In the stable
world, it’s quite easy to localize a spectrum. I should smash with a spectrum S(p)
whose homology is Z(p) concentrated in degree 0. This is a good notion for the
localization. This is an example of a much more general sort of localization due to
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Pete Bousfield (in the literature he’s A. K. but his friends call him Pete). If I have
any homology theory E, I can look for maps out of X into something else that are
E isomorphisms, and look for something terminal, and I can find that, it’s LEX.
So that’s what I got for π∗ ⊗Zp.

I’m going to talk about several localization theorems in different avatars. One
of them is a theorem of Serre. One way to say part of what he proved is that if
you invert all primes, if you tensor with Q you get π∗(S0) ⊗Q is Q in dimension
0 and that’s all. If I take some spectrum and multiply by p and keep doing that,

X
pÐ→X → ⋯, the homotopy colimit is p−1X. Each of these maps is an isomorphism

in rational homology. so X → LHQX is universal. A nice way to say Serre’s theorem
is that p−1X → LHQX is a weak equivalence.

The other theorem I want to remind you of is Nishida’s. What other things could
I invert, he asked? The answer is nothing. If I take the positive dimensional part
of the ring π>0S

0, that’s nil. I might be able to invert and get something more, but
Nishida’s theorem is kind of a no-go result for that.

Chromatic homotopy theory involves itself with generalizations of these results.
The first thing you learn about in homotopy theory is the Hopf map to S2 from

S3, which stabilizes to a map η ∈ π1(S0). This is the first positive dimensional
homotopy class. Stably, this is order 2, you have 2η = 0. This has relatives at

an odd prime, for any prime, the first p-torsion comes at S2p−3 α1Ð→ S0, and if you
precompose by multiplication by p you get zero, so the cokernel, I hope you’ll let
me say it’s S2p−3/p. So then the map descends to a map from this to S0 killed by
multiplying by p. Then you can take the kernel of that which is S−1/p and then
you get a map v1 from S2p−3/p to S−1/p. This turns out to be non-nilpotent. I can
keep iterating

S0/p vÐ→ S−2p−2/p v1Ð→ ⋯→ S−k(2p−2)/p.
These maps are essential, you can see this by using K-theory. That’s been impor-
tant historically. I can come into this on the bottom cell and out on the top cell
and get a map S0 → S−k(2p−2)+1, whose name is αk. It’s also nonzero, and the point
is that the whole motivation for constructing self-maps of finite complexes is that
it gives you a way to get infinite families in stable homotopy.

Another thing you can do is take the colimit of the mapping telescope of the
diagram I wrote up there, which I can call v−11 S0/p. What can we say about that
spectrum? It has no homology, all of the maps induce zero on homology. But
the maps are isomorphisms in K-theory. There is a K-theory isomorphism from
S0/p. I can understand this in terms of the universal K-theory isomorphism and I
get a factorization v−11 S0/p → Lk(S0/p). The theorem about this is that this map
is an equivalence, an isomorphism of stable homotopy. This is a theorem of Pete
Bousfield. It uses a calculation that I did for p odd and [unintelligible] did it for
two. I wish I could tell you π∗(S0/p), but I’ll tell you v−11 π∗(S0/p) = π∗(v−11 S0/p).
So two homotopy classes are ι ∶ S0 → S0/p and ια1 ∶ S2p−3 → S0/p. And that’s
about all., you get the calculation is Fp[v±11 ]⟨ι, ια1⟩. That’s analagous to Serre’s
computation. I want to give an expression analogous to the way I expressed Serre’s
theorem.

This process of looking for self-maps and constructing maps of spheres out of
them has a long history. It’s hard work. Larry Smith, Toda, Mark Behrens, [unin-
telligible], Mike Hill, have done constructions like this. I can take the mapping cone
of the self-map and see if it has a self-map. As long as p ≥ 5 it does and there’s one
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of degree 2(p2 − 1) called v2 and that’s due to Larry Smith. It seemed like these
are very special spectra that have self-maps like this.

Then the central event in chromatic homotopy theory revolutionized our under-
standing. This was Mike Hopkins, Jeff Smith, and Ethan Devinatz. You might ask
how Larry Smith knew his things were nontrivial. You can use complex cobordism
which K-theory comes from. He used MU to detect this, the basic ingredient in
the work of Hopkins and Smith (building on Devinatz).

(1) v ∶ Σ?X →X for X finite. If MU∗(v) is nilpotent, then v is nilpotent. But
they said a lot more. I have to introduce you to another cast of characters,
K(n)∗ is “Morava K-theory.” Jack Morava realized that K(n)∗ =

Fp[v±1n ] with ∣vn∣ = 2(pn −1). If n = 1 this is essentially (mod p) K-theory.
So finite spectra are filtered by how many Morava K-theories are zero

on them. To say that X is type n means that it’s finite and K(i)∗(X) = 0
for i < n. Ravenel proved that if K(i)∗(X) = 0 then K∗(i − 1)∗X = 0.

Let me tell you a second thing these guys showed.
(2) Any type n spectrum admits a self-map ϕ from some suspension Σ?X →X

given by multiplication by vp
k

n in the K(n) homology. Let’s let that sink in.
This is a positive dimensional element. Any type n spectrum admits this
symmetry, but there’s no condition onX except that the first non-vanishing
K-theory is in dimension n.

You might say this is vacuous because there are no type n spectra. But
(3) For all n there is Xn which is type n and not type n + 1. Moreover,
(4) This self-map is canonical essentially. Suppose I have any two type n spectra

and any map between them, and I take any two of these self-maps

X
f //

ϕX

��

Y

ϕY

��
X

f
// Y

and up to taking appropriate powers of ϕ, this diagram commutes.

There’s nothing special about the higher Moore space. You might have to go to vp2
but you always have this symmetry.

Take a type n spectrum, this is a type 2 spectrum, and I can localize it by
inverting the self map. This doesn’t depend on which power of phi you invert.
There’s a map X → ϕ−1X X. This is the canonical localization of a type n spectrum.
You’d like to know what the homotopy type of that is.

But let me go further. Let’s take the constructive perspective. You want a map
that’s an isomorphism in K(n) theory to something but do it in a constructive way.
I wand to map into X a giant sum ⋁K, a giant sum over all finiteK(n)-acyclic
spectra. I’ll call the result from coning these off X1, and then I can do that again
and get X2. In the end we get the finite localization of X, LfnX. These theorems
show that these two constructions coincide on type n spectra.
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Now I want to look at the other side of Serre’s theorem. There is a map from X
to LfnX which is a K(n)-isomorphism, I get a map

X //

##F
FF

FF
FF

FF
F LfnX

zzuu
uu
uu
uu
u

LK(n)X

but that’s not quite right since you know all previous K(n), we have the same
situation from being type n so it’s better to do

X //

&&LL
LLL

LLL
LLL

L LfnX

xxppp
ppp

ppp
pp

LK(n)∨⋯∨K(0)X

and I’ll call that Ln(X). The corollary of the calculation is that Lf1X → L1X is an
equivalence. In general this is the Ravenel telescope conjecture. Would you like to
change this to a question, Doug?

[Let’s call it a question, I don’t believe it.]
[If we knew it was true, what would we learn?]

We use Adams operations for L1. To do L
f
1 , my calculation was quite complicated

and this would give a much quicker way.
All right. So the nilpotence theorem, Hopkins and Smith, focuses on whether a

map induces zero on MU -homology. To do a better job you should take homology
operations in account. When you do that you get the Adams spectral sequence. I’ll
do this in the case that the spectrum isMU since this is the one that sees chromatic
periodicities most easily. So E = MU and E2 = Exts,tMU∗MU(MU∗,MU∗(X)) and
this converges to πt−s(X). Along the bottom row, say for X a sphere, you get just
a Z. There are higher ext groups that contribute. Let me write down what, and I
should say, studying this spectral sequence, Ravenel and Wilson and I used this to
make many calculations about stable elements. When X is a sphere and a prime
is 2, just for an example, you get

η ● ● ●
Z
0 1 3 5 7 9

In fact we know that η4 is zero but this thing doesn’t see this, it’s not nilpotent
here. Doug and Steve and I discovered that the generators of all these cyclic groups
[unintelligible]. We didn’t find out what you get by inverting η in the E2 term which
is not very topological since it’s nilpotent eventually. This was asked in 1967 and I
can give the answer now, what you see is what you get. If I’m going to invert η, I
want η−1E2, I might as well begin in homological dimension 0. These won’t be in
the E2 itself, but in the localizaton. I can call them v21 , v2, v

4
1 , v

2
1v2, and so on.

Theorem 10.1. (Michael Andrews, M.) η−1E2(S) = F2[η±, v21 , v2]/v22 = 0. This is
not on the zero line in MU , this is not chromatic.

We know how η4 is 0. The d3 takes v21 to η3 in the localization. This looks
familiar if you’ve thought about the relationship between KO and KU .
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Now we know we have one worldsheet and close by are other worldsheets con-
trolled by the ground field. Now we have motivic homotopy theory, and motivically,
things happen quite a bit differently. Their work lets me play with motivic homo-
topy theory. All of the groundwork has been done by these people so I can play
games.

Motivically, η is non-nilpotent. So cool, there’s another place where η is non-
nilpotent. In fact, Hu, Kriz, and Ormsby made a motivic version of this E2 page,
and they determined that they get E2(Stop) ⊗ Zp[τ]. That’s interesting. You can
use the calculation that we did here to find that motivically, there’s another, there’s
a d3 where d3(v1)2 = η3τ . Up there you hit a unit and kill the spectral sequence.
Now it hits something that isn’t a unit. If I localize, π∗(η−1Smot), this homotopy
is now known, it’s what’s left over, F2[η±, v41 , v2] = /v22 . This was a conjecture of
Isaksen and Guillou, and it’s easy from this point of view.

This new element is nonchromatic, but maybe we can try to play the same game
we were playing motivically. So maybe the next game is to cone it off and see what
we get. Take the motivic sphere and cone off η and ask if it has an interesting
self-map. Michael Andrews alone showed that there is a map. This is bigraded,
it’s degree 20 topologically and 12 in weight, and this is non-nilpotent, call this w4

1,
where η = w0. Andrew sketches that I could take motivic homotopy over R and
base change to C and that has an underlying spectrum. Michael has a sketch of an
object Xn and a self-map in the real version such that if I realize in the underlying
spectrum, the real points are a vn-self map. One case of doing that gives you η
itself, anyway, and presumably when I do this base change I get self-maps over C.
We don’t know that they’re non-nilpotent, but there’s a sketch of a way to do that.
I think that what’s going to happen, there’s the chromatic sequence and I’d suggest
the name technicolor for these, that come from the existence of this subfield R in
the complex numbers, this technicolor world seems to exist motivically.

11. Stephan Stolz: Twisted field theories from factorization
algebras

[Welcome back. Unfortunately I don’t get to say anything about Stephan, but
one piece of advice, if you want to have fun in research, pick the right people to
work with.]

This is joint with Bill Dwyer and Peter Teichner. Here are two particular models
for field theories, it’s like the wild west as far as saying what a field theory is. There
are the functorial field theories, Atiyah, Segal, Kontsevich, Lurie making them local.
Another language, more recent, is that of factorization algebras. I’m not very good
with the history of that, trying to define vertex operator algebras in a coordinate
free way, Beilinson and Drinfel’d started this, and most of what I know about this
I know from Costello and Gwilliam’s book. Work on the topological version has
been done by John Francis and David Ayala. I want to talk about a way to go
from a factorization algebra and get a twisted functorial field theory. I like this
because functorial field theories are a little hard to construct, so it’s good to have a
mechanism to create examples in functorial field theories. This talk, though, won’t
be example heavy, because there’s a lot to be done and I don’t understand the
examples so well yet.

I’ll start by talking about factorization algebras, then twisted field theories, and
then I’ll relate the two.



MAX PLANCK 35

11.1. factorization algebras. There are many ways to write down a formal defi-
nition. I’d like to think that if you have a quantum field theory, you might want to
look at observables in an open part of spacetime. I start with a classical field theory.
You have a manifold of a fixed dimension d, you have fields which are sections of
a bundle. You have an action functional and you try to get at the Euler–Lagrange
equations. Much more mysterious is the passage to quantum field theory. But you
should have a manifold with some fixed geometry and have something that asso-
ciates to your classical field theory a quantum field theory. In particular you should
be able to look at an open set and get a vector space of observables. So I’ll collect
in the letter G a fixed dimension and a fixed geometry, like Riemannian, conformal,
and so forth, it could involve spin or string structures or whatever.

Then I can talk about G-manifolds and a G-prefactorization algebra or prefac-
torization algebra A for G-manifolds.

Definition 11.1. This consists of the following data.

(1) whenever I have a G-manifold U I associate to it a cochain complex A(U),
always over C. You should think of this as the space of quantum observables
in spacetime U . Suppose you have an open subset, you should be able to
restrict. More generally, suppose you have a bunch of open sets U1, . . . , Un
inside U , a structure-preserving embedding with disjoint image. Then you
should get a map A(U1)⊗⋯⊗A(Un)→ A(U).

You want this to be compatible with composition. If these open subsets
have inside them other open subsets. You could either look at the disjoint
union of all of them inside U , or you could include V s into Uis and then go
further to U .

Suppose you gave up the disjoint condition. You would get an algebra of ob-
servables A(U)⊗A(U)→ A(U). You can sort of multiply functions on your phase
space. However, the fact is, for quantum observables, you can’t keep multiply these
variables because of the Heisenberg uncertainty principle. But they don’t commute
so you can’t do this, unless the observations are in disjoint regions.

This is sort of like a cosheaf. In sheaves you get restriction maps that are
contravariant. These are covariant, this feels more like a cosheaf. Now you want to
include conditions that are more like sheaf conditions.

A prefactorization algebra is a factorization algebra if

(1) whenever U is the disjoint union of the Ui, the map A(U1)⊗⋯⊗A(U) is
a weak equivalence.

(2) you want to take a covering Ui in U for i ∈ I, and the kind of cover is not the
usual cover, this is a Weiss cover, what you use when you study embedding
spaces. What does a Weiss cover mean? A usual cover, a point in U is in
some Ui. Here any finite subset of U is in some Ui.

Here’s one example. A Weiss cover of [0,1], it’s not so easy to come up
with an interesting one. Take the Ui, take all of the interval, but exclude
one point 1

i
. This is a Weiss cover. Another example, suppose that U is a

Riemannian manifold. Take disjoint unions of balls of radius smaller than
ϵ. That’s a Weiss cover.

Here comes the condition. The requirement to be a factorization algebra
is that, well, A(U) gets a map from⊕A(Ui). What about the intersections,
you get a map ⊕A(Ui ∩ Uj). There are two ways of getting to ⊕A(Ui).
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If you follow that, you should get the same map to A(U). You can repeat
this taking triple intersections ⊕A(Ui ∩Uj ∩Uk) and you get three maps.
This is a simplicial object in chain complexes. The requirement is that if
you take the hocolim or total complex, that the map from this to A(U) is
a weak equivalence.

11.2. Twisted functorial field theories.

Definition 11.2. A T -twisted functorial G-field theory is, I’ll draw a diagram.
You define in the usual way the bordism category of manifolds with G-structure
and you look at the category of algebras. These things are symmetric monoidal 2-
categories. Alg is the 2-category that Arthur Barthels mentioned, where the objects
are algebras, the morphisms are bimodules and the 2-morphisms are intertwiners.

Then T is a morphism and T0 is the boring one that gives C for every object and
C for every morphism. A T -twisted field theory is a natural transformation from
T to T0. It’s much easier to understand that if I unpack it.

GBord
T

,,

T0

22⇓ Alg

More explicitly, on objects, I have closed d−1-dimensional manifold with a collar,
with a G-structure on it. I call this original boundary the “core” of Y ; the other
boundary I call the “end.” The geometric structure is only on the interior.

So T (Y ) is an algebra and T0(Y ) is C and so I get a map, which is a bimodule,
so this is a right T (Y )-module.

So what do we do on morphisms? I have my core ∂CY0 and my core ∂CY1.
Where do the bordisms come in? The collar of Y0 sticks out of the bordism but
the collar of Y1 is contained within it. I hope it’s clear how the composition would
work, by gluing along collars. What do I associate to this thing here? If I look at
T , I get T (Y1) and T (Y0), and I get a bimodule T (Σ) between them. On the other
hand I have T0(Y1) and T0(Y0) and I also have E(Y0) and E(Y1) already.

T (Y1)

E(Y1)

��

T (Y0)(Σ)
Too

E(Y0)

��

⇖

T0(Y1) = C T0(Y0) = C
T0(Σ)=Coo

So going between these my 2-morphism is a map from E(Y0)T (Y0) to E(Y1)⊗T (Y1)
T (Σ)T (Y0). Why do I want the map in this direction? If T is just T0 this would
be a map E(Y0) to E(Y1). So this is an enrichment, this is not just a vector space
but a bimodule over the thing you’re twisting by. If Y0 and Y1 are the empty set,
you get a map from E to T (Σ), you get a vector in the vector space. Examples of
this are around for a long time, like determinant lines.

So that’s a twisted functorial field theory.
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11.3. Results.

Theorem 11.1. Let A be a G-factorization algebra. Then we can construct a
twisted field theory (TA,EA), where you have to loosen up what you mean a little
bit.

How would you do this for a closed surface? You should get a chain complex,
not a vector space. This should be understood in a derived sense. What I mean
will be clear as I do my construction.

At the minimum instead of vector spaces I should talk about chain complexes.
The outline of the construction. I’ll concentrate for time reasons on the twist
functor TA. I should start with an object of GBord and associate an object. I’ll
do less than that. What is TA on objects? I have an object Y in my category,
with core ∂CY and to that I should associate something more general than an
algebra. This something will be a dg category. This means a category enriched in
chain complexes. If this had one object, it would be a chain complex, one object’s
endomorphisms, this is an algebra. I pass to chain complexes and I have more than
one object in this category. That’s what I mean by derived.

I need to tell you what are the objects of this dg category. In the picture,
the objects are neighborhoods, open neighborhoods, of the core, still collars of
my core. Morphisms are TA(Y )(U,U ′), I need to give you a chain complex of
morphisms. Imagine that U ′ is a smaller neighborhood, then I can form the com-
plement, A(int(U/U ′)) is a chain complex. If U ′ is not contained in U then I get
0. The composition is the structure map. An even smaller one, the two regions,
there’s the part between U ′′andU ′ disjoint union the part between U ′ and U . That
structure map gives me the modification.

What about our morphisms? In the bordism category we have bordisms, so here
is a picture of a bordism [picture]. So what do I want to associate to that? In
the twisted field theory case I should get a bimodule. So that’s a bimodule in the
derived sense, so TA(Σ) is a bimodule with a left action of TA(Y1) and a right
action of TA(Y0). I should say what I mean by a bimodule in this derived world.
It’s again a dg category with the following properties. The objects are the disjoint
union of the objects of the TA(Y1) and TA(Y0). In a bimodule, I don’t want any
morphisms from U1 in TA(Y1) to U0 in TA(Y0). Thirdly, I want to say that TA(Yi)
are full subcategories of TA(Σ). The only interesting information is what goes from
Y0 to Y1. If you had one object in each, this is a single chain complex and an action
of endomorphisms on each side. What are the morphisms from U0 to U1?

I only have to tell you, what is TA(Σ)(U0, U1)? What I do is I take the thing

between U1 and U0. Let me denote by Û0 the entire bordism, including the U0

part of the collar. So I take the interior of Û0 −U1. Then the definition in general,
if U1 ⊂ Û0, then I get A(U), with 0 otherwise. It’s easy to see that this is a dg
category with all the properties you need.

So now what is the most important thing you need to check? First you need to
define composition on the right hand side. You need to tensor over the common
algebra. On the left hand side you are gluing bordisms. Then that should corre-
spond to the algebraic thing with bimodules. So my claim is that TA(Σ2 ∪Y1 Σ1) ≅
TA(Σ2)⊗TA(Y1) TA(Σ1).
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[picture.] Now,

TA(Σ2 ∪Y1 Σ1)(U0, U2) = A(int(Û0/U2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U

).

I can calculate this on the Weiss cover {Vi → U} where Vi runs over objects U i

associated to Y1. What is the Vi, you take U/∂e(U i) It’s easy to see that this is
a Weiss cover in the one dimensional case but it’s true in general. Then I get to
write down, let me do the Vi in color here. What does Vi look like? [picture].
If you look at Vi, we know that A evaluated on the disjoint union is the tensor
product, we get A(Vi) = A(V ℓi ) ⊗ A(V ri ) Now let’s look at the intersection, it’s
A(V ℓi )⊗A(V ri ∩ V ℓj )⊗A(V rj ).

Now I want to rewrite these things, the V ℓi and V ri can be identified with
TA(Σ1)(Ui, U2)⊗TA(Σ2)(U0, Ui); similarly, the left and right hand side, the thing
in the middle is inside Y1, so it’s seen by this category TA(Y1)(Uj , Ui) and then
you have a big hocolim which involves only the two dg categories that act on the
left and on the right, and this is the definition of the tensor product of bimodules.

12. June 19: Gregory Arone: A branching rule for partition
complexes

All right, thank you, I’d like to thank the organizers for making this happen
and for inviting me. I should say something about the title. I feel like I have
miscalculated with the title and abstract. I thought it was intended for beginning
students, so I gave my title and abstract in accordance with that.

So I want to talk about some combinatorial gadget that arises here and there. I
have a small thing to report about them and I thought I’d use the opportunity to
talk about them in general.

The gadget is “partition complexes.” Let me recall. That Pn is the poset of
partitions of a standard set with n elements, ordered by refinement. So for example,
so P3 is something like this:

(1)(2)(3)

(12)(3)

99rrrrrrrrrr
(13)(2)

OO

(1)(23)

eeLLLLLLLLLL

(1 2 3)

99rrrrrrrrrr

OOeeLLLLLLLLLL

Well, I want to get rid of the initial and terminal element so that I have a nontrivial
homotopy type. So then Πn will be ∣Pn∣, an Π◇n is the unreduced suspension of
Πn, unreduced because it has no canonical basepoint. Now that I have take the
unreduced suspension, then I can take the suspension, so ΣΠ◇n = S1 ∧Π◇n.

For example, Π2 is ∅ because there are no nontrivial partitions. The unreduced
suspension is S0. Π3 is a set of three points. The unreduced suspension is the theta
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graph. Π4 is a bit more complicated, it’s the largest one we can try to draw,

(12)(34)

tt
tt
tt
tt
t

(14)(23)

tt
tt
tt
tt
t

(13)(24)

uu
uu
uu
uu
u

(12) (34) (14) (23) (13) (24)

(123)

ffffffffffffffffffffffffffffffff

dddddddddddddddddddddddddddddddddddddddddddd (124)

JJJJJJJJJ

ttttttttt

ddddddddddddddddddddddddddddddddddddddddddd (134)

JJJJJJJJJ

jjjjjjjjjjjjjjjjjjjj
(234)

TTTTTTTTTTTTTTTTTTTT

jjjjjjjjjjjjjjjjjjj

So it’s homotopy equivalent to a wedge of six copies of S1.
Now there’s a theorem which says that Πn ≅ ⋁(n−1)! Sn−3 and so let’s define Π1

as S−2. Then the k-fold suspension should be a sphere of dimension k − 2.
The symmetric group Σn acts on Πn and Hn−3(Πn) = Z(n−1)! with Σn acting.

This is closely related to the Lie operad and Lie algebras.
Then they arise in Goodwillie’s calculus of functors [comments] because topolog-

ical spaces are related to cocommutative coalgebra spectra, so by Koszul duality the
Lie algebra arises. They also arise in cohomology of configuration spaces, related
to the Poisson operad.

So the main result is about Πn/G, for G ⊂ Σn. Suppose n is n1 + ⋯ + nk, and
consider the subgroup Σn1 ×⋯Σnk

.

Theorem 12.1. There is a Σn1 ×⋯ ×Σnk
-equivariant equivalence

Πn → ⋁
d∣gcd(n1,...,nk)

⋁
B(n1

d ,...,
nk
d )
(Σn1 ×⋯ ×Σnk

)+ ∧Σd
Sn−d ∧Πd

where B(m1, . . . ,mk) is a set with 1
m ∑ℓ∣gcd(m1,...,mk) µ(ℓ)

m!
m1!⋯mℓ!

.

You may recognize this from Witt’s formula. If you let Σn1 × ⋯ × Σnk
act on

Z/n/Σn. So B(n1

d
, . . . nk

d
). You should be able to see what you get [explanation].

I should be careful about the action on the right hand side. In particular d

divides n, so this sits inside Σ
n
d

d which sits inside the product Σn1 × ⋯Σnk
. The

notation suggests that Πd has a basepoint. So I should really say Sn−d−1 ∧Π◇d.
This breaks up as a Σd-equivariant homeomorphism, you can write Sn−d =

(S n
d −1)∧d and thisi S

n
d −1 ∧ ̂(S n

d −1)
∧d−1

where it acts trivially on the left and by
the standard representation on the right. So the one I split is one of the trivial
ones.

So some consequences. First, about fixed points. Let G be inside Σn, say that G
acts isotypically on {1, . . . , n} if all the G-orbits are pairwise isomorphic as G-sets.
It’s like a representation that breaks up as a sum of identical representations.

Corollary 12.1. If G does not act isotypically then the fixed point of the action
are contractible.

The partition behaves in a lot of ways like a contractible space. A special case
is a transitive action.

Lemma 12.1. If G acts transitively on {1, . . . , n}, then identify {1, . . . , n} with
G/H for some subset H of G. Then ΠGn ≅ {H < K < G}, the fixed points are
described in terms of subset posets.
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You can get the formula for a general isotypical subset from this.
Maybe I’ll mention a related result, joint with Katherine Lesh and Bill Dwyer.

We’re interested in p-subgroups of Σn. Then the only way the fixed points are not
contractible is if p is an elementary Abelian group acting freely on {1, . . . , n}.

This has a consequence about [unintelligible].

Corollary 12.2. Let µ be a Mackey functor for Σn that takes values in p-local
groups and satisfies a technical condition, projective relative to p-Sylow subgroups.
Then the reduced Bredon homology of the suspension of Πn with coefficients in the
Mackey functor is 0 unless the degree is pk; if the degree is pk, there’s some formula,
st(µ(Σpk/(Z/p)k)).

So for the Mackey functor µ(Σn/G) is the p-local stable homotopy group πS(BG(p)).
You can’t calculate concretely but you can calculate the homology.

This has consequences related to the calculus of functors and should be an in-
gredient in a new proof of the Whitehead conjecture (Leuhn’s theorem). Hopefully
this can give a similar BU -version of the Whitehead conjecture. This seems to
be related to some calculations of Charles Rezk about the Koszulity of the ring of
operations and the En homology of [unintelligible] of Behrens.

Another obvious thing is about orbit spaces. I can’t give a complete answer but
this tells you something about orbit spaces, at least orbit spaces with respect to
Young subgroups.

Corollary 12.3. There is an equivalence between Πn/Σn1 ×⋯ ×Σnk
and

⋁
d∣gcd(n1,...,nk)

⋁
B(n1

d ,...,
nk
d )
Sn−d−1 ∧Πd)Σd

.

which reduces the problem to calculating (Sℓd ∧ Π◇d)Σd
. If ℓ = 0, well, it’s a

theorem of Kozler that (Π◇d)Σd
is contractible for d > 2. For ℓ = 1, we have (Sd ∧

Πd)Σd
is always contractible. When d = 2, then we are looking at S2ℓ/Σ2 and this is

the (ℓ+1)-suspension of RPℓ−1. When d = p is prime, this is, for ℓ odd, (Sℓp/Σp)(p)
and if ℓ is even, it will be the homotopy cofiber of Sℓp → (Sℓp/Σp)(p). This is as far
as I got. It’s a nice problem to work out the homotopy type of this space.

One consequence is

Corollary 12.4.
Πn/Σn1 ×⋯ ×Σnk

is homotopic to a wedge of spheres if and only if one of the following holds:

(1) the gcd(n1, . . . , nk) = 1. Then you only get a wedge of obvious spheres.
(2) k = 2 and n1 = n2 = p, then we’re looking at Π2p/Σp ×Σp.

Maybe I should say something in five minutes about why this is true, which is
related to the decomposition of the free Lie algebra.

Let’s say we have V a free Abelian group and Lie[V ] the free Lie algebra gen-
erated by V . There is a connection between the free algebra, an isomorphism of
graded Abelian groups between Lie(V ) and ⊕∞n=1Lien ⊗Z[Σn] V

⊗n, which is re-

lated to ⊕Hn−3(Πn)± ⊗Z[Σn] V
⊗n and on the other hand, there is a classic result,

the algebraic Hilton–Milnor theorem, which says there is an isomorphism between
Lie[V1 ⊕ ⋯ ⊕ Vk] and ⊕n1,...nk⊕B(n1, . . . , nk)Lie[V

⊗n1

1 ⊗ ⋯V ⊗nk

k ]. I won’t have
time to explain it but it’s not too hard. The homomorphism is easy to define from
right to left. Take the formula and run it through here, it’s an easy consequence,
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a branching rule for Lie representations. If you restrict to a subgroup of this form,
you get

⊕
d∣gcd(n1,...,nk)

⊕
B(n1

d ,...,
nk
d )

Z[Σn1 ×⋯ ×Σnk
]⊗Z[Σℓ] Lie(d).

You have to check that this is a strong equivalence, respects fixed points, and so
on.

13. John Francis: A proof of the bordism hypothesis

Thank you for the introduction and to the organizers for the invitation to speak
here and spend this time in Bonn, which is a privilege.

I want to talk about the bordism hypothesis. Things here come via Baez–Dolan’s
original formulation, Costello, Hopkins–Lurie in the n = 1 case, and the formulation
of Lurie (of many things). Everything I say will be joint with David Ayala. So
what’s the bordism hypothesis. I won’t motivate it because then the talk will be
over. I will say what’s a little different that David and I can say about it.

Jacob’s formulation says that for X a symmetric monoidal (∞, n)-category with
adjoints (every k-morphism has a left and right adjoint) and duals, there is an
equivalence between symmetric monoidal functors from the framed n-bordism cat-
egory to X is equivalent to the underling space X ∼. This builds on papers with
Nick Rozynblyum and Hiro Lee Tanaka. Some of the things are in preparation.
There’s factorization homology from higher categories (AFR2), a stratified homo-
topy hypothesis (AFR1), and local structures on stratified spaces (AFT). So this
is the bordism hypothesis, this is some work built on it. Let me give the basic idea
behind the proof and some of the steps.

The idea is a relationship between higher category theory and manifold theory.
It’s hard to prove directly but it’s not supposed to be. It’s not the starting point
of the relationship between higher category theory and manifolds. They should
be merged earlier and then it should be easy. There’s a more basic relationship
between category theory and differential topology.

One should understand the moduli space of stratifications on a manifold together
with trace methods. This package is supposed to be related to the combinatorics
of higher categories. This package together with the relationship, is given by a
generalization of what we’ve been calling factorization homology. Once you’ve said
the obvious things to ask about it, the bordism hypothesis is easy. This doesn’t
involve bordisms or adjoints, it has room to say very interesting things where the
bordism hypothesis doesn’t apply. Then maybe you can use this to talk about path
integrals in physics and so on.

Today just the bordism hypothesis.

(1) The first, to say more formally what I mean by this basic relationship, there
is a fully faithful functor from (∞, n)-categories to space-valued functors on
compact vari-framed n-manifolds. Similarly, adjoint (∞, n)-categories em-
beds into functors to spaces from another solid-framed compact n-manifolds.

(2) The second step is to talk about pointed (∞, n)-categories, and that this has
a fully faithful functor to functors to spaces from not-necessarily compact
variframed manifolds, and likewise for adjoints. Now you have Euclidean
space. If you have a pointed n-category, and you calculate ∫Rk C, you get
kEndC(1).

(3) To show the tangle hypothesis, that T angfrn⊂n+k ≅ R
k.
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(4) To show that T ang implies Bord because Bordfrn ≅ limΩkRk.
So first, what is cMfdvfrn ?

Definition 13.1. Let M and K be stratified spaces. These are smoothly stratified
spaces and satisfy some technical regularity conditions, see the AFT paper. A
constructible bundle is a stratified map M → K satisfying the technical conditions
that I’ll never mention again, such that when you restrict to each stratum, you get
a stratified fiber bundle.

This is a simple definition but it took a long time to realize that this was almost
exactly what we needed.

The ∞-category of cMfdvfrn has as its objects M , compact stratified spaces of
dimension at most n, with a vari-framing.

What’s a vari-framing? You might imagine something like a framing on the
interior and a framing on the boundary. You throw that idea out because it implies
that you get a cylinder. But we’ll use this idea. We have θM , the constructible
tangent bundle. On every stratum, if we choose some point in M , then the stalk
is the tangent space at x to the stratum of x. A variframing is an equivalence to
the trivial bundle EdimM , where the stalks vary in dimension, the stalk, for x ∈ M ,
is Rdim Mp , where Mp is the stratum. This needs to be understood in a homotopy
coherent way.

Intuitively, at every point you have a choice of flags in Rn, determined by the
dimensions of the strata which contain the point. In order to define this you need
regularity in smooth families along strata. These issues are taken care of in AFT
or AFR1.

Those are the objects, what are the morphisms? We stratify ∆1 where {0} is one
stratum and its complement is the other stratum. We want a constructible bundle
M̃ with some data, an equivalence between θvert

M̃
and Evdim

M̃
, a morphism from the

fiber over 0 with its restriction of the variframing, to the fiber over 1. It’s hard to
communicate how much thought went into that definition. The precursors were so
much more complicated. It’s simple compared to what it could have been.

I’ll tell you the theorem and then break down the definition and draw some
pictures.

Theorem 13.1. (AFR2) There is a fully faithful functor called factorization ho-
mology from Cat(∞,n) to Fun(cMfdvfrn , Spaces) where D0 = ∗ goes to ∫D C =
obj(C) the space of objects of C. The variframed interval D1 goes to the space
of 1-morphisms of C. There is a hemispherical stratification of Dk = SkD0 with
associated vari-framing, and that goes to the space of k-morphisms of C.

A really basic morphism is the following. [picture] and this, depending on our
covention about variframing, gives a map ∫D1 C to ∫D0 C, and this is the target map.
If I chose the other picture I’d get the source. So a variframing is what lets you
make these choices about source and target.

[picture]. Here is another constructible bundle. The underlying space looks like a
product but it has a more refined stratification. This morphism gives composition.
I’ll draw one more example. Here’s a constructible bundle over the 1-simplex. Over
the open interval you get a product, and also over the point, and this gives ∫D0 C to

∫S1 C, and this is a version of the trace map from the objects of C to the Hochschild
homology of C.
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I’ll call these morphisms, respectively, closed, refinement, and creation mor-
phisms.

I should say, I claimed this was an ∞-category. What’s composition? Take two
stratified intervals and glue them end to end. [pictures]

If you just glue naively, you get something that is not a constructible bundle.
We can resolve the singularity using the blowups that we build into our definitions,
we can retract the things that cause problems, like this: [picture].

The theorem, the hardest thing, is to say that this satisfies the Segal conditions.
To do this, we concocted an entire theory of ∞-categories for sheaves on stratified
spaces, because the simplex is topological and not just combinatorial. Almost
everything else is easier than that.

So then you get values on more general manifolds. So now I’ll describe the solid
framed case.

In the solid framing, we don’t want such a rigid notion.

Definition 13.2. The category of cMfdsfrn has objects as before but with solid
n-framing. So instead of an isomorphism it’s an injection into EnM , the rank n trivial
bundle.

Theorem 13.2. (in preparation) If you have an∞-category with adjoints, then fac-
torization homology gives you a fully faithful embedding into functors from cMfdsfrn

into spaces.

It’s illustrative to consider the difference in the 2-dimensional case [missed that
discussion].

That’s the end of part 1. In part 2, a similar thing is true if you consider
pointed categories and not necessarily compact manifolds. It takes the same value
as before on compact things, that doesn’t depend on the basepoint, but ∫Rk C is the
k-endomorphisms of 1. We have a new cover, which is, let me draw a diagram, a
limit diagram inMfdvfrn ,

Rk

��

emb // D

��
∅ // ∂Dn

and you get that factorization homology preserves the limit, and likewise with
adjoints for the solid framed case.

That was part 2, and picking up speed, here’s part 3. Define a functorMfdsfrn+k
to Spaces, called T angfrn⊂n+k, and V goes to open embeddings of Rk ×M to V with
a solid n + k-framing. Part of the theorem is that this is an (∞, n + k)-category,
not satisfying a completeness condition. You should think of this as codimension k
tangles in V . [picture].

The theorem is that, mixing whether I think of things as a k-category or an
n + k-category, we have an equivalence

Theorem 13.3. There is an equivalence of pointed (∞, n + k)-categories with ad-

joints T angfrn⊂n+k and Rk, where this is the functor corepresented by Rk, maps out

of Rk.

So why is this true? Well, we should check that T angfrn⊂n+k(V ) ≅MapMfdsfr
n+k
(Rk, V ).

We said the left hand side was {Rk ×M ↪ V }, and you can express something on
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the right hand side as a composite of a creation morphism and an open embed-
ding {Rk → Rk ×M ↪ V }. This first map is a choice of collar and that choice is
contractible, so these are equivalent spaces. So that’s step 3. Well, why does this
imply the tangle hypothesis? If C is a pointed (∞, n + k)-category with adjoints,

then we can consider pointed functors Fun∗(T angfrn⊂n+k,C), and this is the same

thing by the previous theorem as ∫
k
R C which is the k-endomorphisms of the point

in C, which is one form of the tangle hypothesis.

So for step 4, for convenience I’ll define Bordfrn as limΩkT angfrn⊂n+k [missed
justification].

The proof of the bordism hypothesis, we want to calculate symmetric monoidal
functors from Bordfrn to X . We’re mapping out of a sequential colimit, so this is

lim← Fun
Ek(ΩkT angfrn⊂n+k,X ), and then we can write this as the limit of pointed

functors
lim
←
Fun∗(T angfrn⊂n+k,B

kX )

and then applying the tangle hypothesis, we get lim←, k →∞kEndBkX (1) which is
limX ∼ ≅ X ∼.


