
MATRIX: HIGHER STRUCTURES IN GEOMETRY AND

PHYSICS

GABRIEL C. DRUMMOND-COLE

1. June 6: Emily Riehl: Weak complicial sets I

Weak complicial sets. I sort of accidentally wrote lecture notes while preparing,
and I’ll post them at www.math.jhu.edu/~eriehl/wcs.pdf

What are weak complicial sets? One of the problems in higher category theory
is defining a higher category. I’m interested in ∞, n-category, where you have weak
composition in every dimension and things are invertible above a certain n. There
are many “models” for ∞,1-categories. There’s one model, quasicategories, with
thousands of pages of how to do math with them.

The models above 1 are complicated and that has been an obstacle for working
with these, and that’s why I’m excited about the model that I’m talking about.
I’m happy that I’ve finally had the chance to work with these in preparing for these
lectures.

I’ll start with quasi-categories and then think about how to expand it to ∞,2
and then we can see how to do this in n and that’s enough for one hour.

Definition 1.1. A quasi-category is a simplicial set A such that any inner horn
has a filler.

I’ll write this

Λk[n]

��

// A

∆[n]

==

for n ≥ 2 and 0 < k < n.
The idea is tha this gives an∞,1-category. The set of objects is the set of 0-cells.

The morphisms are the 1-cells, which have source and target. We think about a
2-simplex in A as a witness that the first face h is (equivalent to) the composite
gf ; then the role of the three simplices
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so this witnesses that h(gf) ≅ hk ≅ ℓ ≅ jf ≅ (hg)f
1
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The homotopy category has objects A0 and morphisms A1, modulo the relation
f ≅ g if there is a degenerate one simplex so that g is the composite of f with the
degenerate simplex.

Why is this (∞,1)? Well, we’ll see that 2-simplices are invertible, equivalences
up to a 3-simplex, and 3-simplices are equivalences up to a 4-simplex and so one
all the way up.

I’ll show the first, start with a degenerate 2-simplex, I’ll build a Λ1[3] horn. I
start from the 2-simplex α

1 2
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// 3

and then I can write on the other side degenerate cells
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and realize this as a horn that shows that there is a filler in the bottom side of the
first diagram which shows that there is a 1-sided inverse. I can run this argument
in reverse and see that there is an inverse on the other side as well.

In general, I can build a Λ1[3]-horn in A as

1
g //

g
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>>
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f
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// 3

1 // 2

0

OO @@

h
// 3

and once I get this filler I can turn this composition into the kind of one I had at
the beginning.

So then the question is how can we model an infty,2-category? The challenge
is that the 2-simplices need to play dual roles. The perspective as a witness to
composition and the perspective as [unintelligible] are not compatible.

So I’ll mark 2-simplices as “thin” when they witness composition of 1-simplices.
All the data for the 1-category structure is thin, so the 2-simplices are thin in the
quasicategory case.

So how do I compose non-thin 2-simplices? If I have a non-invertible 2-simplex
α ∶ kℓ → g and another β ∶ gh → f , well, first ,I’ll find a thin 2-simplex witnessing
a composition ℓh and so then I can get a Λ2[3]-horn, and a filler will give me a
“composite” of α and β.

Now let me introduce a definition to make this all precise.
I have an ordinary simplicial set, and then I’ll need some special subset. Let me

make this formal.
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Definition 1.2. A stratified simpliciial set is a simplicial set with a specified collec-
tion of marked or thin simplices in positive dimensions, including all degeneracies.

A map is a simplicial map which preserves markings.
There is a forgetful functor from stratified simplicial sets to simplicial sets, which

I’ll call (−)# and (−)♭ and X# is marking everything in dimension at least 1 and
X♭ is marking only degeneracies.

We have special inclusions of stratified sets U ↪ V , something is a regular in-
clusion if the markings in U are created in V , a simplex in U is thin if and only if
it is marked in V . The other thing is entire, we say the inclusion is entire if this
is an identity on underlying simplicial sets. So for example, all monomorphisms
in stratified simplicial sets are generated under pushout and transfinite composi-
tion, coproduct if you will, by two classes, boundary inclusions of simplicial sets,
{∂∆[n] ↪r ∆[n]}♭ ∪ {∆[n] ↪e ∆[n]t ∶ n > 0} where ∆[n]t means the top simplex
is marked as thin.

[some discussion of history]

Definition 1.3. A weak coplicial set is a stratified simplicial set that admits ex-
tensions along two classes of maps. [the way a quasicategory admits fillings along
inner horns].

(1) complicial horn inclusions Λk[n] ↪r ∆k[n], n ≥ 1, 0 ≤ k ≤ n where a
nondegenerate m-simplex in ∆k[n], the k-adimissible n-simplex, is thin if
and only if it contains {k − 1, k, k + 1} ∩ [n]. Thin faces include:
● the top n-simplex.
● the codimension 1-simplices except the k − 1, k, and k + 1.
● the two simplex [k − 1, k, k + 1] for 0 < k < n
● the one-simplex in the case k = 0 and k = n

These should parameterize admissible composites existing.
(2) complicial thinness extensions ∆k[n]′ ↪e ∆k[n]′′. These are both the n-

simplex, and both of these contain the k-admissible n-simplex. But in
∆k[n]′, I mark the k − 1st and k + 1st faces and in the codomain I mark all
codimension 1 faces. This should mean that composites of thin faces are
thin.

Let’s see what this looks like in low dimensions.
Let’s look at Λ1[2]↪∆1[2]

1

0 2

k

and the thinness gives the extra condition that if 01 and 12 are thin, so is 02.
Okay, and for Λ0[2]↪∆0[2]

1

0 2

fe−1

≅
e≅

f
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And for Λ2[3]↪ Λ2[3]
1 2

0 3

⇑
⇑

with fillers of both triangles, then I get a composite in the bottom half here:

1 2

0 3
⇑
≅

where the top half is filled with an equivalence. The thinness criterion says that if
the first two 2-simplices were thin, so is the composite.

What about the outer one? [missed]
Then for Λ2[4]↪∆2[4] I get a parameterization of composable 3-simplices:

1

0 2 4

3

and i fill this with
1

0 4

3

Maybe you believe that this models some kind of (∞,∞)-category, I have unique-
ness up to higher dimensional simplices, I have these in all dimension, I have non-
thin simplices in all dimension.

I can also specialize and get (∞, n) in all n. Let me say something about that.

Definition 1.4. A stratified simplicial set is n-trivial if all r-simplices with r > n
are thin.

There is a full subcategory of n-trivial stratified simplicial sets, which is both
reflective and coreflective, via trn and coren. So trnX is an idempotent monad,
where trnX makes all higher simplices thin. The unit is X ↪e trnX. Then corenX
is the regular subset spanned by the r-simplices whose faces above dimension n
are thin. Then the counit is a regular inclusion, corenX ↪r X. These functors
are adjoints, let me now draw a diagram explaining what this looks like in all
dimensions.

At the bottom I have 0-trivial, which is like ordinary simplicial sets

Simp
(−)#
ÐÐÐ→ Strat0,tr ↪ Strat1,tr ↪ ⋯↪ Strat

and along each one of these there are sections trn and coren. So an n-trivial weak
complicial set is an (∞, n)-category. So if A is a weak complicial set, then corenA
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is as well, but trnA may not be because I’m changing horns. There is an analogy
here, the left adjoint to inclusion should be some free extension and the right adjoint
should be the maximal subthing.

What are some examples? A 0-trivial weak complicial set is exactly a Kan
complex. So when everything is marked, the thinness extension is for free, and the
horn inclusions are exactly the horn inclusions, including outer.

A 1-trivial weak complicial set is a quasicategory. Conversely, a quasicategory
admits markings, a 1-trivial thinness structure making it a weak complicial set.
There’s a canonical one, I’ll talk about that in the third lecture. The final thing
that’s the preview for the afternoon, is that strict n-categories define strict n-trivial
complicial sets (and there’s a weak version).

2. Martin Markl: Operad-like structures, pasting schemes, and
graph complexes I

Let me try to say roughly what operads and props are, so operads are suppos
to model composable maps with several inputs and one output, while props model
composable maps with several inputs and several outputs.

Let me try to arrange things into a sort of a table.
directed non-directed

operads (symmetric
or nonsymmetric)
props (product and
permutation cate-
gory)
dioperads
half-props

cyclic operads
modular operads
(like correla-
tion functions in
physics)

and there are some structures that don’t fit into these classes, wheeled props,
and some exotic things that don’t fit like hyperoperads, n-operads by Batanin,
permutads

So for me these are determined by nested graphs having hereditary pasting
schemes. These can be found in the paper that was stolen from me by Elsevier
in 2008. This notion was developed by Borisov and Manin, and then by Ralph
Kaufmann in his notion of Feynman category. There are other notions, like one by
Berger, one by Batanin-Kock, and Barwick’s operator categories. These were gen-
eralized by Batanin and me in the notion of an operadic category. These approaches
are based on the notion of fibers and don’t work in the nondirected case.

I’ll work in Top or Sets or Vect. I’ll ignoer units, signs, degrees, and symmetric
group actions.

There will be two kinds of definitions, one will be unbiased (monadic), and the
other will be biased.

Let me recall monads. A monad, also called a triple (namely in Montreal) on
a category C is a functor T ∶ C → C along with a transformation µ ∶ T 2 → T and
another transformation ν ∶ 1 → T such that this data forms a unital monoid in the
category of endofunctors of C.
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An algebra over a monad is an object A ∈ C along with a map α ∶ TA→ A which
satisfies the following property (commutativity of the diagram.

T (TA) T (A)

T (A) A

T (α)

µ α

α

and while I said I wasn’t going to do units, let me put it on the board.

A //

1

>>
>>
>>>

>

>>
>
>>

>

T (A)

α
||zz
zz
zz
zz

A

So for example, take the free monoid monad, T ∶ Sets→ Sets where TX = ⊔n≥1X
×n,

where I’ll draw this as

●x1 ●x2 ⋯ ●xn

Then what does T 2X look like? It looks like a chain of things like this arranged
in a line. I interpret T 2X as a nested graph, the outside level is this big vertices
and the inside have their own list of bullets. Then I simply forget the nests. You
may also ask how the transformation ν from X to TX looks in this language. This
takes X to the graph which is ●x. This is a very simple example of what we called
a pasting scheme in my approach.

Then α ∶ TX → X is the same as an associative monoid, this is an unbiased
definition. A biased definition, it’s a map µ ∶ X × X → X which is associative,
µ(µ × 1) = µ(1 × µ).

By the way, this is a nice example, motivating eample of a polynomial monad. I
learned what these are a couple of months ago. Some monads in my talk will not
be polynomial.

Let’s do something a little closer to the theme of this meeting. First of all, let’s
start with classical operads. There are two versions, non-symmetric (or non-Σ) and
Σ-operads. So non-Σ means you may not act by symmetric groups. There is a
definition using ○i operations X(m) ×X(n) → X(m + n − 1) and the other based
on µ ∶X(k) ×X(n1) ×⋯X(nk)→X(n1 +⋯+ nk). Sometimes the first approach is
called a Markl operad and the second called a May operad. Under the presence of
a unit, they are equivalent but in general they are not.

What about operads based on ○i operations? Let me start with an unbiased
definition. The category on which my monad will sit is collections, Cj where X =
{X(n)} for n ≥ 1. Then TX(n) is X-decorated (directed) rooted trees with n legs.
I’m given a particular leg of a tree. Then each vertex has precisely one output edge.
The vertices are decorated by elements of the collection, and this is precisely the
number of incoming edges. [pictures]

Maybe I want planar, maybe I want to take a colimit if I’m in the Σ-category,
this will not bother us during this talk.

What about T 2X? These are trees where the vertices are decorated by trees
decorated by X. Again, µ, the structure operation forgets these nests.

So you can now ask what algebras over such a monad are. You’ll decide that
the structure of such an algebar is given by, in the monoid case it came from the
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map X2 → X, and here it’s given by a graph with two vertices. [pictures]. The
corresponding operation is ○i ∶ X(m) ×X(n) → X(m + n − 1). These are structure
operations for a biased definition and they satisfy associativity, equivariance, and
unitarity if I wish to have units.

I can also say that my operads are characterized by pasting schemes which are
rooted directed trees.

I may also formulate more precisely the principle and what I mean by heredi-
tarity. Assume I’m given a type T of graphs. In this case it means rooted directed
trees. In general these will be potential pasting schemes. If I define TX as the set
of decorated T-graphs, then I should be able to come up with T 2X → X, and a
unit. You can easily see from the picture that the existence of µ says that if I am
given a graph of type T with vertices decorated with graphs of type T then I get a
graph of type T by expanding the vertices. For ν I should also get graphs with one
vertex.

I have the following stupid example which illustrates that not every category of
graphs has this property.

Take T to be graphs with at most two vertices. Then you can see that this
kind of graphs is not hereditary. You can also ask how the monad describing May’s
operads looks. This is a monadic theory. You can define the monads very explicitly.
I have a special assignment for Mark which is to decide if the monad is polynomial.

Let’s move ahead. Now we may speed up a little bit. We have cyclic operads.
So pasting schemes are trees, just trees, no directions, [pictures], something like
this, which means, since I have no directions, I cannot distinguish between inputs
and outputs, so I think of my operations as a blob or spider. Hereditarity of this
type of trees is obvious. The biased definition is given by things with two vertices,

i○j ∶ X(m) × X(n) → X(m + n − 2). There are two versions, a Σ-version using
abstract graphs and everything sits on collections so that X(n) is a Σn-space, the
symmetry of a graph with 1 vertex and n legs. Or I can do non-Σ, where X(n) is
a Cn-space, because there is cyclic symmetry for the single vertex.

Let’s move, let me say what cyclic operads are good for, they describe algebras
with a bilinear form.

Let me now move to a slight generalization. [unintelligible] moduli space of
algebraic curves.

So modular operads I have to tell you the pasting scheme, which is for marked
connected graphs. [pictures].

A marking is a map g from the vertices to the natural numbers. These are
genera. If I’m given such a graph Γ, I calculate the genus of Γ as the sum of the
local genera along with the overall genus of the graph.

So what is the underlying category? Now I have some kind of modular collections
X(n, g), for n ≥ 1 (not so important) and g ≥ 0. Then TX is the set of X-decorated
graphs. This means I decorate each vertex with an element of X so that the number
of adjacent edges is n and the genus marking is g. [pictures].

To get a biased definition, I need to specify first of all, things which correspond
to these graphs, still in my picture. Now my i○j now goes X(n, g1) ×X(m,g2) →
X(n +m,g1 + g2).

The operation here is of the following form: ξij ∶X(m,g)→X(m − 2, g + 1).
Let me mention the stable version of modular operad.
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I don’t know if I’ll get to the non-Σ version in my talk, I’ll tell you tomorrow
maybe, it’s unexpected and quite surprising.

Every X determines a cyclic operad ◻X, where ◻X(n) = X(n,0), and this
functor has a left adjoint which is the modular completion. Little is known, the
examples that are known explicitly are the ones for commutative and for associative
algebras. Is this exact? I don’t think so. What about the modular envelope of Lie?
This is related to graph complexes very strongly.

What is commutative? In sets, it has Com(n) = ∗ and it’s the terminal cyclic
operad. It’s not too difficult to describe that Mod(Com)(n, g) = ∗, and this is also
terminal in the modular category. We can describe this with surfaces. [picture]
This is an analogue (too fancy, but, well) of the cobordism hypothesis. I’ll stop
here.

3. Emily Riehl: Weak complicial sets II

Thanks again, so this talk we’ll be in the weeds the whole time, I apologize about
that.

A weak complicial set is a simplicial set with some higher simplices marked as
thin, and these model ∞, n-categories for any n, including ∞.

Definition 3.1. A weak complicial set is a stratified simplicial set A admitting
extensions of two types.

(1) Λk[n]↪r ∆
k[n], where a non-degenerate simplex in the codomain is thin if

and only if it contains the three or maybe two vertices {k−1, k, k+1}∩ [n].
There are two cases depending on whether this is an inner or outer horn. If
0 < k < n, this includes the top simplex, all faces except for three, and the
two simplex spanned by {k − 1, k, k + 1}. These aren’t the only thin things
but they’re important ones. This thing, called the k-admissible n-simplex,
as a composite of the dk+1 and dk−1 faces along their common boundary.
If I have a pair, padded with a bunch of thin simplices, then a composite
exists.

In the k = 0 or k = n case, we still have the top simplex, all but two
codimension one face, and either the edge 01 or (n− 1)n; this is something
about equivalences and let’s not stress.

(2) If the stuff that is present in the horn is thin, then so is the codimen-
sion one face obtained by filling. The way to say all that is, some further
stratification of the n-simplex, again, I’m not fond of the notation, but
∆k[n]′ ↪e ∆

k[n]′′, where in ∆k[n]′ we mark the k − 1 and k + 1 codimen-
sion one face, and in ∆k[n]′′ we mark all codimension one faces.

Now that I reviewed, I can say

Definition 3.2. A strict complicial set is a complicial set admitting unique exten-
sions.

Now I want to inttroduce a source of examples of strict or weak complicial sets,
from n-categories or ω-categories, and we’ll get this from a nerve functor.

I’ll be talking about the Street nerve. The precise definition will occupy essen-
tially the entire hour. I’ll start with an overview and then come back. It will be a
functor from ω-categories to simplicial sets, N , and then I can choose a lift (we’ll
be interested in two different lifts) to Strat. This will be a generalization of the
more familiar nerve of 1-categories.
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How do I get such a thing? There is a well-known Kan construction. We combine

a functor ∆
OÐ→ ω −Cat, which takes [n]↦ On, the nth oriental.

The reason we care about this is on account of the following theorem, called the
Street–Roberts conjecture, proved by Dominic Verity.

Theorem 3.1. The Street nerve defines a functor ω −Cat NÐ→ Strat where ∆[n]→
NC is thin if and only if On → C carries the top n-cell in On to an identity in C.

Moreover, N is fully faithful with essential image the strict complicial sets.

This theorem led to the development of this theory, Roberts introduced strict
complicial sets because he suspected something like this would be true. So I’ll
introduce ω-categories, orientals (this is the weeds part), the nerve, and then other
stractifications on NC, which will take us to the question of saturation which will
motivate part three.

Let’s dive in. The definition of ω-categories is cute, it’s due to Ross Street, it’s
a single-sorted definition, I’ll do it backwards, start at the top and unpack.

Definition 3.3. An ω+-category (don’t ask about the +, I’ll talk about it later) is
a set C with (∗n, tn, sn), composition, source, and target, for n = 0,1,2, . . . so that
for all m < n, the tuple (C,∗m, sm, tm,∗n, sn, tn) is a strict 2-category.

Definition 3.4. A 2-category is a set C with ∗0, s0, t0,∗1, s1, t1 such that (C,∗i, si, ti)
are 1-categories such that, well, I should be able to compose 2-cells horizontally.

If t0(a) = s0(b), then s1(b)∗s1(a) = s1(b∗0a) and similarly t1b0∗t1a = t1(b∗0a).
I have globularity, s0t1 = s0s1 = s0 = s1s0 and similarly t0t1 = t0s1 = t0 and

there’s another thing that you don’t have to assume.
Then there are middle four interchange, where I can compose in multiple direc-

tions, you can write down the axiom.

● ● ●
⇓

⇓

⇓

⇓

Definition 3.5. A 1-category is a set C with ∗ and s and t so that, tt = st = t and
ss = ts = s and C ×C C

∗Ð→ C with s(a ∗ b) = s(b) and t(a ∗ b) = t(a) with identity
and associativity axioms.

An n-cell in an ω+-category is an identity for ∗n. A cell in an ω+-category is an
n-cell for some n. An ω-category is one containing only cells, and an n-category is
one containing only cells of size at most n.

One example of an ω+ category that’s not an ω category is the free ω+ category
on an element, where I have two 0-cells, (0, s) and (0, t), I’ll have two 1-cells called
(1, s) and (1, t), and so on. I’ll have a single element in the middle ω which doesn’t
have a dimension.

Call this 2ω, then a functor from 2ω → C is an element of C with unrestricted
dimension.

What’s cool about this is that I can give a nice description of ω+ functors,
elements of [A,B] are A × 2ω → B.

Theorem 3.2. (Street) There is an equivalence (ω+ −Cat) −Cat → Ω+ −Cat and
from (n −Cat) −Cat→ (1 + n) −Cat for all n = 0, . . . , ω.

This is similar to proving that a Cat-enriched category is a 2-category.
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Now I’ll tell you about the orientals. The oriental O0, . . ., well, the oriental On

is an n-category, and the idea is that it’s the free n-category on the faces of an
n-simplex, and the reason that’s hard is because it’s hard to make it precise, and
saying it’s free makes it a little bit hard too. In low dimensions, it’s clear enough.

Definition 3.6. ● O0 has a single 0-cell.
● O1 has two 0-cells and a single 1-cell.
● O2 has three 0-cells as generators but then it’s free so there’s another 1-
cell, which is the composition {01,12}, and a 2-morphism 02 → {01,12}.
Then we get a two-category with three 0-cells, three atomic 1-cells (and all
compositions) and this has one atomic 2-cell.

1

0 2

1201 {01,12}

02

● I have four 0-cells for O3, the free category on this graph

1 2 1 2

0 3 0 3

12

⇑
⇑

23 →→
→

12

13

2301 02

03

01 ⇑
⇑

03

● In general, the atomic k-cells are k-dimensional faces of ∆[n]. The source
of a k-cell is a pasted composite of all of its odd faces.

Precisely, a k-cell in On is a pair (M,P ) where M and P are subsets of
faces of ∆[n] which are well-formed, non-empty, and each move M to P .

Here S a collection of faces is well-formed if it contains at most one
vertex and if x ≠ y in S then x and y have no sources in common and no
targets in common, this is a condition that only needs something for cells
of the same dimension.

Suppose S is a subset of faces of ∆[n], let S− be the union of all sources of
S and S+ the union of all targets. Then S movesM to P ifM = (P ∪S−)/S+
and P = (∪S+)/S−.

Let me tell you about sources, targets, and composition. If (M,P ) ns
an n-cell, then the source sk(M,P ) are [missed].

The composition (M,P ) ∗ (N,Q) = (M ∪N/Nn,Q ∪ (P /Pk)).
● So the 4-cell in O4 has M = {01234,0234,0134,012,023,034,04,0} and in
P I have {01234,0123,0134,1234,014,012,234,01,12,23,34,4}

The point is maybe that this is nontrivial mathematics.

What about doing some of these things explicitly for the 2-simplex? I should
rename things

(1,1)

(0,0) (2,2)

(12,1)(01,?)
({01,12,},?)

(02,0)
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The free oriental is generated by the faces of the k-simplex in a reasonable sense.
If I’ve defined something up to k there’s a unique extension to dimension k + 1.
This can be used to show that the orientals define a functor from ∆ to ω −Cat.

Now when I have this I get a nerve. Maybe I’ll just remind us of the definition.
If C is an ω-category, then NCn is hom(On,C), and it’s relative to that nerve that
we’re talking about the Street nerve.

Let’s talk about 1 and 2-categories in the Street nerve. We’re thankfully out of
the weeds now.

Let me list these as facts.

(1) If C is a 1-category, then NC is the usual nerve as a simplicial set, with
only the degenerate 1-simplices and all n ≥ 1 simplices marked.

(2) If C is a 2-category, then NC0 is the zero-cells in C, then NC1 is the 1-cells
in C (the 0-cells include as degeneracies) and C2 is a triple of objects

1

0 ⇑ 2

gf

h

g○f

The two-cell is marked if and only if α is an identity.
(3) What about NC3? This has [pictures] and it’s 4-coskeletal.
(4) In general, if C is an n-category then NC is (n + 1)-coskeletal.

What about weak complicial sets? So NC is a strict complicial set if the thin
simplices are identities. Can we give a different stratification, though, making it
into a weak, not strict, complicial set?

Let’s think about that.
I want to explore thinness structures, so C is still strict but I’ll obtain a weak

complicial set. Let me explore this in the case when C is a 1-category and NC is
the usual nerve. It seems reasonable that we’ll get things that are 1-trivial, so let’s
mark all n-simplices for n greater than 1. So we want to choose a different set of
1-simplices. Suppose I have f thin in C. We saw this morning that I can build a
horn Λ0[2]→ NC, for the diagram

1 1

0 2 0 2

g ff

≅
h

≅

So any marked 1-simplex is an equivalence where

Definition 3.7. A 1-simplex is an equivalence if there is a pair of thin 2-simplices

1 1

0 2 0 2

f

≅
f

≅



12 GABRIEL C. DRUMMOND-COLE

Definition 3.8. A weak complicial set is 1-saturated if the map (∗) is an isomor-
phism:

A0 A1

th1A eq1A

s0

(∗)

4. June 7: Martin Markl: Operad-like structures, pasting schemes,
and graph complexes II

Thank you very much. Remember that yesterday I gave you the assignment of
doing pasting schemes for [unintelligible] operads. Ralph Kaufmann did the exer-
cise, let me tell you the answer. Remember that my May’s operads had operations
P (k)⊗ P (n1)⊗⋯⊗ P (nk) → P (n1 +⋯ + nk). Remember that the pasting scheme
or monad is basically the free object of this type. So your understanding, if you
start with this picture, which is indeed [unintelligible], you need to iterate it. You
have levels, or maybe boxes [pictures] and then you may put things in this place on
the picture, but in every slot. It’s not so simple, because you can put something
on top like this, but then you should insert inputs, a similar thing, and so actually
what you get is this kind of structure, but inside each box the same structure.

It’s actually, though, not so complicated, the boxes are determined by the un-
derlying planar tree, as long as you have the condition that, well, any vertex either
has all input edges leaves or all input edges are used.

If I make no mistake, the underlying trees of these diagrams, you can reconstruct
this kind of thing from such data. Another assignment, to Mark, is this monad
polynomial or not?

So very good, the last thing which I mentioned is a property of modular com-
pletion. Just to recall the notation, to recall that we had modular operads and the
forgetful functor ◻ to cyclic operads, and left adjoint is something I called modular
completion, nowadays it’s called modular envelope, and if I take Mod(Com) it has
the property that for each arity and genus it is a point, so it’s terminal in modu-
lar operads, just as Com is in cyclic operads. I got a nice description in terms of
oriented surfaces with n holes and of genus g.

The last thing that I will do regarding the modular envelope is the same thing for
Ass. So I should say that Ass is the terminal non-Σ operad. So one would expect
Mod(Ass) to be a terminal non-Σ modular operad. The description of Mod(Ass)
was known for a long time, to physicists, to Ralph Kaufmann, but as far as I know
the first combinatorial description was due to my student M. Doubek. So what is
the description?

I should give you Mod(Ass)(n; g). This is the set of all disjoint decompositions

((. . .))1, ((. . .))2, . . . , ((. . .))b
of {1, . . . , n} into cyclicly ordered subsets. I also admit empty blocks. Then there

will be infinitely many of them. We have a kind of geometricity, G ∶= g−b+1
2

is a
natural number. Then this tells you there are only finitely many of these.

There is a better way to think about this, due to physicists, because this and the
related (open-closed) string field theory is that this is the same as the isomorphism
classes of surfaces of genus G with b holes, each of which has the appropriate number
of teeth.
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If you think of how these isomorphism classes are described, you’ll get this struc-
ture. You can kind of move the holes around the surface, and also may rotate inside
the holes which corresponds to the cyclic symmetry.

What about operadic composition? If I’m given another surface of the same
type, my circle product i○j connects these things by a ribbon, and the ξ3,1 are
obtained by putting a ribbon inside the same surface. The operations may change
the number of holes and geometric genus in a surprising manner.

So it turns out that this is the terminal non-Σ modular operad. If I’m not
mistaken, Ralph didn’t identify this in its own right. There is a smiilar thing for
open-closed but it will take us too far.

So let’s move to PROPs. If you have X×m → X×n in a Cartesian category, this
is determined by X×m → X, so PROPs are determined by operads. So let’s move
to the category of chain complexes. A PROP (short for product and permutation
category) is a collection {P (m,n)} with structure operations that can be read
off from the motivating example of PROPs, that is, EndV so that EndV (m,n) =
Lin(V ⊗m, V ⊗n), and the structure operations are those that you have for such a
collection, you can define

● vertical composition which is

○ ∶ P (m,n)⊗ P (n, k)→ P (m,k),
● and then you have horizontal composition,

⊠ ∶ P (m1, n1)⊗ P (m2, n2)→ P (m1 +m2, n1 + n2)
● you have a unit in P (1,1)
● a symmetric group action Σm ⊗ P (m,n) ⊗ Σn → P (m,n) involving the
permutation of outputs of multilinear maps.

So what are pasting schemes for props? They are directed graphs, I should probably
say what these are, each edge is directed and there are no oriented cycles. The first
condition means also that the collection adjacent to each vertex can be divided into
outputs and inputs.

I tend to denote operations in a PROP by boxes. [pictures]
What are the graphs representing these operations? The ○ operation is con-

traction. The horizontal composition is disjoint union. The identity e is the trivial
directed graph. The symmetric group action is by relabelling the inputs or outputs.

Let me give you a very important warning at this point. The warning is that
this nice correspondence between the biased and unbiased definitions works only
when P (0,0) = P (1,0) = P (0,1) = 0. This is why I assumed that m,n ≥ 1. If I
admit these things I can get a graph which is a single dot, with something from
P (0,0).

Okay so these are PROPs.
Let me mention some modifications of PROPs. In principle this is simple, but

very useful, this is properads, introduced by Vallette. Pasting schemes are con-
nected directed graphs. So while on the one hand the structure or unbiased def-
inition is easier, it means you don’t have horizontal composition, and the biased
definition is slightly more complicated, because you are not allowed to use some
part of the structure. The biased definition involves operations that correspond to
graphs which are kind of difficult to draw, but I will try [pictures].

All structures and props you come upon naturally are properadic, you have to
think hard or come up with something unnatural to get a structure which is not
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properadic. [example]. There is another simplification called dioperads, due to
Gan, which means that I restrict to simply connected directed graphs. The biased
definition involves only one connection between the two things. [pictures].

It turns out that there are some interesting objects that exist over dioperads like
Lie bialgebras or infinitesimal bialgebras. I’ll talk about them tomorrow.

Finally, there is something which I called 1
2
-PROPs. Tomorrow we’ll see why

these are useful. The pasting schemes are like for dioperads with an extra conditino.
They are connected directed simply connected graphs with the property that for
any edge of Γ, either e is a unique outgoing edge or unique incoming edge of its
vertex.

Of course, you’re probably interested to know what has the structure of such a
thing, so the example is a half-bialgebra with the compatibility that ∆µ = 0.

Tomorrow we will see why these things are important.
Let me finish this exposition by mentioning what is a wheeled PROP. I’m re-

ferring to my work with A. Voronov. Wheeled PROPs were introduced by me,
Merkulov, and Shadrin. The pasting schemes are directed graphs possibly con-
taining directed loops, which we called wheels. The biased definition also included
graphs like this [pictures] where you connect the input and the output of the same
thing. The resulting operation resembles self-gluing for modular operads.

Why are these things useful? It can be shown that solutions to a specific master
equation are algebras over wheeled PROPs.

Okay? There are modifications, wheeled properads, where you assume these
graphs are connected, there are wheeled operads where you have either one or no
output edge. I’m not going to speak about these things, I’m going to present more,
I won’t say more exciting because what is the notion of excitement in mathematics,
but something different.

So hyperoperads, that was the last item on my list. In all examples which we saw
so far, operads were indexed by natural numbers or a couple of natural numbers. I
can call these arity and genus. But in general arities may be very different objects.
Let me start with an example and then give a general approach. The example is
the planar rooted tree hyperoperad PRT . Say I’m given two planar rooted trees S
and T . A map between them is a map of trees that preserves external flags. The
map φ is obtained by contracting some subtrees of S. I have some subtree Tv of S
which is contracted to v. I call this the fiber over v.

If the vertices of T are labeled from 1 to k, then I have fibers T1, . . . , Tk, and the
PRT hyperoperad is a collection indexed by planar rooted trees, and the structure
map, for any φ, I get a map A(T ) ×A(T1) ×⋯ ×A(Tk)→ A(TS).

What about examples? There is a terminal one, given by 1(T ) = ∗. You also
have the endomorphism PRT -operad. So X = {X(n)}n≥1, and then EndX(T ) is
the set of maps from X(T ) into X(n). What is X(T )? It’s a product over vertices
of T of X(arity(v)), so pictures might help: [pictures].

If A is a PRT -operad, then an A-algebra is a PRT -morphism A→ EndX which
is αT ∶ A(T )→ EndX(T ).

The theorem is that 1-algebras are Markl operads. So αT are determined by
trees with two vertices, and then this is given by specifying a map X(m)×X(n)→
X(m + n − 1).

There is a general scheme that given a class of graphs of some type T satisfying a
hereditarity property, then there exists a notion of T-hyperoperads such that operad
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or PROP or whatever determined by T-pasting schemes is the same as algebras over
the terminal hyperoperad of this type.

SoI still have a couple of pages but of course I don’t want to go over time. So
I’ll tell you a couple of things. This scheme can be formalized in a couple of ways.
While my operad is given by a monad determined by this pasting scheme, this is
determined by the + construction of the monad. So it’s a reflection of something
sometimes called the [unintelligible] principle.

There is another attempt to generalize the situation given by the notion of an
operadic category which you can find in my paper with Batanin. This is a category
O such that maps have fibers. This is a generalization of an operator category, I
guess by Barwick, which assumes the fibers are pullbacks, but there are examples
where they are not pullbacks.

Most examples which I gave are operads in an operadic category. But this can’t
include modular or cyclic operads. There is nothing like a completely unifying
approach, which is maybe part of the reason that operads are not welcome in other
parts of mathematics. Ralph, I think, will attempt something in this direction.

Tomorrow I’ll speak about something using half-props and dioperads. Thank
you very much.

5. Emily Riehl: Weak complicial sets III

The lecture notes are at www.math.jhu.edu/~eriehl/wcs.pdf. Today we’ll talk
abou the issue of saturation for weak complicial sets and then end with some stuff
about the homotopy theory of them, due to Verity.

Saturation applies to general weak complicial sets. Let’s motivate with specific
examples from ω-categories.

Last time we saw that if C is a strict ω-category, we have the Street nerveNC, and
it’s most convenient to think of this as a simplicial set (so we can choose different
stratifications) where an n-simplex is On → C where On is the nth oriental. The
thing to remember today is that it has a unique n-cell representing the n-simplex.
We can obtain a complicial set in various ways. The Street–Roberts procedure gives
a strict complicial set, meaning we have a unique filler for all of these complicial
horns, where a simplex is thin if On → C carries the n-cell to an identity. One thing
that’s cool about weak complicial sets is that I can fix a single simplicial set and
change the stratification to give a more refined or generous theory of equivalence.
This particular stratification is minimal, it uses only the identities. But I could
imagine something more flexible where I use equivalences instead or something like
this. You could also go the other direction, where you have a simplicial set where n-
simplices are simplicial cobordisms, and this is a Kan complex, and you can ask how
to make this a weak complicial set. You could use the maximal stratification where
everything is thin, so you have all cobordisms are equivalences. You could make
thin simplices ones that are h-cobordisms, or that the thin things are equivalences
are, say, quasi-invertible, or trivial (in having a collapse onto positive or negative
faces). Those are four distinct structures, stratification structures, and this theory
is quite flexible in that sense.

It would take a long time to get that example up and running so I’ll focus on
the categorical example today.
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From the perspective of the Street nerve, the question is, can I mark more
simplices and still get a weak complicial set. So the answer is “yes” and the solution
we’ll focus on today is to construct a saturation of a weak complicial set.

The first major task is to define saturation in all dimensions, but we’ll start in
low dimensions and then generalize. So let’s suppose, you might think of the nerve
of a category but it’s more general. Suppose A is any weak complicial set. Consider,
well, which edges, at dimension one, which edges can we make thin? Consider a
thin one simplex.

1

0 2

f

and this provides us with a filler with the horn Λ0[2]→∆[2]

1

0 2

f

≅

and we get the dual picture as well.

1

0 2

f

≅

Definition 5.1. We say that a 1-simplex f is an equivalence if there exist fillings

1

0 2

f

≅

1

0 2

f

≅

Theorem 5.1. Every thin 1-simplex in a weak complicial set is an equivalence.

A weak complicial set is 1-saturated if every equivalence is thin.
Then given a 1-category, NC is saturated if it’s given the 1-trivial stratification an

isomorphisms are marked. This is the maximal thing making NC a weak complicial
set.

We needed to know the thin 2-simplices to do this so we have to induct down.
So now suppose A is a weak complicial set and consider a thin 2-simplex α ∶ f → g.

From such a gadget I’ll build an admissible horn Λ1[3] → ∆1[3] which then has a
filler. This has a thin filler.

1 2 1 2

0 3 0 3

≅ α
≅

≅

≅

g
f

g
≅ β

g

g
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We can also do the other handed version.
We call α an equivalence if there is a pair of thin 3 simplices as in this diagram

and its other handed version.
So if α is thin then α is an equivalence, has liftings like this, and we say A is

2-saturated if all 2-equivalences are thin.
Consider a 2-simplex in a weak complicial set. [pictures]
An example, if C is a strict 2-category, make NC 2-trivial. If we mark the

2-identities, then this is 1-saturated but not 2-saturated. If we marke the 2-
isomorphisms and the 1-equivalences then NC is saturated and this is the maximal
stratification making NC a weak complicial set.

Now let me redefine this, first in dimension 1 and then in all dimensions.
If f is a 1-equivalence, we can build an admissible horn.

1

0 3

2

f

e

h≅

g

and this defines a stratified map from ∆[3]eq → A where the domain is the three-
simplex with stratification 1-trivial (marking the two and three simplices) but also
the edges [02] and [13]. This is like 2 of 6 hypothesis. A map into A picks out an
e, an f , and a g I have a three simplex where everything other than e, f , g and h
is thin.

1 2 1 2

0 3 0 3

f

g

f

≅ g

≅

≅

≅
≅

≅
e ≅

h

e

h

Then the other four are as well, this is a lifting property

∆[3]eq //

��

A

∆[3]#

<<

and then we say that f is a 1-equivalence if there is ∆[3]eq with f as 12 edge.
Okay, so ∆ sits inside ∆+ which has the empty ordinal as well.
I now have the direct sum ⊕ which takes [n] and [m] to [n +m + 1] and then

there’s something called Day convolution. If I have presheaves here then I get a
join. So if I look at augmented simplicial sets, I get

Simp+ ×Simp+
⋆Ð→ Simp+

where ∆[n] ⋆∆[m] ≅∆[n +m + 1]. I can restrict this to Simp×Simp→ Simp, and
I’m interested in a stratification of the join.
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Definition 5.2. The join lifts to

Strat×Strat ⋆ //

��

Strat

��
Simp×Simp //⋆ Simp

where ∆[n]→ A ⋆B given by ∆[k]→ A and ∆[n− k − 1]→ B for some k is thin in
A ⋆B if and only if one of its components is thin in A or B.

Definition 5.3. A weak complicial set is saturated if it admits extensions

∆[3]eq ⋆∆[n]k //

��

A

∆[3]# ⋆∆[n]k

;;

Equivalently one could use ∆[n]⋆∆[3]eq →∆[n]⋆∆[3]# or a two-sided version.
Let me draw a picture in a 4-simplex ∆[3]eq ⋆∆[0] [pictures].
The thin things are simplices whose intersection with ∆[3]eq is [02] or [13].
This is characterizing the equivalences whose edge from 0 to 1 is an equivalence.

This is sufficient by a robustness argument and you have to do something more in
higher dimensions but [unintelligible] still works.

Let me end with some remarks.

Remark 5.1. Saturation is an inductive definition. If I start with an n-trivial
stratified simplicial set, then there exists a unique expansion of its stratification
that’s saturated. If I’m not n-trivial for any n, then there may be multiple saturated
stratifications on a fixed simplicial set.

So this notion is most interesting when I’m not n-trivial for any n. For the case
where I am, a category theorist thinks maybe the n-trivial unique one is the best
choice, you want equivalences to be thin.

Eugenia Cheng has [missed] example.

The one thing that’s not terribly well-understood, the last thing I want to admit,
it’s not entirely understood how stratifying an existing weak complicial set interacts
with the axioms, there’s something delicate there. Dom is convinced that you can
start with one and stratify it minimally, then that’s a complicial set as well; that’s
not totally proven yet. But if you can replace the underlying simplicial set then
there’s no problem, you can fibrantly replace, and that’s what I’ll end talking about.

Before I do, I should talk about the ambient category— Strat is Cartesian closed,
with product × = ⊛ playing the role of the Gray tensor product (first introduced
in 2-category theory). There’s a strict product on 2-categories. This is probably
too strict, and there’s a 2-category which works with pseudofunctors and similar
things, and replacing the Cartesian product with the Gray tensor product gives you
that model. You also have that for bicategories.

I’ll write Hom(A,B) for the right adjoint to this product. You should think of
a vertex in this simplicial set as a pseudofunctor. There’s an important fact
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Lemma 5.1. If I consider two sets of maps, one will be I = {∂∆[n] ↪r ∆[n]∣n ≥
0} ∪ {∆[n] ↪e ∆[n]t∣n ≥ 1} and the anodyne extensions for J = {Λk[n] ↪r

∆k[n]∣n ≥ 1, k ∈ [n]} ∪ {∆k[n]′ ↪e ∆k[n]′′∣n ≥ 1, k ∈ [n]}, then for all i in I
and all j in J , then the pushout product i⊛̂j is a composite of pushouts of elements
of J .

Then Hom(X,A) where A is a weak complicial set, is itself a weak complicial
set. So we have this exponential ideal kind of thing.

So there’s a naive homotopy theory using the thin interval and the Gray tensor
product or Hom. I want to talk about various model structures which can be built
using Jeff Smith’s theorem. I can be quite precise about the fibrant objects I want
to specify. I want to give a whole family with different fibrant objects.

Definition 5.4. I want to use the same J , because this is the same meaning, but
it might be a different class.

Let K be a set of monomorphisms in Strat, and I’ll say a stratified simplicial set
is K-fibrant if I can lift

X

k
��

// A

Y

>>

for all k in K. So let K be a set so that the following things hold.

(1) J ⊂K, so K is an extension of elementary anodyne inclusions.
(2) (this and the next two are equivalent, so any or all of them hold) For each

K-fibrant A and k in K, we have Hom(Y,A) k∗Ð→ Hom(X,A) is a homotopy
equivalence.

(3) For each K-fibrant A and k ∈ K, we have Hom(Y,A) k∗Ð→ Hom(X,A) is a
trivial fibration (has the right lifting property against monomorphisms)

(4) We have i⊛̂k for i ∈ I and k ∈K are in the class generated by K.

So I didn’t name these but these are the K I want to consider.

Theorem 5.2. (Verity) For any such K, there exists a model structure on the
category of stratified simplicial sets so that

(1) cofibrations are monomorphisms,
(2) fibrant objects are exactly K-fibrant objects,
(3) fibrations between fibrant objects have the right-lifting property with respect

to K,
(4) this is cofibrantly generated

(5) weak equivalences are “K-equivalences” meaning X
fÐ→ Y is a k-equivalence

if and only if Hom(Y,A) f∗Ð→ (X,A) is a homotopy equivalence for all fibrant
A.

(6) This is monoidal with respect to both ⊛ and ⋆.

Let me conclude by giving you some examples. The proof, by the way, is Jeff
Smith’s theorem.

What’s great about this result is it’s pretty easy to apply if you want your own
model structure. All you have to do is put J into K and then check the condition.
There’s the minimal one, where K = J , the elementary anodyne extensions, this is
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the model structure for weak complicial sets, fibrant objects are weak complicial
sets.

We could let K be J together with something that asserts my stratification is
n-trivial, throwing in the inclusions ∆[r] ↪e ∆[r]t for r > n, and now the fibrant
objects are n-trivial weak complicial sets.

I should maybe say, well the last thing I can do is take these saturation-y maps.
Take ∆[3]eq ⋆∆[n]↪∆[3]# ⋆∆[n] for n ≥ −1 for saturated weak complicial sets.

I can mix and match, get K-saturated and n-trivial. An instance of this, if I ask
for 1-trivial saturated, these are naturally marked quasicategories. If you wanted
a proof in the literature for Joyal’s model structure for quasicategories, this is the
one I’m aware of here.

6. Ralph Kaufmann: Feynman categories I

I do not take notes during slide talks.

7. June 8: Philip Hackney/Marcy Robertson: quasi-operads

I’d like to thank the organizers. This is part one of our three-part talk. We’ll
start with quasi-operads or dendroidal sets as one model for ∞-operads.

Some preliminaries that we’ll use in all of our talks. We have a convention that
for us a graph G consists of

(1) a directed graph
(2) connected, has half-edges, and no directed cycles.

Definition 7.1. A tree is a graph with a unique output (the root) plus

(1) A coloring function q from the edges of the tree to a set C

(2) Orderings, bijections ordiT ∶ {1, . . . , n}→ in(T ) ad ordiV ∶ {1, . . . , k}→ in(v).

If I combine these, q ∈ (v) gives a profile c1, . . . , ck for ci ∈ C, and we’ll call this
c.

Similarly you could write q out(v) = d.

7.1. colored operads.

Definition 7.2. A colored operad P consists of the following data

(1) A set of colors C = col(P ),
(2) for all k ≥ 0 and for all c in k-profiles, and for all d, a set P (c, d), and
(3) an associative and unital composition given by P (d;d) ⊗ P (c1, d1) ⊗ ⋯ ⊗

P (cm, dm)→ P (c1, . . . , cm;d)
We call the category of these Operad.

There are lots of examples, there are ones that encode operads and properads
and maps between them and things.

We want now to talk about the free operad generated by a tree.
For any tree T , there exists a colored operad Ω(T ) generated by T in the following

way. The colors of Ω(T ) are the edges of T . The operations are generated by vertices
in the tree. [pictures]

Definition 7.3. The category Ω is the full subcategory of Operad whose objects
are these Ω(T ) for some tree T .
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It’s sort of a common, we’re as guilty as anyone else, it’s common to call Ω the
category of trees, but it’s actually a category of operads.

We’ll actually write T for Ω(T ) because we have too many Ω symbols.

7.2. Coface maps and graph substitution.

Definition 7.4. A partially grafted corolla P is a graph with two vertices u and v
in which a nonempty finite number of outputs of u are inputs of v.

We’ll use partially grafted corollas to make formal what we mean by graph
substitutions.

Definition 7.5. Graph substitution G{Hv} means plugging some H into a vertex
v in G. We can only do this if:

(1) the inputs of H are in bijection with the inputs of v,
(2) the outputs of H are in bijection with the outputs of v, and
(3) the colorings have to match up.

[pictures]
So here’s a little fact. Graph substitution induces maps between graphs. In

particular, we’ll get coface maps. Let T be a tree, if we have an internal edge of
T (not the leaf or a root) with two vertices u and v, then we have a subtree H of
T and a map duv ∶ H → T = H{Puv} where P is the appropriate partially grafted
corolla.

[pictures]

Definition 7.6. Let u be a vertex of T where either

(1) all inputs are leaves, or
(2) there are no inputs of u

Then there is a similar way to write du.

Degeneracies I’ll just write down a definition to save time.

Definition 7.7. A degeneracy map is a map σv ∶H →H{∣}.

Proposition 7.1. (Moerdijk–Weiss) The category Ω is generated by the inner and
outer coface maps and degeneracies and isomorphisms.

In other words, any map in this category can be factored as all these. I won’t
talk too much about the isomorphisms.

7.3.

Definition 7.8. A dendroidal set is a functor X ∶ Ωop → Set. The ones we use the
most are the representable guys Ω[T ] = Ω( , T )

Let α be a coface map, either inner or outer, in Ω. Then the α-face of Ω[T ] is
the image of the induced map Ω[S]→ Ω[T ], and we’ll write ∂α[T ].

Now these definitions sholud look familiar to people doing simplicial stuff.

Definition 7.9. The boundary of Ω[T ] is the ∂[T ] = ∪α∂α[T ]. If I skip a coface
map I get a horn Λβ[T ] = ∪α≠β∂α[T ], and if β is inner we call this an inner horn.

Now we can define a quasi-operad.



22 GABRIEL C. DRUMMOND-COLE

Definition 7.10. A dendroidal set X is a quasi-operad or inner Kan if for trees T
and for all inner β, we have a lift

Λβ[T ] //

��

X

Ω[T ]

<<

If our trees are linear, we’d get a quasicategory.

Definition 7.11. A monomorphism of dendroidal sets X ↪ Y is called normal if
for all trees T in Ω and all y ∈ Y (T ), the set determined by T and Y , such that y
is not contained in the image of X(T ), has a trivial stabilizer in the automorphism
group: Aut(T )y ≤ Aut(T ).

These are our cofibrations of dendroidal sets.
The last thing I’ll say is that there is a model structure here.

Theorem 7.1. (Cisinski–Moerdijk)
There is a model category structure on dSet such that The inner Kan complexes

are the fibrant objects and the normal monomorphisms are the cofibrations.

I’ll stop there.

8. Martin Markl: Graph cohomology

This will be my swan song. This is work with Voronov. I’ll work in chain
complexes, probably in a field of characteristic zero. As an example of something
that is a graph complex, let me recall something that is 25 years old, namely the
resolution of operad for associative algebras. This has a presentation Γ(Y ) modulo
associativity, it’s very simple and easy to see what I think it is, what is such an
operad, it’s the span of binary trees [pictures] and modulo the relation means that
I can replace every right leaning edge with a left leaning edge. It’s obvious that if I
mod out by the ideal, I can find a representative for every arity of the left leaning
type. Since I’m forgetting the symmetric group action, I get Ass(n) = k in any
arity.

So our task will be to describe or calculate the minimal model. I wish to resolve
this operad in the category of operads in chain complexes. I want the smallest
possible number of generators; I’ll define minimality in a moment precisely. So I’ll
have the same generator, Y , in degree 0, and I’ll need something in degree 1, Z, so
that ∂Z is associativity. Then I have to think a little bit but if I think a little bit
I get a generator of arity four in degree 2, and for any arity n, I’ll get something
of degree n− 2, and a general form for the differential ∂ which acts on a generator,
up to signs as decomposing this corolla into a directed tree with two vertices and a
total of n inputs.

It turns out that this map, ρ, which sends Y to itself and other generators to
0, is a quasi-isomorphism, induces an isomorphism on homology. There’s a nice
way to see it, this operad is the span of cells of Stasheff’s associahedron, which
is contractible. You can see this without using anything fancy, Koszul duality
or whatever. By minimal I mean that the differential has no internal part, the
differential is quadratic or higher.
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For me this is the motivating example for a graph cohomology. Why? This is the
span of all trees, not necessarily binary or anything, I don’t want to have bivalent
vertices, and my differential expands each vertex. This is precisely the idea of a
graph complex.

You may ask why anyone may be interested in this. It turns out that if I call this
differential graded operad by A∞, then A∞-algebras are strong homotopy versions
of associative algebras. This is a general rule, if I am given an algebra over an
operad or PROP. If I find a cofibrant resolution for the original operad or PROP
then algebras over the resolution will be strongly homotopy versions of the original
type of algebra.

So let me formulate a (kind of ideological, rather than formal) definition:

Definition 8.1. A graph complex is the span of (decorated) graphs, with a differ-
ential given by expanding vertices.

It walks over vertices and expands each one according to some rule. More specif-
ically, my graph complexes will be of the form G = (Γ(E), ∂) with a boundary of
this kind, and this will be a PROP-like free thing.

So maybe I can tell you something about the history and why these things are
so interesting. So graph complexes describe many interesting things like automor-
phisms of free groups, moduli spaces of surfaces, Grothendieck–Teichmüller group,
other things, I should mention some names: [unintelligible], Kontsevich, Penner,
[unintelligible], more recently Willwacher, [unintelligible], and I apologize if I forgot
anyone.

So I’ll also have an example with a use for these ridiculous 1
2
-PROPs.

So a minimal model for P is a map ρ as follows:

P
ρ← (ΓP (E), ∂)

with E(m,n) for m + n ≥ 3 and m,n ≥ 1; the differential ∂ should have no linear
part and ρ should be a quasi-isomorphism.

If I write the dg thing asMP , then algebras over it will be strongly homotopy
P -algebras.

Just recalling what you heard yesterday, the free PROP on such a collection is
the direct sum

⊕E-decorated directed graphs

Notice that this fellow is extremely big; there is a combinatorial explosion. For
instance, ΓP (E)(1,1) is typically infinitely dimensional. It contains graphs like
this: [pictures]

It is a huge object and therefore very difficult to work with and one needs to
invent some more subtle methods of how to develop minimal models.

Let me again illustrate an example, strongly homotopy bialgebras. Here I mean
Hopf algebra without unit, counit, or antipode, so this is a vector space V with
associative product and coassociative coproduct and the compatibility ∆(ab) =
∆(a)∆(b) [pictures].

Let me denote by B the PROP describing bialgebras, which can be generated
as the free prop on the product and coproduct modulo associativity, coassociativ-
ity, and this compatibility. Actually, it’s a simple exercise to describe the PROP
explicitly.
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Now I wish to construct a minimal model for the PROP. I start as in my motivat-
ing example. I take the free PROP, with two generators in dimension 0, and then
to kill the axioms I shall have generators in degree 1 to kill the relations [pictures].

You can figure out the next step by brute force or by experimenting that you
should have a 1 to 4 and 4 to 1 and 3 to 2 and 2 to 3 generator in degree 2, and
maybe even the next step you can do by hand, but then you are stuck because
of the combinatorial explosion. So the question is what one can say about this
combinatorial explosion.

The strategy is the following ingenious idea. Consider the following family of
PROPs Bϵ depending on a parameter ϵ, where you have the same generators and
the final relation depending on the parameter ϵ. So B1 is B and B0 describes these
stupid things that I described yesterday.

You won’t find such an algebra in nature but it makes sense to consider a prop
for it.

You may notice that B0 describes 1
2
-bialgebras. There is the following strategy.

The first observation is that 1
2
-bialgebras are defined over 1

2
-PROPS. b0 is the free

1
2
-PROP on the same generators modulo the same relations. Then 1

2
-bialgebras are

algebras over this 1
2
-PROP.

(1) So the first step is to resolve B0 in the category of 1
2
-PROPs, and then

(2) generate (using this resolution of b0) a resolution of B0 in PROPs.
(3) Then since B1 is a perturbation of B0, then the differential for B1 we can

expect to be a perturbation of the differential for the minimal model of B0.

So the first step is fairly easy because b0 is quadratic Koszul, I won’t go into the
theory but I’ll tell you what it looks like. So b0 has generators ξmn for any m and
n ≥ 1. The degree of such a thing is m+n−3 is something like this. The differential
∂0 is given by the summation of all possible 1

2
-PROPic decompositions. Rather

than explain what I mean, I’ll give an example [picture].
If steps 2 and 3 work, you already know the generators for the minimal model

for B, which is a quite nontrivial result, I should say.
So to do the second step, I replace everything with analogs in PROPs. I replace

b0 with B0 and take the free PROP now instead of 1
2
-PROP. I should be able to

establish that ρ0 is still a quasi-isomorphism from this “resolution” to B0 as it was
to b0. So I have the categories of PROPs and 1

2
-PROPs, I have the forgetful functor

◻ and it has a left adjoint F , and then this is F applied to my 1
2
-PROPic resolution.

So if I prove that F is exact (meaning it preserves quasi-isomorphisms), then I have
made step 2 work.

Let me prove it. Proofs are boring things in mathematics so I’ll try to mae it
short.

Theorem 8.1. F is exact.

Proof. Assume b is a 1
2
-PROP. How do you construct F (b)? By general facts it is

a quotient of ΓP (b) by the ideal generated by the 1
2
-PROPic compositions. This

is the sum of b-decorated directed graphs, modulo contraction of 1
2
-PROPic edges.

[pictures]
So then I get a unique decomposition of sums of tensor products (let me come

back to this) and then by a Künneth formula I get exactness. □
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So then for the third step, the minimal model forB, we show this to be (Γ(ξmn ), ∂0+
∂P ) and you may also obtain some explicit formulas in small dimensions at least,
and the question of how to obtain the general formula is, I dare to call the black
hole. I suggest it as an assignment for graduate students if you want to ruin their
careers.

Now let me talk about this subtle point, why the functor has all these nice
properties. I have the following diagram of forgetful functors.

PROPs 1
2
-PROPs

Diops

◻

◻1

F2

F

F1

◻2

So we will also try to see why the argument will fail for F1, which I claim is not
exact.

So I try to do the same thing, F1(d) = ΓP (d)/dioperadic composition.
[pictures].
So I want to give some idea of why something different will happen for half-props

than for dioperads. [pictures]
I still have five minutes, and so I’ll give one explicit formula for a differential

to see what kind of formulas you would expect. ∂(ξ32) = ∂0(ξ32)+ some correction
terms which I explain [pictures].

So what else shall I tell you? This is a black hole, I don’t want to go through
here, but the conjecture that there is a sequence of polyhedra, the same way that
you have one for Stasheff polyhedra, this is not true, but this is probably a good
place to stop.

9. Victor Turchin: Embedding calculus and the little disks operads
I

Thank you. I’d also like to thank the organizers, Marcy and Philip. This is the
study of spaces of embeddings between manifolds. This is a very nice application
of the operad theory. The main operad that appears is the little disk operad.
The [unintelligible]was invented by Weiss and Goodwillie, the goal was to study
embeddings. Let me explain the manifolds functor calculus.

Assume that we have a smooth manifold, we can consider the category of open
subsets here, and then we can look at the functors O(M)→ Top, and look at both
the covariant and the contravariant case. We want this to be isotopy invariant,
so that if we have U1 ⊂ U2 an isotopy equivalence, so that both compositions
are isotopic to the identity, then the functor should send isotopy equivalence to
homotopy equivalence. The functor calculus provides a sequence of polynomial
approximations. In the covariant case, we have a tower T0F → T1F → T2F → ⋯, all
of which come with a map to F . The TkF is the kth polynomial approximation. For
the contravariant case all the arrows go in the opposite direction, T0F ← T1F ← ⋯

There is a version of this calculus which is so-called “context-free.” Consider the
category of all smooth manifolds of dimension n. The morphisms are codimension
0 embeddings. If you have a functor Mann → Top, then
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Definition 9.1. A functor F ∶ Mann → Top is polynomial of degree k if for any
manifoldM and for any collection of closed and pairwise disjoint subsets A0, . . . ,Ak,
we get the cube; let me do this in case two to be easier:

F (M/A1 ∪A2) F (M/A2)

F (M/A0 ∪A1 ∪A2) F (M/A0 ∪A2) F (M)

F (M/A0 ∪A1) F (M/A0)

is homotopy Cartesian.

So you can build the value of the functor on M out of its value on smaller pieces.
So say M ↦ M × k; this is polynomial of degree k. If you take the functor

M ↦M×2, this is not linear. Let me show this.

(M/A0 ∪A1)2 (M/A0)2

(M/A1)2

the colimit here will be (M/A0)2 ∪ (M/A1)2, but this is not M2. If you do this in
the three dimensional cube, then M2 = (M/A0)2 ∪ (M/A1)2 ∪ (M/A2)2.

You can take other examples. You can take M ↦M×k/Σk, this is polynomial of

degree k. Or (M
k
), the unlabelled configurations of k points, this is also polynomial

of degree k. Or you could take the spherical tangent bundle of M , or M ↦M ×A,
these functors are linear.

What about for contravariant functors?
Linear examples would be M ↦Map(M,A) or M ↦ Γ(p) where p is a functorial

bundle EM →M . So the first example is a trivial example of the second.
Another example would be immersions of M in some larger dimension space N ,

because this is equivalent to sections of a certain fiber bundle, formal immersions,
Γ(p,M), where you assign a space EM →M where E is the space of triples (m,n,α ∶
TmM → TnN) with α a monomorphism. Smale proved his famous immersion
theorem, that Imm(S2,R3) is connected, which follows from seeing the sphere as
the union of disks and then seing that this is Cartesian.

Degree k also goes to Maps(M×k,A), and we could also ask for Σk-equivariance.
The good news is that there is a theorem by Goodwillie–Klein and Weiss, where

viewing Emb(M,N)→ Tk Emb(M,N), and this is (1−m+k(n−m−2))-connected,
provided n −m > 2. This tower becomes closer and closer to the initial space of
embeddings. We get closer and closer approximations. So now we want to find k
so that this is greater than zero, you can take the fifth polynomial approximation,
and then you can understand isotopy classes. To get the fundamental group, you
take k higher. But it really becomes a computation similar to calculus.

We can actually describe explicitly the kth polynomial approximation.
I told you that M ↦Mk is polynomial of degree k but what is the Taylor tower.

In this case TiF (M) = {x1, . . . xk ∈ M×k ∣#{x1, . . . , xk} ≤ i}. So this functor is not
homogeneous.
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Okay let’s talk about the operadic interpretation. It looks nice in the context
free context. Actually before this I should give a formula. Consider the category of
disks as a subcategory of the manifolds. I want Disc≤k to be the subcategory with
objects disjoint unions of up to k disks.

Then

TkF (M) = holim
Disc≤k↓M

F,

the homotopy right Kan extension

Disc≤k Top

Manm

F○i

i
hRan

So the things I’m doing is enriched, and so I can consider now the operad End(Dm),
the operad of endomorphisms of Dm.

The kth component of the operad is the embeddings of a disjoint union of k disks
into a disk. In little disks, your embeddings should be just translation and scaling.
Here you also allow all transformations.

So this is equivalent to Bfr
m (k). This space of embeddings is equivalent to that.

Theorem 9.1. (Boavida de Brito–Weiss, T.)

TkF (M) = hRmod≤k,End(Dm)(Emb( ,M), F ( ))

So if your functor is contravariant, {F (1), F (X), F (X⊗2), . . .} becomes a right
module over End(X) Then Emb( ,M) is still a right module. We look only up
to degree k. For k =∞ you get a formula similar to factorization homology.

Just as a remark, if you look at the initial definition,

holim
Disc≤k↓M

F ≅ hRmodEnd(Dm)δ(Emb( ,M)δ, F ( ))

where the δ means with the discrete topology. Then this was understanding the
continuous version to get the same result. First it was Pedro and Michael who
resolved it and I gave a different argument.

Another thing is that you can also consider functors from manifolds to chain
complexes. In this case you also get

Theorem 9.2. (Boavida de Brito–Weiss) TkF (M) = hRmod≤k,C∗Bfr
m
(C∗(Emb, ( ,M)), F ( ))

Now an interesting space of embeddings is the space of embeddings Emb(Sm, Sn),
and assuming n −m ≥ 2 this has the same π0 as Emb∂(Dm,Dn). So it would be
interesting to study this space of embeddings of disks, so it would be interesting to
understand the calculus of the closed disk.

So let me give the idea, we should change the category Disc to D̃isc. The objects
are disjoint unions of the disc or Sm−1 × [0,1). Now we showed that the Taylor
tower can be expressed—and let me mention if M is parallelizable, we can reduce
this to framed disks, we can reduce to functors which respect the framing, and
reduce to the case with unframed disks.

Theorem 9.3. (Arone–T. (2011))

TkF (Dm) ≅ h InfBm Bim≤k(Bm, F ( )).
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So what are infinitesimal bimodules over an operad? We have so-called infini-
tesimal left action. The structure is Abelian, you can only insert in one input. The
right action is just usual. Since the right action is also unital, we can insert only
in one of the inputs. Infinitesimal right action is just like the usual one but the left
action is different. We need a compatibility [picutures].

Now the functor F on the category of disks, this left action comes from the
boundary conditions. Now the embeddings to a disk is equivalent to the operad
being itself, an infinitesimal bimodule over itself.

As a corollary, we get the following.

Corollary 9.1. (Arone–T.) Tk Emb∂(Dm,Dn) ≅ h InfBm Bim≤k(Bm,Bn).

The only thing I’m lying about, I should say Emb∂ , where this is a homotopy
fiber of Emb(Dm,Dn) → Imm(Dm,Dn) ≅ ΩmVm(Rn). So this is a linear functor.
So we have a little correction to the space.

Now the question is, what about homotopy maps of operads between Bm and
Bn. I prefer the truncated case, where you have no more than k inputs. You can
study this algebraic structure. If we compare this to the space of embeddings, you
get

Theorem 9.4. (Dwyer–Hess, Boavida de Brito–Weiss, Ducoulombier–T.)

TkEmb∂(Dm,Dn) ≅ Ωm+1hOper≤k(Bm,Bn)

This is the purpose of my second talk, this theorem.
So Dwyer–Hess did something for m = 1, they don’t like to work with trunca-

tions, Pedro and Michael they understand the truncation case, and we also do the
truncation case, but the approaches are very different. They don’t use the theo-
rem, but we (and Dwyer–Hess) use the theorem. This really becomes a theory of
operads, not calculus.

I’ll spend ten or fifteen minutes talking about their approach, although I haven’t
understood it very well. I’m planning to go over time and spend thirty more
minutes. But maybe let me take a little break.

The rational homotopy groups can be computed for the spaces I was discussing
and in fact they will be graph complexes. The main reason that things work nicely
is relative formality of the little disks operad.

I should have explained, you can always consider a configuration ofm-dimensional
disks as n-dimensional disks.

Theorem 9.5. (Tamarkin, Kontsevich, Lambrecht–[unintelligible], T–Willwacher,
Fresse–Willwacher) The map of operads C∗Bm → C∗Bn of singular chains is ratio-
nally formal if and only if n −m ≠ 1.

So what does the statement mean? The claim is that you can find a zigzag of
maps of operads to the induced map H∗Bm → H∗Bn. An equivalence is a map
which in every degree induces an isomorphism on homology. So then the two maps
of operads are equivalent. What is the homology of the little disks operad? This
is a theorem of Fred Cohen, it’s either Ass when m = 1 or it’s the Poisson operad
(with bracket of degree n − 1) for m ≥ 2.

What is Bm(2)? It’s a configuration of two disks. The degree 0 class gives the
product and the degree m − 1 class gives the bracket, which disappears when you
map to Sn−1. This is actually crucial for the computation.
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It’s easy to compute. This is a crucial theorem that, well, you can easily com-
pute, assume n ≥ 2m + 3. Then H∗(Emb(M,Rn),Q) ≅ HHM(H∗Bn). Here the
higher Hochschild homology, the homology of Bn is a right module for the com-
mutative operad, which is just H0Bn. So what we get is that C∗Emb(M,Rn) ≅
hRmodC∗Bm(C∗(Emb( ,M)),C∗Bn), this is almost what we had before, but I
can see this as a right module on the right with the [unintelligible], and this is
equivalent then to hRmodC∗Bm(C∗(Emb( ,M)),H∗Bn), and now the map fac-
tors through the commutative operad. So this is obtained by restriction, and we can
use the Quillen adjunction which interchanges restriction and induction. So this
becomes hRmodCom(C∗(M●),H∗Bn), and a right module over the commutative
operad is the same as natural transformations over finite sets NatFin(C∗M●,H∗Bn).

There’s a similar theorem that takes place for the rational homology

Theorem 9.6. (Arone, T.) Let n ≥ 2m + 2. Then

H∗(Emb∂(Dm,Dn),Q) =HHSm

(H∗Bn)
(this is the pointed version, replacing Fin with Γ) and

π∗(Emb∂(Dm,Dn),Q) =HHSm

(π∗Bn ⊗Q)

So this is related to the modular completion of the L∞ operad, and you should
take coinvariants or anticoinvariants, depending on the dimension of M , probably
with some sign. There are four different graph complexes, and you take coinvari-
ants or anticoinvariants depending on the dimension and codimension. If you take
the suspension of an operad it becomes anticyclic, et cetera. These four graph
complexes describe this stuff. If you study, there is a similar— [some discussion]

This discussion in terms of graph complexes, this is recent work of Fresse–T.–
Willwacher, but this works for n −m > 2, the whole range in which you expect it
to work.

In particular, there is a graph that looks like this [picture] which corresponds to
the Haefliger trefoil.

Let me just give you the picture of this trefoil [pictures].
So it’s known that π0(Emb(Sm, Sn)) is an Abelian group for n −m > 2 of rank

at most one. This is a generator which is not torsion.
Let me explain in a few words what we did with Thomas and Benoit. The crucial

point is that the map is formal as a map of Hopf operads (operads in coalgebras).
We used this strong formality first. We showed the theorem

Theorem 9.7. (Fresse–T.–Willwacher) For n −m ≥ 2
hOper≤k(Bm,Bn)

is n−m−1-connected and its rational homotopy type is described by the L∞ algebra
of homotopy biderivations of the map H∗(Bm)→H∗(Bn), truncated to ≤ k.

Essentially all the rational information is encoded by this homology map. These
are maps of truncated Hopf operads, so you need cofibrant replacements for these
guys (cofibrant in chain complexes); in the domain you want componentwise a
fibrant coalgebra. Then you look at maps which are derivations of both structures,
levelwise for the coalgebra structure. At the limit when k →∞, but then you need
codimension three. The maps between stages in the tower don’t become higher
and higher and the projective limit of groups doesn’t commute with tensoring with
rational numbers.
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hOper(Bm,Bn) for n −m > 2 is encoded by biderivations of H∗Bm → H∗Bn.
When the codimension is 2, things don’t become higher and higher connected and
tensor product doesn’t commute. Maybe it’s enough. If you have questions, we can
discuss it.

10. June 9: Ralph Kaufmann: Feynman categories II

I do not take notes at slide talks.

11. Philip Hackney/Marcy Robertson: ∞-properads II

Thank you. Last time Marcy gave a quick introduction to the dendroidal cate-
gory, dendroidal sets, which is some sort of model for higher operads. Today I want
to do a similar kind of thing for properads. A reminder of background/notation:
if I give you a set of colors, C, then I want to talk about not profiles in this but
biprofiles, these are going to be pairs of lists (c, d) = (c1, . . . , cm;d1, . . . dn); I’m also
going to be considering C-colored graphs and as in Marcy’s talk, C-colored graphs
will be colored directed graphs with inputs and outputs, with specified orderings
at the inputs and outputs of vertices and also of the graph itself. We’ll again write
ξ for the coloring function: Edges(G)→ C. [picture]

If I give you a biprofile, I’ll write Graph(c, d) which will consist of all C-colored
graphs with ξ in(G) = c and ξ out(G) = d.

Marcy also talked about graph substitution. If I have a graph H ∈ Graph(c;d),
and if I have a collection Kv ∈ Graph(ξ(in(v)); ξ(out(v))) for v in the vertices of
H [pictures], then I can get a new graph, we’ve seen plenty of pictures already,
H{Kv}v∈Vt(H) ∈ Graph(c;d).

This is the kind of setup that lets us do C-colored properads. This is a pasting
scheme in the setting that Martin talked about. C-colored properads are the thing
you get out of this pasting scheme. If you want, a C-colored properad consists of
some spaces P (c;d) (or sets) for each biprofile, these are the operations for this guy.
At each vertex I decorate with the appropriate thing [pictures] and this should give
me a function that goes from

γG
P ∶ P [G] = ⊗

Vt(G)
P (ξ in(v); ξ out(v))→ P (ξ inG; ξ outG).

You should be doing associativity, identity, and so on for these guys.
Maybe more important for us is, what is a map of these things? This came up

after Marcy’s talk yesterday. There was some confusion; maps of colored properads,
a map f ∶ P → Q, this consists of

● f0 ∶ Col(P )→ Col(Q); this doesn’t have to be the identity.
● f1 ∶ P (c;d)→ Q(f0c; f0d).

So this is what we mean by map. One thing to notice is whenever we have a
graph like this, I can do the operations one at a time, like first contract one pair of
vertices, I can always contract two vertices at a time. So this is determined by γG

P

on partially grafted corollas and the graph with just an edge (for identities) and
the one vertex graphs (for symmetric group actions).

So this gives us a nice category of properads. Then we can get Γ(G), the free
properad on an uncolored graph. We take as our colors the edges of the graph. The
morphism spaces, the operations, will be generated by the vertices.
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What are all the operations? The operations are Ĝ-decorated graphs. This
means that something in Γ(G)(c;d), the first piece of data is a graphH in Graph(c;d)
so the edges are colored by edges of G, and a function from the vertices of H to
the vertices of G which is compatible with the coloring of H.

[pictures]
If I look at this, I can build it iteratively using partially grafted corollas [pictures]
Now given this collection of properads, one for every graph, what do maps look

like?
The maps f ∶ Γ(G) → Γ(H), the color sets are just the edges, so I have a

function f0 from the edges of G to the edges of H and then I have a map f1, I can
specify it just on generators, from the vertices of G to {Vt(H)-decorated graphs}.
These should satisfy some conditions. So f1(v) ∈ Γ(H)(f0 in v; f0 out v). That’s the
H-decorated graph I want to get out of this.

Now we know the maps, let’s write down, suppose that we have f ∶ Γ(G)→ Γ(K),
then I can define the image of f as follows. I take G, and then f0G is an Edges(K)-
colored graph, and so I take [f0G]{f1(u)}u∈Vt(G) in Graph(f0 inG; f0 outG), and
is Vt(K)-decorated.

A detailed example is coming, but before that, I’d like to say, when you have
a Vt(K)-decorated graph, whether it’s a subgraph of K or not. This is taking
a maximal composition of G stuff, mapping it over, and maybe it’s a subgraph,
maybe not. Let’s look at an example related to this.

[picture]
So here’s a great example of what an image of a map looks like. Here I’m just

gluing these two things.
Here’s a fact. If the image of f is a subgraph of K, then f is uniquely determined

by what it does on edges. This particularly holds if the target K is a simply
connected graph. WE can see that this is not the case in the example I did.

It turns out that it’s hard to do things if you don’t have a property like this, so
from now on we’ll assume it.

So the graphical category Γ has objects uncolored graphs and morphisms Γ(G,K)
is some subset of the properad maps Γ(G)→ Γ(K), consisting of those f such that
imf is a subgraph of K. So just as a note, in this example that we did, it was
enough to check that images of one of the vertices was a subgraph, but it’s not so
easy in general.

[pictures]
You have degeneracy maps from H to H{∣}, where I remove a (1,1)-vertex and

replace it by a straight edge. The other ones are face maps, which are a lot like
what Marcy was talking about, except we have to be a little bit careful if we’re
going to talk about, inner cofaces I’ll draw a schematic picture [picture]. If I have
something that looks like a partially grafted corolla with nothing between them,
then I can map in. So if you like, with the vertex G, I insert a partially grafted
corolla at v. From the domain there’s no problem; for the codomain you have to
think harder. Again, for outer coface maps, it’s easier to start with the domain and
graft a corolla on an exterior edge.

Let’s just wrap up, I’m going to talk next time about how these maps generate
the whole category Γ, some decomposition properties and such, but now we have
Γ and some feel for what it’s like.
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So graphical sets are presheaves on Γ, that is SetΓ
op

, and now one can do all
the usual things, looking at representables Γ[H] = Γ( ,H), faces of representables
∂α[H] ⊂ Γ[H] where α is a coface, and as soon as you start to do horns you can
define Λα[H] ⊂ Γ[H] where Λα[H] = ∪β≠α∂β[H].

Then quasiproperads have the lifting condition

Λα[H] X

Γ[H]

where α is an inner coface. For a properad then I get a nerve thing in gSet, that is,
P ↦ Properad(H,P ), and this is fully faithful and lands in quasiproperads (that’s
not immediate because I’ve taken this subcategory).

12. Clark Barwick: Parametrised higher category theory and
parametrised higher algebra I

Different parts of this are joint with Dotto, Glasman, Nardin, Shah, and Schlank.
Thanks for the invitation to come speak. I’m going to take a minute here and

write down a list of papers. I have to confess that after a couple of late night
conversations, I decided to do something completely different, and I thought maybe
it would be more productive if I said something about what higher categories are
for and what you do with them in practice.

I just want to emphasize that everything is joint work with these guys, the
bourbon seminar.

B Spectral Mackey functors I
BGN Dualizing (co)cartesian fibrations
BGS Spectral Mackey functors II
BG1 Cyclonic and cyclotomic spectra
BG2 The noncommutative syntomic realization.

BDGNS Parameterized higher category theory and parameterized higher algebra
G Calculus = equivariance (this is not the right title)

DS G-equivariant calculus= even more equivariance.

It’ll be a better use of our time if I start with a general discussion of higher category
theory. I probably can’t reproduce every proof at the board, but I can probably
reproduce every definition at the board. Please speak up if I say something that’s
imperfectly understood.

Let me start with an example, it shows a lot about what the story is about
parameterized higher category theory.

Let F ⊂ E be a finite Galois extension with group G, obviously a finite group.
You can build a category out of this, I’ll call it Subext(E/F ), this is an ordi-

nary category whose objects are separable subextensions F ⊂ K ⊂ E and whose
morphisms are field homomorphisms over F but not under E.

There’s a theorem that you probably know, it’s the main theorem of Galois
theory, which is the following, this category here has a much simpler identification
that you already know, this is equivalent as a category to the opposite of the orbit
category of G. What’s the equivalence? Morally, what extension do I get for
[G/H]? I get EH . I want to see conjugation actions on my fields.
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I could do something fancier, look at finite separable extensions of F under E,
and again I have this category where I don’t respect the embedding, but any of
these happens to be a product of these field extensions in a unique fashion. Here
you’re also allowing, for your orbits, to take disjoint unions of orbits, and so this is
equivalent to the opposite of finite G-sets.

To any of these guys, there’s a way to associate a category. If I have a subex-
tension, I can create a functor

Subext(E/F )→ Cat

where I send K to finite dimensional K-vector spaces, Vectfd(K).
What do I do to maps? If I take φ ∶ K → K ′ over F , then I take the tensor

product ⊗KK ′, it’s a functor from Oop
G (opposite of the order category) to Cat.

But there’s an easy objection. The corresponding diagram commutes but only
up to a natural isomorphism

Vectfd(K)

Vectfd(K ′) Vectfd(K ′′)

You could fix this with a rectification, but I don’t want to take that point of view.
Let me instead take the following category, where the objects are pairs (K,V )
where F ⊂K ⊂ E and V is a finite dimensional vector space over K. The maps will
be (K,V )→ (K ′, V ′) will be nothing more than a homomorphism of subextensions,
a map φ ∶ K → K ′ over F , but also the information of a map V → V ′ as K-vector
spaces. I guess K-linear map is the preferred term.

What’s the use? Here I had to wave my hands about this not being a func-
tor. The standard way to fix that problem is to look instead at some big category
built with overcategories of the source. Instead here I’ve constructed something
Vect(E/F ), which has pairs: a subextension and a vector space over that subex-
tension. I’ve obviously got a forgetful functor down to Subext(E/F ), which is
another name for the orbit category Oop

G and now this is a Grothendieck opfibra-
tion. I really am getting something of exactly the size that I want to contemplate.
The fiber over K is the K-vector spaces, but I haven’t had to cheat, I haven’t
passed outside of categories and functors.

Do people like Grothendieck opfibrations? Do you swing with that?
This is a nice example of a parameterized ∞-category (or a parameterized 1-

category, in this case), a G-category (I’ll explain this in a bit).
As you know, the tensor product is a left adjoint, left adjoint to the forgetful

functor. Because I’m talking about finite separable extensions is that ⊗KK ′ has
both adjoints. A strange fact of Galois theory is that there is an equivalence between
the left and right adjoint.

You’ve seen something like this before. You can look at this larger category
over products of fields, Projfg(∏Ki), and again I have a tensor product functor
and can tensor up from VectF , and again I have a left and right adjoint which are
equivalent.

The Projfg(∏Ki) is ⊔Vectfd(Ki), and these are ⊕, both product and coproduct.
We like this.
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Here’s the first big idea of prameterized higher category theory, that you want
to think of these adjoints Vectfd(K ′) → Vectfd(K) as a kind of generalized direct
sum, an “indexed direct sum.”

What do I mean, “indexed direct sum?” Let’s think about this in the particular

case, think of this as going K → K ′, that this is EH → EH′ , and let’s say H ′ < H
to give ourselves an idea of what’s going on here. Why do I call this the indexed
direct sum? I want to think of this as V ↦ ⊕H/H ′V , this is an H-orbit of V .
When I say indexed, I mean indexed by these orbits.

Why is this a reasonable thing to do? There’s a lovely theorem in Galois theory,
the normal basis theorem. Let me say it in the case of the full extension from F to
E. So E admits an F -basis of the form {gθ} for g in your Galois group for some
θ in E. So there is an element so if you take this element’s conjugates under the
Galois group action, you get a basis for E as a vector space over F . Now if V is
a vector space over E with basis {v1, . . . , vn}, then it has an F -basis of the form
{gθvi} over all g and all 1 ≤ i ≤ n, and now you see why I want to regard V over F ,
as, well,

⊕G/eV = VF

This is a formal generalization of the thing you know, which is that the direct sum
is the product and coproduct in vector spaces.

The motivating question for all of parameterized higher category theory is “how
do you make that precise?” There’s something funny because saying V is a direct
sum of copies of V seems like an unlikely assertion, but in what sense is this true?
This example (this is about just 1-categories), this kind of example motivated us
to think about parameterized ∞-category theory.

So now I need to give some idea of what G-direct sums can be, what a G-product
or G-coproduct should be where it’s indexed not by a set but by an orbit, in a way
that makes precise what happens in category theory. I also want exotic examples
from homotopy theory. You could think about chain complexes over these different
Ks, and think of the homotopy theory of chain complexes, and try to think of
how to write down this functor, with a derived tensor product. The version of
the Grothendieck opfibration, though, is trivial to write down once you have the
machinery in place which is why I like that point of view.

This leads me to ∞-categories. I was looking last night at various introductions
to higher categories. I realized that there’s a grave sin committed by almost all
introductions, which is to say that most examples come from model categories.
This is not the way people think about them and this is not true. I’m going to give,
you can recognize homotopy universal properties of the world’s favorite homotopy
theories.

When people say that the way you construct the ∞-category of spaces as taking
the model category and constructing an ∞-category out of this, they’re not lying
to you, but this is not the best way, there’s a universal property. The idea (and
this at least goes back to Dugger, I apologize if I’m snubbing anyone), is that you
can write down generators and relations for a homotopy theory.

For now think of relative categories, categories equipped with some form of
weak equivalence. Then you can write down what you mean by a homotopy limit
or colimit. You can think that way and I’ll make things precise in a moment.

Let me give some examples.
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Example 12.1. ● Top is freely generated under homotopy colimits by ∗.
What does that mean? That means, first of all, this is already familiar to
you, because any simplicial set can be written as the colimit of its simplices.
If you left-Kan extend [unintelligible]along itself you get [unintelligible],
that’s the fancy way.

So everything is a complicated homotopy colimit of points. You know
this, if you take the pushout of two points into a point and into a point,
you get the circle.

So homotopy colimit preserving functors from Top into D is the same as
D.

Then this is like the free thing on one generator. How do I get a bigger
thing?
● Like P(C) = Fun(Cop,Top), and I’ll say this is the free thing generated
under homotopy colimits by C. I have a Yoneda embedding, super not ob-
vious, from C into P(C), and if you restrict along that Yoneda embedding,
j∗, then I get

FunL(P(C),D) j∗Ð→ Fun(C,D)

and I’m going to tell you that’s an equivalence.
Those were generators, what about relations. That’s governed by left

Bousfield localization. Let’s see how that works for this kind example.
● If S is a set (small set) of maps I want to be weak equivalences, then I
can do that. So LSP(C) is the full subcategory spanned by the X such
that for B → A in S, I have Map(A,X) → Map(B,X) are equivalences.
I really want you to think of this as generated by C with relations given
by S. Why do I know that you get to think that way. This functor here
has a left adjoint, and if you restrict along it, you have the fact that any
morphism in S will be taken to an equivalence in D. When you write an
Abelian group, the relations you write down give a universal property. In
order to specify a map, you tell me what to do with the generators, and
the relations should be taken to equivalences in the target. And the same
thing is happening here.

Let’s do some examples of this. My favorite examples come from loop space
theory. Let C = ∆ and let S be Segal maps that also have a grouplike condition.
Now what happens is that LSP(C) is equivalent to 1-fold loop spaces. What is this
doing? It’s giving generators and relations for the homotopy theory of loop spaces.
It goes further, if you take C = Θn and S is still the Segal maps and the grouplike
guys, then LSP(C) is equivalent to n-fold loop spaces.

Then I could do C = Γ and the same S, and then LSP(C) is infinite loop spaces.
This is supposed to be motivation for you to consider writing down homotopy

theories with generators and relations, and it’s extremely convenient to do this with
generators and relations. I haven’t been honest about my model, and I’ll come to
that, but let me give you a different model that I won’t use, so complete Segal
spaces, C =∆ and the “Segal maps” take Xn →X1 ×X0 X1 ×X0 ×⋯×X0 X1 for n ≥ 2
along with a “completeness” condition like the grouplike condition that I won’t get
into because I don’t have time.

Then this is again, complete Segal spaces are LSP(C)
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Now what baout C = OG with S = ∅. This is sometimes called Elmendorf but I
think McClure should get credit as well, which is that P(OG) is equivalent to the
homotopy theory, the underlying category is that of G-CW complexes, these are
spaces, I’ll say CW complexes, equipped with an action of G. The weak equiva-
lences, a map from X to Y is a weak equivalence if XH → Y H is a weak equivalence
of spaces. This homotopy theory is freely generated by the orbit category.

This is a certain amount of motivation for the following definition.
If D is any homotopy theory which I’m really thinking of as an∞-category, then

the homotopy theory of G-objects in D is Fun(Oop
G ,D). This is a definition. This

is interesting, it tells you there’s different kinds of G-objects. There are naive ones,
where I just look at maps from BG, and there’s this more refined thing that has
this as the full subcategory spanned just by the orbit G/e. This gives “genuine
fixed points” for any H ≤ G.

Warning: if you think about finite G-sets, and plug finite sets in for D, you won’t
get finite G-sets out. That’s a little weird, these aren’t G-sets. When I think about
actual fixed points about finite G-sets, there are no homotopy questions I can ask
about that. If I think about a space with a G action, and a homotopy equivalent
space, and look at their H-fixed points, I might not get a homotopy equivalence.
This is enforcing that I get a homotopy equivalence. I can get FG, that’s the
localization at the injections. That’s some extra condition in this category.

Okay, there are two things you’d want to do with ∞ categories. You’d like to
write down universal properties. For this you don’t need to prefer a model, all of
them let you do this in an essentially unique (orientation-preserving) way. But you
want to actually be able to write things down, and define objects, this is something
that I think is not written in the papers I found on the internet last night. You can
actually write down a quasicategory by hand. This is not working with something
defined up to something defined up to something defined up to something, you’re
actually working with an object.

Let me give you an example that you’ve probably not contemplated before.
Marcy, I apologize, this will be a repetition. Here’s one of my favorite quasicate-
gories.

I’ll define a simplicial set Aeff(FG), the effective Burnside category of finite G-
sets. I’ll now tell you that the n-simplices are the set of diagrams

x0,n

x02 . . . xn−2,n

x01 x12 . . . xn−1,n

x00 x11 x22 . . . xnn

⋱⋮

and all of the squares are pullbacks.
This is a quasicategory, it’s not a category, doesn’t come from a model category

or relative category. This is equivalent to a 2-category. Let’s see why that is,
partially at least, let’s see how to fill a horn.

So there are not many functors ∆ → ∆. I’ll look at id ∗ op, this goes from n to
2n+1. The first n is in the same direction, the second one is in the other direction.
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Then I can take a simplicial set and pull back along this, this takes a simplicial set
X and gives a new one Õ(X)opn = X2n+1, this is the twisted arrow category of X,

so this is a subset of the simplicial set whose n-simplices are Hom(Õ(X)op, FG).
This is a simplicial subset, and that’s precisely the one hich requires these squares
to be pullbacks.

Let’s fill a horn. Take Λ2
1 → Aeff(FG), and we want to fill a horn to ∆2.

x01 x12

x00 x11 x22

and then you can just pull back and get x01 ×x11 x12 for x02, so you’ve fileld the
horn.

This is deceptive, it’s hard even to fill a 3-horn. You end up doing an induction
on walks going down, and there’s a bunch of special cases.

Let me tell you another thing, one of my favorite movies is this movie Real
Genius. You go into a math lecture and you see that people have recording devices
on their desks, and in each iteration there are more and more recording devices on
the desks. In the final iteration you see that the teacher is gone and he just has a
tape player going on his desk.

Okay this is going to be the main reason that quasicategories work so well. This
is the ability to write down a functor to Top without writing down a functor to
Top. I gave you a universal property, having to map out of Top. How do I map into
Top. I want to be able to write down Cop × C to Top for an ∞-category. I have to
tell you one more thing, you never want to write functors to Top, you want to write
Grothiendieck opfibrations. Writing down the data of a functor to Top is a terrible
task. For every commutative triangle I need a homotopy, then I need homotopies
of homotopies, and this is an infinite amount of data. But we have the following
lovely theorem.

Theorem 12.1. (Joyal)

Fun(C,Top) ≅ {left fibrations X → C}

So you know inner fibrations, they have horn filling for inner horns. These are
maps of simplicial sets such that for n ≥ 1 and for any 0 ≤ k < n, the horn inclusion
has a filler:

Λn
k X

∆n C

The first thing to say is that the fiber of a left fibration is a Kan complex. It’s
obvious that it satisfies the left lifting condition, and it’s a consequence that it
satisfies the right one. The things over any point are really spaces.

The other interesting point is k = 0, look at Λ1
0 inside ∆1, this is {0} including

into 0 1 , so this says that for a morphism in C with a lift of the source, you
automatically get a lift of the target and the map. So call the map a→ b, and then
you have Xa the fiber over a and Xb the fiber over b, and it’s super non-obvious,
but you can rectify and get a functor. You have to use a model for Top to show
this.
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You construct this as a Quillen equivalence of model categories and then see that
the underlying [unintelligible]are equivalent. This is like using a ladder to get to
the roof and kicking the ladder down. You never need to fret about mapping to
Top again. This is not the way it’s done in Higher Topos Theory, but this is the
good way.

Check it out, I’ve got this twisted arrow category of X, opposite, here’s the
excuse for thinking of it as a twisted arrow category, the nerve of a category, you
get a quasicategory, and I can do this construction to it, so I get the 2n+1-simplices
of the nerve of C. This is isomorphic to the nerve of the twisted arrow category.
The objects are arrows, and the maps from f to g is a factorization of g through
f ; this is a 1-simplex:

f

g

and if you put 0, 1, 2, 3 in, you see the 3-simplex.
Okay so for Õ(X)→Xop×X, which says look at the source and target. The fun

theorem is that Fun(Õ(X) → Xop ×X) is a left fibration. That means that this
thing corresponds to a functor from Xop ×X to Top. It classifies the functor which
to two points gives the fiber over those two points, if I look at the fiber over (x, y),
I am looking at, the zero simplices are 1-simplices with source x and target y. The
one-simplices are 3-simplices that bunch this up. It’s harder to explain this, but
it’s true, the 1-simplices are homotopies, this a degenerate 3-simplex where you’ve
contracted 01 and 23. The trend continues. In other words, MapX(x, y) ∶= Õ(X)x,y.
The 0-morphisms are maps, the 1-morphisms are homotopies, and so on.

If X isn’t a quasicategory, then Õ(X) isn’t a quasicategory either, but this is
always a left fibration even when X sucks.

The vertical point of view on X → Top gave you this way of doing this without
writing down the infinite amounts of data. You have explicit control. If I wanted
to use Joyal’s theorem, this came from a Quillen equivalence of simplicial model
categories. [missed]. When you extract the functor from Joyal’s method, you
have no control over the n-simplices, they’re huge. Here now they’re totally under
control.

Mark brought up the fact that there are more general kinds of fibrations (by the
way there is the notion of right fibration, which I’ll give you five minutes to write
down the definition of) and I’ll tell you there’s something like this when you replace
Cat with Cat∞, the category of ∞-categories. This has a nice universal property,
but you can use the generators and relations I gave for complete Segal spaces. Then

Theorem 12.2. (Joyal)

Fun(C,Cat∞) ≅ {coCartesian fibrations X → C}

This relaxes left fibrations. I had left and inner horn fibrations. Here the 0th
horn only needs to be filled for a coCartesian edge.
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Definition 12.1. So suppose p ∶ X → C is an inner fibration. An edge ∆1 fÐ→ X is
coCartesian if I have a lift whenever I have a diagram like this:

∆{0,1} Λn
0 X

∆n C

f

Now an inner fibration p ∶ X → C is a coCartesian fibration if for any edge η ∈ C1,
I’ll think of η ∶ a→ b and for any lift of a to x in X, there exsits a coCartesian edge
x→ y covering η.

This is saying no matter where you roam in your base, if I have a map out of
that simplex to somewhere else, then I can take the fiber over the first vertex to
the fiber over the second. The fibers all have to be quasicategories, and I can go
from one fiber to the next, which is the idea behind the theorem.

The proof, again, is a pain. But my point is to use these theorems, not prove
them.

There’s a dual story for Cartesian fibrations and edges, for contravariant functors
to Cat.

This is a theorem from Higher Topos Theory, actually Corollary 3.2.2.13, but
the correct proof is in Appendix B.4 of Higher Algebra.

So okay, suppose X is covariant and Y is contravariant as functors from C →
Cat∞. Then I want a construction (twisted fun) F̃un(X,Y )(C) = Fun(X(C), Y (C)).
So I can use covariant funtoriality in the first variable and contravariant in the
second variable to get from c→ d to Fun(X(d), Y (d))→ Fun(X(c), Y (c)). No one
wants to write down functors to Cat. So let’s write down a fibration instead. We
have a coCartesian fibration X → C and a Cartesian fibration Y → C. I want a
Cartesian fibration to C to represent F̃un.

Definition 12.2. Given X → C a coCartesian fibration and Y → C a Cartesian
fibration, define a Cartesian fibration F̃un(X,Y ) pÐ→ C as follows. For any K

πÐ→ C,
I’ll tell you how to take MorC(X, F̃un(X,Y )), and this is in bijection with the set
of maps MorC(K ×C X,Y )

Theorem 12.3. (The Cartesian workhorse, 3.2.2.13 HTT) p is a Cartesian fibra-
tion.

It’s hard to overstate how important this way of building things is. I’ve probably
used it seventy times.

This is a fun theorem to use. So let’s write down, finally, the definition of
parameterised higher category. I apologize, I thought this was a better use of our
time.

Definition 12.3. A G −∞-category is a coCartesian fibration X → Oop
G .

Why didn’t I write this down as a Cartesian fibration to OG? If you pass to
∞-operads, those are closer to coCartesian fibrations, so unless you want to spend
your life solving duality problems, you wnat to build things on the coCartesian side.

A G-functor from X to Y over Oop
G which carries coCartesian edges of X to

coCartesian edges of Y . This is precisely the same thing, if you think of Joyal’s
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theorem, a map of these things is a natural transformation. But I’m not going to say
that this is a functor from Oop

G to Cat. I don’t like this. It was easier to write this
down as an opfibration rather than a pseudofunctor. This becomes exponentially
worse passing to the ∞-world. This is better because it doesn’t require the infinite
process.

Let’s do some. Let me add something, you could ask about a G-∞ groupoid
or space, then you are talking about a left fibration. They don’t need to carry
coCartesian edges to edges because all edges are coCartesian.

Examples. Well, there are always easy examples of everything so let’s do some
of those first. If V is a finite G-set, then maybe we want to build a corresponding
G-space in this sense. Then we get a G-space V , a functor down to Oop

G , and I want
the fibers, how will I do this? The fiber over G/H should be the H fixed points of
my G-space V . I don’t want to say that this fiber is the fixed points, this isn’t nice
because there’s an ambiguity due to conjugation, this is just an orbit category. So
I want my fibers to be discrete simplicial sets, the H-fixed points. The finiteness is
irrelevant. What is V H? Let’s think it through. If I look in finite G-sets and want
to extract fixed points, then I map [G/H] to V (as G-sets). Now I want fibers that
look like maps that vary in the first parameter. That’s exactly what you can do
with the Cartesian workhorse.

Everything in sight is an ordinary category. So let’s actually just do this. The
objects will be G/H and x in V H . The maps ([G/H], x) → ([G/K], y), I want a
left fibration [G/K] → [G/H] ∈ OG, such that the map V H → V k carries x to y.
[missed]

In a minute, I want to say that restricting to OG isn’t important. This will still
work for any ∞-category. What if B is a random ∞-category? It’s a coproduct
[missed]. Just to give you a little thrill, the twisted arrow category O(FG), this
maps down to F op

G ×FG, and the fiber over this thing is the set of maps of finite G-
sets. I wnat to embed the orbit category crossed with V , and embed it in F op

G ×FG

and form the pullback and this is what I’ll call V . Thisis precisely the story I told
up here. But now I put almost no effort into writing this down.

Let me give an idea of how to start building this kind of fibration if you want
something like a functor. Emily said during the break: there is a universal left fibra-
tion, well, there’s a generators and relations picture for Top∗, so this is Fun(∆1,Top)×Fun({0},Top)
{∗}, this is a perfectly good category, and there’s a universal left fibration down
to Top, that’s just the forgetful functor, this actually really is (by the way, you
can take composites along homotopy equivalences and break left fibrations. I could
have screwed this up. This really is a left fibration) a left fibration. The fiber over
{X} is X, the space of points in X. This is one example where the functor to Top
is easy. Why is this universal. Suppose you’re a quasicategory and you want to
write a functor to Top, you want to see the left fibration, that’s

C ×Top Top∗ Top∗

C Top

This doesn’t answer our question, given a functor how do you guess the fibration.
The story is the basic procedure is guess and check. You start by trying to write
down a fibration with the fibers you’re after. If I want to write down something
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X → C, I want Xs over s, and over s → t I know I want Xs → Xt because I know
what I want the Cartesian edges to be. This you can usually actually get away
with, even though it’s a shit algorithm. Sometimes you get in trouble.

Working vertically like this replaces constructions with theorems. Writing down
a functor to Top is a painful construction. A good example of this, when you think
about Waldhausen K-theory, you want to say that the n-simplices are filtered
objects, but then you need chosen collections of subquotients all the way down.
That kind of process, I’ve completely lost my train of thought. Why’d I bring that
up?

Let me restart. Ah, that definition is a big old definition, writing it down, that’s
the hard part. Once you’ve got it, you can dance the night away. Writing down,
here, is not the hard part, but checking that it’s a coCartesian fibration can be a
nightmare. It took no energy to write down the definition of V . To show that it’s a
fibration requires a horn-filling argument. If you’re me, a babe in the woods, then
[missed], and if you don’t want to bother Emily, you can look in DAG X. He does
it directly, doesn’t finesse it. The complication moves from writing definitions to
proving complicated theorems, that something is a fibration.

Let’s look at the example of the G-∞-category of G-spaces. What do we want
out of this? It’s supposed to be a functor from Oop

G to Cat∞. For [G/H] I’ll choose
the ∞-category of H-spaces. This is a perfectly good functor, and this is the kind
of thing I want to write down, but as a fibration to put it in my vertical world.
Now we might think the Cartesian workhorse will help us here. Write down, I
want a coCartesian fibration, so the dual of the Cartesian workhorse. We need a
coCartesian fibration, I’ll call it TopG → Oop

G , such that, I want HomOop
G
(K,TopG) ≅

HomOop
G
(K×Oop

G
?,Top×Oop

G ). This represents the constant functor at Top. Now

how do I fill in the blank, say with X? Well X → Oop
G should be a Cartesian

fibration and it should have as its fiber over [G/H] is supposed to be Oop
H . So

what is Oop
H , this, well, OG/[G/H] ≅ OH , this is not canonical because of the

conjugation action, but this is an okay thing to calculate. So now I want the fiber
to be Oop

G /[G/H].
I know a form for the fiber, so what kind of fibrations do I see where the fibers

are overcategories? One really good time when I see this is the arrow category. So
this will be (OG/[G/H])op; then we have this pullback.

(OG,[G/H])op Fun(∆1,OG)op

{[G/H]} Oop
G

s

The source functor into any category D is always a Cartesian fibration. Target is
coCartesian, because Hom is contravariant in the first variable and covariant in the
second. This is a classic situation which happens all the time. This is also not in
higher topos theory. This is a standard issue that shows up all the time. If I have a
coCartesian fibration oriented one way, the opposite is a Cartesian fibration but it
doesn’t represent the same functor. Suppose p is a Cartesian fibration X → C, then
pop ∶ Xop → Cop is a coCartesian fibration. Then the first one looks like a functor
Cop → Cat and so does the second, but they’re not equal. In the first case I map a
to the fiber Xa. In the second case I get Xop

a , these two are not the same functor.
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So what do you do? You fix it. If you spend much time in this space you
encounter this problem a lot. So we wrote down a fix. Here’s a small thing you can
do. I told you that the effective Burnside category was a quasicategory, and now
I’ll tell you that you can be general with it. If you have C along with subcategories
C† and C†, wide subcategories of C so they contain all objects (and indeed for me,
also all equivalences), and you have a further fact, a subcategory, by the way, of an
infinity category, you want two maps, if they’re in the same homotopy class, you
don’t want one but not the other in your subcategory.

So I call these guys ingressive and egressive. If you have this and if, a pullback
of an ingressive along an egressive is ingressive and vice versa, then you get an ∞-
category Aeff(C,C†,C

†) and the n-simplices will be these big triangular diagrams,
and the backward guys are all egressive while the forward arrows are all ingressive.

This is a typical three-simplex in the effective Burnside category.
Let me finish the story and tell you how to change a Cartesian fibration into

a coCartesian fibration which represents the same functor. The effective Burnside
category uses both the category and its opposite. We’ll use that a lot next time.
So let’s do it. So we have the problem of this nice Cartesian fibration and we want
a coCartesian fibration to represent the same functor. Now I’ll build an effective
Burnside category of X, and what do I want to have happen? My base is Cop.
I really want this to contain all equivalences. This is the same as the Burnside
category Aeff(C, ιC,C), where ιC is the equivalences of C, so the backward maps
are arbitrary and the forward maps are equivalences. I have an embedding of Cop
where I use id for the forward maps.

Now in the effective Burnside category, I want, so I have a map in the opposite
category, so I want to go Xa →Xb. I need a functor Xa →Xb. It’s supposed to be
pulling back and then the identity on the right side. So I want my backward maps
to Cartesian edges and the forward maps to lie over equivalences. I’ll take, then,
Aeff(X,X ×C iC,XCart), and I’ll call the pullback X∨. I’ll call my pullback p∨ and
then the theorem is that p∨ is a coCartesian fibration and the functor it corresponds
to from Cop → Cat∞ (only defined up to a contractible choice) is equivalent to the
corresponding functor for p.

X∨ Aeff(X,X ×C ιC,XCart)

Cop Aeff(C, ιC,C)

p∨

13. June 10: Philip Hackney/Marcy Robertson: ∞-properads III

So last time we talked about this category Γ that is supposed to encode higher
versions of properads as Ω encodes higher operads and ∆ encodes higher categories.
You all have a handout. Everything I said last time is joint with Marcy and Donald
Yau, it’s probably in our book. If I do what I want today then we might get to
things that aren’t in the book, but that’s okay.

So here’s a notion, a generalization of the normal notion of Reedy category due
to Berger and Moerdijk.

Definition 13.1 (Berger–Moerdijk–Reedy category). A BMR structure on a small
category R consists of wide subcategories R+ and R− and a degree function Ob(R)→
N satisfying:
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(1) non-invertible morphisms in R+ (respectively R−) raise (respectively lower
degree; isomorphisms preserve degree).

(2) R+ ∩R− = Iso(R)
(3) Every morphism f factors as f = gh such that g ∈ R+ and h ∈ R− and this

factorization is unique up to isomorphism.
(4) If θf = f for θ ∈ Iso(R) and f ∈ R− then θ is an identity.
(5) If fθ = f for θ ∈ Iso(R) and f ∈ R+ then θ is an identity.

If you’re familiar with normal Reedy categories, and I won’t write the definition,
but these are R where Iso(R) is just the identities. You don’t have any nontrivial
isomorphisms. That includes ∆, ∆op, others. Other examples, the dendroidal
category that Marcy talked about, Ω, this is a, I’ll call these Reedy categories,
finite sets, pointed finite sets, Λ, their opposites as well.

If you have a model category on M, under reasonable assumptions, functors
R →M will have a model category structure. Let me tell you what that’s about.
For that I need matching and latching objects. I have Ob(R+(r)), which is a
full subcategory of R+ ↓ r, which consists of those maps with target r which are
not invertible. Similarly, the objects of R−(r) are the maps α ∶ r → s which are
noninvertible. These are the categories which give us Lr(X) = colimα∈R+(r)Xs,
which maps to Xr via the colimit of α, which in turn maps to limα∈R−(r)Xs =
Mr(X). For any object r in R I have this. For us M is a (let’s say cofibrantly
generated) model category and X is a functor inMR. I’m just using bicompleteness
so far, but now I want the model category structure.

If you have this, then you say a map f ∶X → Y inMR is

● a Reedy cofibration if Xr ∪LrX LrY → Yr is a cofibration inMAut r for all
r.
● a Reedy weak equivalence if Xr → Yr is a weak equivalence inMAut(r) for
all r (I can check this inM).
● a Reedy fibration if Xr →MrX ×MrY Yr is a fibration inMAut r for all r (I
can check this inM).

Theorem 13.1. (Reedy, Kan, Berger–Moerdijk)MR is a model category with these
classes.

As a note, we’d like this guy to inherit some properties fromM. IfM is left proper,
cellular, combinatorial, then so is MR. There is a caveat that for left properness
this isn’t written down anywhere. Left proper I need an injective model structure
onMR to know how to prove that, so for me ifM is combinatorial and left proper
then so isMR. I had a lot of trouble with left proper.

Okay. Here’s the theorem on Γ.

Theorem 13.2. Γ is Reedy.

I’ll give you some of the proof. The degree function is the number of vertices. The
plus maps are injective on edges, f0 is injective from Edges(H) → Edges(G). The
minus maps are surjective on edges, f0 is surjective from Edges(H) → Edges(G)
but you need something else. Let’s see why you need more. So we could look at this
outer coface map [pictures]. So you should also require that d(H) > d(G) (possibly
not good enough) or for every vertex in Vt(G) there is a vertex in Vt(H) with
v ∈ f1(v′).
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Here’s another characterization of both of these categories. f ∶ H → G is in Γ+

if we can write it as a composition of isomorphisms and coface maps. It is in Γ− if
we can write it as a composition of isomorphisms and codegeneracy maps.

So this requires a proof if you want to take that definition. Note that codegen-
eracies decrease degree and satisfy the definition I gave; cofaces increase degree and
are injective on edges.

So maybe this could have been the definition.
Let’s look at the decomposition, for a map f ∶ G → K in Γ; for each vertex v of

G, I get f1(v) a subgraph of K. I want to look at the collection of all of these so
that the subgraph is a single edge, T ⊂ Vt(G) such that f1(v) =∣ for v ∈ T . Then
first we plug in an edge to all v in T ; call this graph G1. This is an iteration of
codegeneracy maps. I also have the image of f , which is a subgraph of K. Then
the inclusion into K is a composition of outer coface maps. If I’m ignoring the
coloring, I can factor:

G K

G1 G2 im(f)

f

what else can I do, I can go from G1 to G2, an isomorphism where I relabel edges,
this is f0(G1), and for the next guy I have an inner coface map from G2 to im(f).

This is the existence part of the third axiom. Let’s move on to something else.
Let’s write down a model structure, and I’m losing all of my erasers. We’ve

now established, partly established that Γ is Reedy, so also, since I included the

(unnecessary) last axiom, then Γop is also Reedy. Then I can look at sSetΓ
op

0 Here
my 0 means that X∣ =X0 is discrete. This, everything we had about simplicial sets
to ∆op being a model category, this is also true; this thing carries a Reedy model
structure. I want to write down a model structure for ∞-properads here, and I’ll
do it by localization, which Clark taught us about yesterday. So I’ll localize with
respect to Segal core inclusions; I’ll tell you what these are and what you should
be getting out of this. For each G you have Sc[G], for every vertix in G, I can look
at the representable on a corolla at that vertex

Sc[G] = ∪v∈Vt(G)i
v
∗Γ[Cv]

where iv∗ from Cv → G is an iterated outer coface.
Localization is why I was saying things about cellular and left proper. If C is the

set of Segal core inclusions, then I can get LC sSetΓ
op

0 and this should be a model, it
should have Segal properads as its fibrant objects. How do these look, what defines
them and why is this a reasonable thing to call this? If I take this, what are the
fibrant objects, first it should be fibrant in the underlying thing, levelwise fibrant,
but it also has to be local. The map

maph(Sc[G],X)←maph(Γ[G],X)

should be an equivalence for all G. So we can omit the h which are not important.
The right hand side is XG; the left hand side is the limit over the vertices of XCv ,
and I’m just asserting that this is an equivalence, XG → limXCv , so if I tell you
something at X at each vertex, then I can get a composition along the graph G,
the map XG → XC , the maximal thing I can do, and this limXCv → XC is what
my composition would be.
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This stuff is what’s not in the book, or I probably have a better handle on these
issues.

Here’s a question, if I take a simplicially enriched properad, I can take the

nerve and I end up in the category L sSetΓ
op

0 , the question is, is this a Quillen
equivalence. We haven’t talked about the right hand side at all, but it has a model
structure written down by Marcy, Donald, and I, so it’s a question, is this a Quillen
equivalence.

If you do this and show this, you can have a copy of our book. There’s a prize
involved. I went over by four minutes, I’m sorry.

14. Victor Turchin: Embedding calculus and the little disks
operads II

So let me put on the board two [unintelligible]

Theorem 14.1. (Arone–T. 2011) Consider embeddings modulo immersions

T∞Emb∂(Dm,Dn) ≅ h Inf BimBm(Bm,Bn)

embeddings fixed in a neighborhood of the boundary, or rather the limit of the Good-
willie tower of this extension of them, is equivalent to these bimodules, and for
n −m > 2, the tower converges so I have the same theorem without T∞.

Let me remind you of Emb. So it’s the homotopy fiber of Emb(Dn,Dm) →
Imm∂(Dm,Dn), and this latter is just ΩVm(Rn), this Stiefel things. I’ll give some
hint of these bimodules.

Let me write down this other theorem.

Theorem 14.2. (Dwyer–Hess, Boavida de Brito–Weiss (this is the only one that
appeared), Ducoulombier–T.)

T∞Emb∂(Dm,Dn) ≅ Ωm+1hOper(Bm,Bn).

It’s natural, instead of looking at weird bimodules, it’s natural to look at maps
of operads; then you get a delooping. Let me give the special case m = 1, which is
really due to Dev Sinha. Then B1 is naturally equivalent to the associative operad.
In fact, Bn is equivalent to a certain operad, the Kontsevich operad, and you have
something like

B1 W1 Ass

Bn Wn Kn

≅
≅

≅
≅

now an infinitesimal bimodule over Ass is a cosimplicial object, and h Inf BimAss(Ass,Kn) =
hTotKn( ). For m = 1 this was proved by Dwyer and Hess and then I gave
a different proof, if you have a map of operads Ass → O, then TotO( ) =
Ω2hOper(Ass,O). I should have said, O needs to be double reduced, O(0) ≅
O(1) ≅ ∗. This is also true in the truncated case for Tot≤k and Oper≤k. We are
using a very explicit cofibrant replacement. Now there’s all this business about the
Deligne cohomology conjecture, that on the Hochschild complex of an associative
algebra you get an action of the operad of chains on little squares. Afterward,
McClure and Smith [unintelligible], and this is an explicit delooping, this gives a
high dimension generalization.
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So the proof of Dwyer and Hess and my proof with Ducoulombier rely on my
theorem with Arone.

Let me give you a brief sketch of ideas of Dwyer and Hess’ proof. They prove a
theorem

Theorem 14.3. (Dwyer–Hess) In a monoidal model category, for a map of monoids
M1 → M2, we have, well, M2 becomes a bimodule over M1, and we can look at
hBimM1(M1,M2), and we can compare with Mon(M1,M2), and this space will
naturally be a loop space of the second one provided the mapping space from 1 to
M2 is contractible. So a map of monoids will be a delooping of the maps of monoids.

So how does this work? We can consider a map of operads P → Q, you know
operads are monoids with respect to the ○ product, we have a monoidal structure,
well, Dwyer and Hess consider non-symmetric operads, then you have just sequences
of spaces, and the space of maps of bimodules, so Q becomes a bimodule over P ,
and then hBimP (P,Q) = ΩhOper(P,Q), and here we need the condition that
Q(1) = ∗. Probably you also maybe need a technical condition on P . Marcy
proved this theorem in the colored Σ case, so she should know, maybe P (0) ≅
P (1) ≅ ∗. So we have this delooping, and we take P = Ass, and we obtain that
hBimAss(Ass,O) ≅ ΩhOper(Ass,O). Now we need a second delooping, the second
delooping is obtained by, well, hTot(O( )) ≅ ΩhBimAss(Ass,O) provided that
O(0) ≅ ∗. Here you need the right model, take the following monoidal model
category: right modules over Ass with tensor product (P ⊠Q)(n) = ⊔i+j=n P (i) ×
Q(j). Then monoids with respect to this structure are bimodules, and bimodules
over Ass are cosimplicial objects. That’s how this works.

Now for high dimensions.

Theorem 14.4. (Dwyer–Hess; Ducoulombier–T.) If you have Bm → O is an op-
erad map and O(0) ≅ O(1) ≅ ∗, then

(1)

h Inf BimBm(Bm,O) ≅ Ωm+1hOper(Bm,O).
(2) If Bm → M is a Bm-bimodule map. When you have a bimodule, it’s not

automatically an infinitesimal bimodule, but with this kind of map you can
mimic empty insertions. Then we get

h Inf BimBm(Bm,M) ≅ ΩmhBimBm(Bm,O).

So the second one implies the first one by Marcy’s theorem. This has more
implications than to the study of embeddings. Let me give more motivation and
then some idea of the proof.

We can consider any space of maps MapsS∂(Dm,Dn), where these maps avoid
certain multisingularities, triple intersections or something like that, and for these
guys, it’s a difficult question whether the Goodwillie tower converges. Still we can
apply the theorem, and then the infinitesimal bimodule which controls this tower
comes from [unintelligible].

Consider the sequence {MapsS(⊔kDm,Dn),m}, this is a Bm-bimodule. Therefor

T∞ for this tower can also be delooped in this way. You could look at Imm
(ℓ)
∂ (D

m,Dm)↪
Imm∂(Dm,Dn), which avoid ℓ-self intersections, and the fiber is Imm

(ℓ)
∂ (Dm,Dn),

and then B
(ℓ)
n is the space of collections of disks which can overlap but no ℓ of
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them have a common point. This is a bimodule over Bn. Then T∞ of the space of
immersions is described

T∞ Imm
(ℓ)
∂ (D

m,Dn) ≅ h Inf Bim
Bm(Bn,B

(ℓ)
n ) .

So I should also mention, for embeddings we have not just an action of Bm but also
of Bm+1. Where does this come from? Morally speaking, it comes from, well, for
one dimensional knots [picture] we have not just little intervals but little squares,
this is homotopy commutative, we can shrink a knot and pull it through another.
You need framing, I should say, to pull it through. On this space of embeddings you
don’t have this, but on embeddings modulo immersions you have this. You can’t
do this on more general immersions. These embeddings, they’re really operads and
can be delooped one more time.

The approach of Dwyer–Hess to this theorem, they’re using the fact that Bm ≅
Ass⊗⋯⊗Ass
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

, the Boardman–Vogt tensor product, they use this decomposition and

apply the philosophical decomposition that I erased, how exactly it works I don’t
know, I think it’s probably technical, that’s why they’re slow in writing it down.

Our approach is more direct, and the proof is very similar to my proof of the
second delooping, with an explicit cofibrant replacement. For any operad P (doubly
reduced), and any P-bimodule maps P →M , we construct a map, a natural map

Maps∗(ΣP(2), hBimP(P,M))→ Inf Bim(P,M)
and we write down when this is an equivalence, and for the little disks this is
satisfied.

Our approach, I should say, works for the truncated case as well. In Dwyer–Hess,
it’s more difficult. You have to look at the tensor product of truncated operads and
then it’s not clear how well it works.

Now I want to talk about the approach of Boavida de Brito and Weiss. How do
they prove that Emb(Dm,Dn) ≅ Ωm+1hOper(Bm,Bn).

Their result is weaker and stronger. They can’t do immersions or anything, but
it’s stronger because their deloopings respect the action of the little disks. We have
Emb∂(Dm,Dn), which is mapped to ΩmVm(Rn), the Stiefel manifold, and ther’s a
natural map Vm(Rn)→ hOper(Bm,Bn), so you have a map to ΩmhOper(Bm,Bn),
and the theorem of Boavida de Brito and Weiss is:

Theorem 14.5. This sequence is a fiber sequence.

So they also give

Emb∂(Dm,Dn) ≅ Ωm hofib(Vm(Rn)→ hOper(Bm,Bn).
We just proved equivalence on the level of spaces without any action of the disks.

As a consequence, when you take the homotopy fiber, you get Ωm+1, as I said before.
To give an idea of the techniques that they’re using, the crucial things are config-

uration categories. You don’t need M to be smooth, and they define Con(M), it’s
a topological category. The objects of the category are the disjoint union of embed-
dings of k labelled points to M , Emb(k,M). If x ∈ Emb(k,M) and y ∈ Emb(ℓ,M),
then Mor(x, y) = {(j, α)} where j ∶ k → ℓ and α is a reverse exit path from x to y○j.

So x is a bunch of labelled points in your manifold M and you have a bunch of
other points y. Then a reverse exit path you need to say which points go to which
points. [picture]
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Then it’s a path where once points collide, they should stay collided. It’s kind
of sticking configurations. We mean a map from [0, t] (with t ≥ 0). Then we have
a natural functor from Con(M) → Fin by forgetting the paths. Now the theorem
is the following.

Theorem 14.6. If n −m ≥ 3, there is a homotopy Cartesian square

Emb(M,N) hMapFin(Con(M),Con(N))

Imm(M,N) Γ

where Γ is the space of sections of E → M where E = {(m,n,α)} where m is in
M , n is in N , and α is in hMapFin(Con(TmM),Con(TnN)), which you’ll see in
a second is equivalent to hOper(Bm,Bn).

So what do they consider? They take the nerve of the category Con(M), this
is a simplicial space, and the nerve of Fin. Then you need to consider the Rezk
model category structure on simplicial sets. This is in homotopy theory of homotopy
theories. I’m not familiar with this work, but the fibrant objects are complete Segal
spaces. They work in the overcategory, the space of maps in this model category
of objects over N Fin. They define the model structure on this overcategory, this is
not a fibrant object, N Fin, so you need something technical. You take the space
of maps in this model category of simplicial spaces over N Fin. The claim is, there
are two important statements.

Proposition 14.1. If you apply this to a map of disks, hMapFin(Con
∂(Dm),Con∂(Dn))

(I should say the space changes when you let points go to the boundary), this space
is contractible.

It actually factors through topological embeddings, which is contractible by the
[unintelligible]trick.

Proposition 14.2. The space hMapFin(Con(Rm),Con(Rn)) ≅ hOper(Bm,Bn).

These configuration categories over Fin, it’s equivalent to a certain construction
over CBm . If we have a sequence of maps of sets, you can assign to this a level
tree. So once you have an operad, you can construct a simplicial space CO. Then
they show that the nerve of the configuration category is equivalent to the simplicial
space over N Fin you obtain in this way. First they replace and then they show that
for anyO1, O2 withO1(0) ≅ O2(0) ≅ ∗, then hMapFin(CO1 ,CO2) ≅ hOper(O1,O2).
To do this they make contact with dendroidal spaces, they move through infinity
operads or permutads, they use this technique that I don’t understand very well,
but I wanted to give you an idea of the construction.

15. Clark Barwick: Parametrised higher category theory and
parametrised higher algebra II

So, last time I tried to give a convincing argument for why you should care about
higher categories, and within that why you should use quasicategories, and I tried
to convince you that these could be explicit, so you’re never saying things about
equivalence classes. Interspersed with that I introduced the concept of a G-∞-
category, which is more than an ∞-category, and more than an ∞-category with a
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G action. It’s a coCartesian fibration X → Oop
G , a G-functor is a map over Oop

G that
preserves coCartesian edges. We didn’t talk about motivation, but the examples
we saw that were interesting, when we considered E/F , this Galois extension with
group G, we began by writing down a coCartesian fibration VectE/F → Oop

G . There
are other examples that are worth noticing. Here’s an example I did last time,
there’s G-spaces, and the Elmendorf–McClure theorem that says usual G-spaces is
like functors from Oop

G into [missed].
So we learned about the homotopy theory from presheaves on OG, and this is

the category of G-spaces as usually thought of. I suggested but didn’t quite prove
that G-spaces should form a G-category. That’s what I said, I didn’t say how, so
let’s do that but honestly. I ran into a wall about opposites and got distracted,
but let’s think about this. This is morally the assignment that to every [G/H]
assigns H-spaces. I want a coCartesian fibration that represents the functor. I
need to write down the coCartesian fibration. We want a coCartesian fibration,
maybe I should give this a name, TopG → Oop

G such that the fiber over [G/H] is
Fun(Oop

H ,Top). Remember, we decided that OH for H ≤ G, is the same as a slice
category of the orbit category of G (not naturally), OH ≅ (OG)/[G/H]. Then the
fiber I want over [G/H] is really functors Fun((OG)op[G/H],Top). So in the domain

we need something contravariant and I should have the boring fibration on the right.
So we’ll define TopG as, I should use my Cartesian workhorse that says that when I
have a Cartesian and coCartesian fibration, I can pair them and get a coCartesian
fibration. So I’ll say this is

TopG ∶= FunOop
G
(X,Top×Oop

G )

where X is a Cartesian fibration to Oop
G with fibers the slice categories.

We got stuck with this, we look from Fun(∆1,Oop
G ), maybe the smart money

would have been to stick with this, to Oop
G . Then the source functor is always a

Cartesian fibration. The fibers of this thing, over [G/H], it’s the category of arrows
whose source is [G/H], and so I get (Oop

G )[G/H]/.
Now I’m happy, this has the functoriality I want, life is good. So X is this.
If D is an ∞-category, I can define an ∞-category of G-objects in D in the same

way. Top was just along for the ride here. So we get DG → Oop
G . This is not just

an object with a G-action, it has all the information about H-fixed points.
Here’s a fun theorem, if you like the first theorem of our book. The theorem

is that DG, the G-∞-category, is the cofree G-∞-category generated by D. This
means there is natural equivalence betwen FunOop

G
(C,DG) ≅ Fun(C,D), soD ↝DG

is right adjoint to taking the “total category” of a G-∞ category. A real category
theorist probably already knew this, but this is the first hint that there will be
access to G-homotopy theories in this subject. In this story, so far, we haven’t
used anything particularly about the orbit category of G. The only thing we used
was slice categories. We haven’t used any structure. So we can generalize this as
follows.

Suppose B is any ∞-category. Then a B-∞ category is a coCartesian fibration
X → Bop. I’m simply saying, you can work with everything you like. If you don’t
want genuineG-objects but rather functors from BG to your thing, then just replace
the orbit category with BG. There are really great examples where you want to
replace this category, most of these are not my invention. The first example is
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OG,F , orbits of the form [G/H] where H is in a family F closed under conjugation.
This is an important tool especially if you want to do certain kinds of induction.

A more exotic example is O©; this is (2,1)-category. The objects are “orbits” of

the form Q/ 1
m
Z, and the maps are Q/Z-equivariant maps. You’d be unimpressed

so far, but you can put in intertwiners to make this a 2-category.
Another example that is one of my favorites is finite sets of size at most n and

surjective maps. That’s a super interesting category, it turns out.
Once you have all this in place, what do we want to do? We have the theory of

G-spaces. My job is to look at cohomology theories on G-spaces? Well, what are
cohomology theories on spaces?

Definition 15.1. A reduced excisive functor H ∶ Top→ Top is one with the follow-
ing properties.

(1) H(∅) = ∗
(2) H preserves filtered homotopy colimits (this is a technical condition), fil-

tered just means hocolims indexed on filtered posets.
(3) If you have a homotopy pushout square

U V

U ′ V ′

then H takes this to a homotopy pullback.

You probably think of a homology theory as being a graded Abelian group
and the way you get the Abelian group out is by applying π∗, and everything
is canonically pointed.

This is a reduced excisive functor, so this is the same thing as [missed].
Now I’ll define Sp, the category of spectra, as the full subcategory of functors

from Top to Top spanned by the reduced excisive functors. This is a definition
of spectra. This has a nice clean description. This is the free stable ∞-category
with colimits on one object. Stability means you can’t tell the difference between
pushouts and pullbacks.

This is the ∞-category of homology theories for spaces, and I want to do the
same thing for G-spaces and that should give me G-spectra.

Let me comment on the category of spectra. Observe, and this is something
we talked about in Vect, that Sp acts a lot like Abelian groups, observe that Sp
has direct sums. It has a 0 object, the 0 homology theory, and if you form finite
products and if you form finite coproducts, there’s a map from one to the other.

Ther’s a map X ∨ Y → X × Y , and the functor you’re writing down is ( 1 0
0 1

)

and that’s an equivalence. The maps from one object to another is a grouplike E∞
space so that’s also really good, but I’m going to focus on direct sums.

Now what about G-spectra, and more generally B-spectra for some crazy ∞-
category B. I need now to pause and point out an issue that we already have.
What was I going to say? I’m completely blanking. Well okay, let me make a
proto-definition.

Definition 15.2. A reduced G-excisive G-functor E ∶ TopG → TopG is one with
the following properties
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(1) for all H ≤ G, we have EH ∶ TopH → TopH (here TopH is the ∞-category
Fun(Oop

H ,Top)) on the fibers over [G/H] is reduced excisive.
If you want something for excision, we want something more than just

fiberwise, we need G-∞-category limits and colimits. I want to say that aG-
pushout should go to aG-pullout. But you might think this is weird because
there’s no canonical way that you can act on a square. So we’ll formulate
the next condition, and to do that I need to say something complicated
about a cube. Now maybe you’ll think that this is very technical and
tedious, and you’re right, but if you have this first condition you can cut
down to fewer cases.

One thing you learn in category theory is that if you have coequalizers
and coproducts you have all colimits. If you’re working in homotopy theory,
and you have G-homotopy coproducts and G-diagrams indexed on ∆, then
you have everything you want. So the good news is that being a sifted
colimit is the same in the ordinary world and the G-world. So it turns out
it’s enough to understand coproducts. This nice feature of having direct
sums is what I’ll ask for here as well.

(2) E carries finite G-coproducts to finite G-products. This is really a defini-
tion.

I only need to define G-products and G-coproducts. This will exactly agree,
define the full subcategory SpG in Fun(TopG,TopG) spanned by the reduced G-
excisive guys. This is exactly the same as G-spectra in [unintelligible]from the 70s,
but defined in a homotopy invariant way without any model.

This whole story here is that I don’t need G, it’s done nothing for me, so why
don’t I replace it with B, to talk about finite G-(co)-products, I need to understand
finite G-sets, and there’s something critical (and unusual) about finite G-sets. So
let’s talk about the passage from OG → FG, this is a (finite) coproduct completion.
That means every object in FG can be written in a unique manner as the disjoint
union of its orbits. If you demanded that I look at coproduct preserving functors,
then (∞-categorically)

Fun⊔(FG,D)
≅Ð→ Fun(OG,D).

So we can take B → FB, but there’s something really nice about FG which is that
it has pullbacks. If you want a concrete model for FB; take functors from Bop into
sets, take B there by Yoneda, and look at the smallest subcategory that contains
coproducts. This is something you may have seen in a bizarre form.

⊔x∈H/K/L[G/Hx ∩L]

[G/H] [G/L]

[G/K]

This is (or some version is) called the Mackey decomposition formula. It’s something
you like. This is a key property, this having pullbacks.

Definition 15.3. B is orbital if FB has pullbacks
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There are tons of these things and they tell you all sort of wonderful things.
If you have this condition, then this story works perfectly. Okay, I want to give

you a sense that there are real theorems in this field, so let me do that.
The first theorem is that you might be a little unhappy, I haven’t told you G-

products and coproducts very directly. You don’t have to be unsatisfied because of
the following theorem.

Theorem 15.1. (Gwilliam–May) If B is orbital, then SpB is equivalent to Fun⊕(Aeff(FB),Sp).

What is this effective Burnside category? You have morphisms as spans with
pullback as composition. If you’re unhappy about not telling the truth about what
B-spectra are, then you can be happy because now they’re Mackey functors on
finite B-sets.

What else is true for ordinary ∞-categories? [missed]. The same thing is true

here. The B-∞-category TopB is freely generated by a single object under B-
colimits, just as you’d expect.

This is kind of amusing. This gave you a cofree characterization, now we have a
sort of free characterization. If I want to tell you what a colimit-preserving functor
in FunLB(Top

B ,D) is, that’s just D.
[some discussion]
Okay, there’s more. There’s a lot more but I’m going to have to stop. Maybe I’ll

emphasize, this theorem provides you with a universal property for TopB , it’s like
the role the integers play in Abelian groups. So TopB is the unit for a symmetric
monoidal structure on B-∞-categories.

What will I tell you now? Once you have B-stable B-∞-categories, then SpB is
freely generated under colimits by a single object. Once again this gives this thing
the status of the unit in B-stable B-∞-categories and then [unintelligible]and that’s
Hill–Hopkins–Ravenel’s norm.

I want to give you some examples to bring things back to earth a little bit. I said

that whatG-spectra are. What about these other things? If you take Sp©, these are
what we call cyclonic spectra, and for those of you who like equivariant things, these
are equivarinat spectra relative to the family of finite subgroups. You can think
about topological Hochschild homology as having a property of [unintelligible]and
cyclotomic spectra even, but I’ll address this in questions.

Finally, take this truncated category, this is Glasman’s theorem. What are
spectra with respect to that? They’re Mackey functors from the category FFin≤n,
but that turns out to be n-excisive functors from Sp to Sp and everything you can
see going from different n is visible here, this is a huge elaboration of Goodwillie’s
version that says something about working with just Σn.

16. June 15: Dimitri Zaganidis: The quasi-category of homotopy
coherent monads in an (∞,2)-category

I’m going to start by unpacking what might be a scary title. When I talk
about an (∞,2)-category, what I have in mind is mainly a category enriched in
quasicategories. The letter will be often K, you can pick Cat or you can pick
qCat∞ or other things. Mainly if you take M a model category enirched over
sSetJ , then K could be the cofibrant fibrant subcategory.
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There’s a whole model structure of simplicial categories where the fibrant objects
are these guys, and this is a model for (∞,2)-categories. This is supposed to
generalize what we know about monads and adjunctions in Cat to these guys.

Now I want to talk about homotopy coherence. So the idea is to encode homotopy
coherence as simplicial functors C →K where C is maybe actually a 2-category and
so by C I mean N∗C. I will not write the nerve again. It’s not a problem because
it’s a full and faithful embedding from 2-categories into simplicial categories.

These kinds of ideas were first introduced by Vogt (around 1973) and Cordier–
Porter (around 1986). You can see this in the definition of the homotopy coherent
nerve of a simplicial category C, which is N (C)m = sCat(C∆[m],C).

The second instance is more recent, by Riehl and Verity (2013) and in that case
it’s about coherent monads and adjunctions, that’s the second paper of a series in
order to try to make the theory of (∞,1)-categories more accessible, and I really
like that, I have to say.

Maybe I should say right now what they mean by coherent monads and adjunc-
tions. So homotopy coherent adjunctions and monads. The first thing, I should
first introduce two categories, Mnd and Adj. These are universal categories in some
sense, they are the universal, the free 2-category containing a monad, and the free
2-category containing an adjunction. So a 2-functor from Mnd to C are in bijection
with monads in C, natural in C, and the same, 2−Cat(Adj,C) ≅ {adjunctions in C}.
The maps will just pick the image of a monad in Mnd.

Definition 16.1. A homotopy coherent monad is a simplicial functor Mnd → K.
A homotopy coherent adjunction is a simplicial functor Adj→K.

Then if you choose K to be Cat, you get monads and adjunctions in the plain
old sense.

Now I will go on to the second idea in this talk, which comes from Street, “The
formal theory of monads” (1972). Let C be a 2-category. There is a 2-category
Mnd(C) of monads in C whose objects are monads in C, whose 1-cells are monad
morphisms, and whose 2-cells are modifications of these things. If you want to
think about what should be the morphisms between monads or adjunctions, the
first thing that comes to mind is to look at simplicial natural transformations, but
if you pick K to be Cat you only get strict things. So that doesn’t work very well.
Maybe I could also take [unintelligible]and do some stuff, but then I would not get
the full morphisms, but only those where the 1-cell is an identity.

Definition 16.2. Let’s say I have two monads, (B, t, µ, η) and (B′, t′, µ′, η′). Then
a monad morphism is a pair B

fÐ→ B′ and a two-cell

B B′

B B′

f

t t′

f

⇙

Now a homotopy-coherent monad morphism is a simplicial functor Mnd[1]→K.
Here 2 −Cat(Mnd[1],C) ≅ {monad morphisms in C}. So this is a relaxation.
Maybe now you have the objection, how do I compose such things? The second

question is whether there are such things, do they exist? Are there many of them?
The third question is whether these things induce morphisms on the level of the
algebras? The monad morphisms are made to induce morphisms, one-cells, between
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the categories or objects of algebras. The sanity check would be to check whether
this induces morphisms on the level of algebras.

Now the rest of the talk will be devoted to answer these questions “yes” (not the
first one).

Now the plan will be to give a quick review of the 2-categories Mnd and Adj and
later Mnd[n], the 2-category with n composable monad morphisms, and Adj[n].

[slides] The picture you should have in mind is

B A∆+

∆−∞

∆−∞,+∞

∆+∞

Here + means the empty ordinal is allowed, −∞ means that morphisms preserve
the minimal element and +∞ means that morphism preserve the maximal element.

So Riehl and Verity described a simplicial category ADJ which is isomorphic to
N∗Adj. A n-morphism is a strictly undulating squiggle on n + 1 lines. [pictures]

Definition 16.3. An adjunction morphism is a square

B A

B′ A′

b

f

�

a

u

f ′

�
u′

so that bu = u′a

Proposition 16.1. Mnd[n] jÐ→ Adj[n] is fully faithful and injective on objects.

I want this to be true which is why I pick this maybe slightly strange definition.
[slides]
That was really 2-categorical up to now, and now maybe I can apply these ideas.

As you have already noted, Mnd[ ] ∶∆→ sCat and that gives me a nerve functor

sCat sSet
NMnd

�
CMnd

and now the monadic nerve of K is given by NMnd(K) = sCat(Mnd[n],K) so for C
a 2-category, NMnd(C) = N(Mnd(C)∣n) and that is [missed].

In the last ten minutes I’ll try to say that this is a quasicategory under the
condition that [unintelligible]is closed under weighted [missed] limits. All the ex-
amples we care about are closed under those limits because they come from model
categories. So probably it’s not worth working too hard about that.

So first of all, to prove the theorem I should start with a lifting theorem. If you,

Theorem 16.1. If I am given a subcategory A of Adj[n] satisfying conditions and
F is also subject to some conditions (a bit unpleasant to write) and K ↠ L is a
local isofibration between (∞,2)-categories, then there exists a lift F̄

A K

Adj[n] L

F

F̄
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So that’s not easy. Fortunately, Riehl and Verity have a theorem of the same
form where n = 0, and looking at that you can produce this case, they did all the
hard work.

The sketch of the proof is that the conditions allow you to decompose the map
A→ Adj[n] as a transfinite composite of pushouts of maps of the form

2[Λk[n]] 3[∂∆[n − 1]]

2[Λk[n]] 3[∆[n − 1]]

where these 2[X] has two objects 0 and 1 with maps from 0 to 1 given by X. and
3[X] is like

●

● ●

X∆[0]

∆[0]☀X

and now the lifting for 2 gives you lifting for free and for 3 the lifting comes from
the universal property of the colimit.

Then using

Λk[n] NMnd(K)

∆[n]

we get something like

Mndk[n] ∶= CMnd(Λk[n]) K

Mnd[n] = CMnd(∆[n])

and so to get

Mndk[n] K

Adjk[n]

I put this in the following:

Mndk[n] K

Mnd[n] Adjk[n]

Adj[n]



56 GABRIEL C. DRUMMOND-COLE

And let’s see, given a morphism

Mnd[1] K

Adj[1]

M

A

I can get

A(B,1) A(A,1) ≅ Alg(T)

A(B,0) A(A,0) ≅ Alg(S)

and given

B Alg(T)

B′ Alg(T′)

f≅

there exists a morphism Mnd[1] → K so that the induced morphism Alg(T) →
Alg(T′) is equivalent to f .

17. Nora Ganter: Not even wrong!

Let me start by thanking the organizers, this is promising to be a great meeting.
This is a report on joint work with Matthew Ando. I’ve not read the book with
this title, but this is a criticism of string theory. I’ll try to offer my five cents about
the discussion about this. The first thing to start with is this.

17.1. What makes a model of reality right or wrong? If the criticism of
string theory is not even wrong, we should have an idea of what it means to be
right or wrong. Let’s start with an example, namely planetary movements. We
could think about the earth [picture]. We have here the sun and the moon, I want
to draw the arrow of the direction of the sun, and there are stars, and to be fair, the
model is a little more sophisticated, Anaximander and Anaximenes and Ptolemy
became famous for these. These were predictive models. The sun and the moon do
not go around, they go around on the side, the stars are on concentric spheres.

Of course we had the heliocentric model, with the stars including the earth going
around in some sort of orbits. This is Copernicus, Kepler, Galileo, and so on. We
could take this discussion further, I don’t want to dive too deeply in this. We could
say we only really care about relative movement, both of these are predictive. So
why do people prefer the heliocentric? It’s not about right or wrong.

The guiding principles are elegance and simplicity. Especially in the second
point, the heliocentric model won over the geocentric model.

Now here’s where string theory in its current state has to hanswer to some
critical question. We can talk about a grand elegant unifying theory that will make
everything so simple. Then we go homo and parameterize our boundaries. Maybe
here in elegance, we should not parameterize our boundaries. A point can be made
that that is not an elegant thing. When my daughter asks what’s the smallest thing
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in the world, I have to start explaining about (∞, n)-groupoids and so, maybe also
simplicity could be improved.

I’d like to emphasize that this work is in progress. This is very much still in
progress. Maybe I’ll add a question mark: “Not even wrong?”

So what’s the scenario we’re trying to model.

17.2. Extended field theories with target space. Let’s start by drawing the
target space [picture], M a smooth manifold. Inside M we might have a bunch
of particles, a finite set of charged particles, x+1 , x

−
2 , x

+
3 , and x−4 , and now these

particles evolve. So for instance x1 and x2 might start moving like this. We orient
our strings and then they cancel out when they meet. So x3 could go from here to
some other point y1 and because it didn’t cancel it stays positively charged, and
the same here, the x−4 can transform into a negatively charged y2. We also myight
have a scenario where something materializes out of nowhere and vanishes again.

Now imagine the second way to go from (x1, x2, x3, x4) to (y1, y2). We could
instead have x1 evolve to y1 and x2 into y2, and [pictures].

You can guess what is at the next level. You could now go from blue to green
and have an oriented membrane. The orientation should be mis-matched with blue,
which is the input, and matched with the output green.

Let me first of all tell you what I mean about all of these things. Let’s start
by saying what is a d-dimensional world-sheet in M . This would be a map σ from
a compact oriented smooth d-dimensional manifold Σ (possibly ith boundary) to
M . I want to consider this up to an equivalence relation, up to thin bordism with
corners. What does that mean? A bordism between Σ1 and Σ2 and I want some-
thing 2-dimensional with boundary this stuff but also maybe some other boundary
[pictures].

The differential has nowhere full rank; nor should β restricted to its free bound-
ary. An example is this. The point x+1 and x+2 are thinly bordant if and only if these
two particles are in the same location. Or x+1 and x−2 are together thinly bordant
to zero if they coincide. This cancellation is very important. What else can you
do with thin bordism? Reparameterization of paths. You think of the image. It’s
closer to our imagination to reparameterize. Let’s go back to this and do more
examples in a second. I want to get to our category.

17.3. The thin bordism chain complex. We have cancellation, a strict monoidal
structure with disjoint union and inverses. So we get a chain complex. So Bor●M is
a chain complex in topological Abelian groups; BordM is the set of d-dimensional
worldsheets in M in the sense that Dave was saying earlier, up to thin bordism.
Her + is the disjoint union and 0 is the empty set.

Then the boundary is boundary ∂. Now I can [unintelligible]in degree d and

use my globular Dold–Kan correspondence and Bor(d)● (M) ↔ Bord(M), a strict
topological Picard d-groupoid.

Let’s unravel this. The objects on the right side are elements of Bor0M , black
or purple things, and then the blue and green are 1-morphisms, so 1Hom(x, y) =
{γ ∈ Bor1M ∣∂γ = y − x} where − is disjoint union with the particle of the opposite
charge.

Then 2Hom(γ, β) = {σ ∈ Bor2M ∣∂σ = β − γ}. Et cetera. The monoidal product
is disjoint union and composition, if I have a path from x to y and a second path to
z, now we can do the same thing, taking the path and forgetting y in the middle,
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up to thin bordism anyway. Under normal circumstances you’d be screaming that
this is not smooth, but because of reparameterization this is smooth.

I should say again what I mean about an extended field theory with target
space. The particle theory wants to forget that the 2-morphisms ever existed, just
have particles and the strings connecting them, go from Bor1(M) with ⊔ and ∅ to
(VectC,⊗,C), and because this is a Picard groupoid, you might as well think of this
as lines in C. So a line bundle with connection is an example of what people have
considerid. You want to say that this is a symmetric monoidal functor, continuous
in an appropriate sense.

The next level up is open-closed string theory. Here you want to say, start with
Bor2(M) with disjoint union and ∅ and assign to it a 2-vector space, with ⊠, and
VectC. So a bundle gerbe with connection will give you that formalism. The source
is Picard so everything should be invertible so you should really land in 2-lines.
There is a categorical parallel transport and higher dimensional parallel transport.

Okay. We want now to get into the part that makes people nervous that we’re
actually paying attention, what do we mean by “continuous in the appropriate
sense” and even topological? So we replace our lines with BdC×, so now we have
no trouble to say what our topology is. We want to throw this into our globular
Dold–Kan correspondence, this is a strict topological Picard d-groupoid, which
correpsonds to C×[d]. So rather than talking about anafunctors, I’ll work in chain
complexes. I was happy to see Simona and possibly David on the list of participants
because, let’s put the definition in writing,

Definition 17.1. An extended d-dimensional field theory with target space M is a
span

P●

Bor(d)● C×[d]

∼

I haven’t talked about where this lives, so this isn’t a complete definition, but let’s
steer clear of this.

[some discussion]
I do want to talk about equivalence, so I should talk about the cone of that

arrow. In homological algebra, it has been studied, for the first time in my career I,
when I was a student we were banned from reading this counterexample book and
now for the first time in my career I’m thinking about what it means to be T1 but
not Lindelöf or whatever. Actually this has been studied by Morris who is here in
Ballarat. So in order to make sense of this, I should tell you about exact sequences.

I want to look at a sequence

Definition 17.2.
0→ A→ B → C → 0

is a short exact sequence in TopAb if (Morris and collaborators asked for a global
section, that’s too far) if there exists a (continuous) local section C → B around 0.
In orther words, if B is a principal A-bundle over C.

The digression I did was motivation for doing this exact structure.
So now what do you want to put in P●? I’m thinking about projective resolutions

but this is familiar to many and too complicated for those who haven’t seen it.
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What do projectives look like? Well under what circumstances is ZU “projec-
tive,” meaning with respect to epimorphisms of this form:

A

B

U ZU C

principal A-bundle∃?

η

∃?

So we want U to be homotopically discrete, paracompact, Hausdorff.
So [unintelligible]A↞ U and A↞ ZU ↢K
and then [missed]
If you look at just, if you fix diffeomorphism class of a world sheet Σ, then

you can look at the function space MΣ and cover this with open sets written by
[unintelligible], and this will map ZMΣ → BordM . So we want

Čech Cartan–Eilenberg

ZMΣ BordM

So I want the right hand vertical arrow to be my P● → Bor(d)● . [unintelligible]not
sure if this is projective in my structure. I think I will stop here.

18. Daniela Egas Santander: Sullivan diagrams and homological
stability

This is joint work with Felix Boes.
I want to describe some concrete computations on a graph complex, and let

me start by putting this into context, why I would be talking about this at this
conference.

Context. S is an oriented surface, with boundary, with genus, and parts of the
boundary are parameterized, there’s a marked point, and we say ∂PS is the pa-
rameterized boundary of S, and I’ll always ask that this is nonempty. If you’re
an algebraic topologist, you might be interested in Diff+(S, ∂pS), maybe you want
to study surface bundles with fiber S, and you want the homotopy type of its
classifying space. Then if we have this one parameterized boundary component,
then this is equivalent to M(S), the unmarked boundary should be thought of as
punctures. We strangely know a lot and very little about the homology of these
groups. These things have homological stability; when the genus is big enough, the
homology groups are independent of the surface. The stable homology, which is the
homology of the infinite genus surface, we know well, this is Madsen–Tillman–Weiss
and later Galatius. In the unstable range, these homology groups still appear to
be rather mysterious. One strategy is called combinatorial reduction. This means
I take this complicated geometric object and model it by a combinatorial object
that I can handle concretely. This is not really a “reduction” because there’s a
combinatorial explosion. Some computations have been done for small genus and
small number of boundary components, but there are some computations of Harer
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and Zagier, they compute χ(M(S1
g)) and I tell you this because there are a bunch

more classes, this tells you, that we don’t have access to.
Why would we want to look at these combinatorial models? They appear in

string topology. So LM = Map(S1,M), then string topology studies H∗(LM)
or maybe H∗(LM), some maps H∗(LM)⊗p → H∗(LM)⊗q, this was explained by
Nora with different targets, we want this to assemble to a topological conformal
field theory. This goes from DCob, with disjoint union to (Ch,⊗). So I’ll have
objects natural numbers and think of addition as disjoint union of circles, and the
maps Hom(p, q), are all topological types of cobordisms from p circles to q circles,
and this is ⊕C∗(M(Sp,q)) with monoidal structure by disjoint union and with
composition by gluing cobordisms at the boundary. In order for this to make sense
you have to choose the right chain model for moduli space but it can be done.
Then you see if you look at functors like this that send the circle to H∗(LM),
you get things that look like these string topology operations. This is actually
a PROP, sometimes called the Segal PROP. The work of certain people say that
whenever you take such a TCFT which hits the homology of the free loop space
of the manifold, this factors through DCob,⊔, where the objects are the same,
but the morphisms are ⊕S Graph complexes. These are born combinatorially. The
question is, what are the underlying spaces of these graph complexes. We should
know what we’re parameterizing this over. We should know something about the
homotopy type of the underlying spaces.

These things also form a PROP, and you’re asking about the homotopy type of
the bicollections of this PROP.

I want to tell you about one such complex, which is the complex of Sullivan
diagrams. I’ll describe exactly what I mean by them, this is the first approach we
have, and so I hope to say that we can say a lot of things and use them to evaluate
what people have done about string topology.

(1) What I’ll describe today is what Tradler–Zenailian, Wahl–Westerland, Kauf-
mann (in the closed part), what Ben Ward will use (g = 0, + conditions).
There is something done by Cohen–Godin which is definitely different and
something else done by Drummond-Cole–Poirier–Rounds which looks sus-
piciously the same but we don’t know.

(2) Joint with Kuper, we showed that the chain complex of Sullivan diagrams is
the cellular complex of the harmonic compactification of moduli space (this
compactification is due to Bödigheimer). So I’ll say something combinato-
rial but this has geometric meaning. This is why some people sometimes
say that string topology “compactifies.”

(3) There’s a third disclaimer: if one chooses the right chains for moduli space,
a specific combinatorial reduction, then one can write a projection onto
Sullivan diagrams. The hope is that we can use this to detect unstable
classes. Even though there’s a combinatorial explosion in both, actually
SD is much smaller. If we have some guesses of unstable classes, we might
be able to find things. The hope is to detect stable classes.

I hope that now I convinced you that it’s worth looking at some combinatorial
object that we haven’t looked at before. Now let me define things properly.

Definition 18.1. A fat graph or ribbon graph is a graph together with a cyclic
ordering of the edges (or flags) incident at each vertex.
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Let’s make some examples [pictures].
They are called fat or ribbon because from them you can construct a surface

by thickening the graph. You thicken the edges to strips and the vertices to disks
and then glue together according to the combinatorial structure given by the cyclic
ordering. [picture]

The topological type, let me tell you in case you haven’t seen it before, is com-
pletely determined by the graph, because you can retract to the graph. The only
thing you have to know is how many boundary components your surface has, which
you can read off from the graph [pictures].

The last thing you need to know, if Γ has a leaf, something like this or that
[pictures], we can define a subgraph of Γ given by tracing the boundary cycle.
[pictures].

Now this is a definition due to Godin, quite insightful

Definition 18.2. (Godin) A p-admissible fatgraph is a fatgraph with leaves (which
may or may not have labels), at least p of which are labeled, a bijection to {ℓ1, . . . , ℓp, . . .}
so that Γℓ1 , . . .Γℓp are disjoint embedded circles in Γ.

[pictures]. In general an admissible thing looks like this: [pictures]. These are
enough to model moduli space.

Definition 18.3. (Sullivan) We say that Γ1 and Γ2, p-admissible, Γ1 ∼ Γ2, if Γ1

can be obtained from Γ2 by slides away from ground circles. [pictures].
A p-Sullivan diagram Σ is an equivalence class.

Now you can imagine how to build a space of these guys.
The space 1−SD is a (semi)-simplicial set. TheK-simplices are Sullivan diagrams

Σ with k+1 edges on the ground circle. The faces are obtained by contracting edges.
Anyhow this is the space, and well, you can convince yourself that even though

we are taking equivalence classes, when you have a Sullivan diagram, you have a
well-defined topological surface, and 1 − SD splits into connected components of
topological type S. The surface S might have decorations in the boundary or not.
Let me describe certain components:

● SDm
g , which have genus g, m+1 boundary components, and only one marked

and labelled.
● SDg,m, which has one labelled boundary and m unlabeled but parameter-
ized boundary, and
● S̃Dg,m, which has m + 1 marked and labelled boundary.

This looks combinatorial, but it keeps coming up. One can do this for p ≥ 2, and
then you’ll have a multisimplicial set indexed by the number of circles you have.

Computations. The homology we get by plugging this into a computer is really
suspicious.

Theorem 18.1.

π∗(SDg,m) = π∗(SDm
g ) = π∗(S̃Dg,m) = 0

for ∗ < m − 2 The range is sharp for g = 0. We have a similar thing for genus.
You have the one special boundary component, then Sm

g,1, you can look at the
diffeomorphism group and look at what happens when you glue the torus minus two
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disks, and can extend by the identity on the glued torus because my diffeomorphism
is the identity on the boundary. This gives me

BDiff+(Sm
g,1)→ BDiff+(Sm

g+1,1)

and I have something similar between SD(g,m) and SD(g + 1,m), and the stabi-
lization maps behave well.

What we can also say

Theorem 18.2. When m > 2, then the stabliization map is k-connected, where
k = g +m − 2, which is stronger than homological stability.

When m = 2 these are not simply connected, just connected, but π1(SD(g,m)) =

{ Z g = 0
Z/2 g ≠ 0 and the stabilization map sends the generator to the generator.

Why do I want to mention this? These actually come from H1(BDiff(S)). We
have these quotient maps and [unintelligible], and in the diffeomorphism group this
is exchanging the punctures by a half-twist.

Showing these are nontrivial and generators in Sullivan diagrams is easy. So
finding something above this would be pretty easy, and you’d know it was non-
trivial.

We could use the PROP structure of this, the circles are to define composi-
tion. Ben will tell us about composition, insertion one on top of the other, these
compositions, can we build infinite families coming from below like this?

I think that’s all I wanted to tell you. I was very quick.
Let me tell you one last comment. Gabriel asked if you showed this on homology,

we show that the matching is cyclic so everything should die, you should be able to
write a flow to see that things are contractible, using Ralph’s model and Hatcher
type surgery arguments. We’re looking at a subcomplex, we should be able to do
this on the space level, and use that to say the homotopy type for higher p. The
bigger p is, the closer we get to moduli space. If we look at the surface from p
boundaries to one boundary, and genus zero, then SD0,p−1, this is quasi-isomorphic
to M0,p+1, and these things, the moduli space can’t tell the difference between
incoming and outgoing boundary components, but these spaces change drastically,
saying what’s in and what’s out. It’s interesting to understand this filtration of the
moduli space. Okay, now I’m done.

19. Sinan Yalin: Moduli spaces of bialgebras, higher Hochschild
cohomology and formality

Thanks to the organizers and to the kangaroos.
My talk will be in three parts.

(1) Algebraic structures
(2) moduli spaces of such structures
(3) Applications to deformation theory problems related to bialgebras and En

algebras.

19.1. Algebraic structures. I’ll start by briefly recalling the definition of a
PROP. I’ll work in Z-graded chain complexes over a field which I will suppose
for simplicity to be characteristic zero.

Definition 19.1. A dg PROP is a collection P = {P (m,n) ∈ Ch} with
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● actions of Σm on the left and Σn on the right,
● ○V ∶ P (k,n) ⊗ P (m,k) → P (m,n) which is supposed to be composition,
and
● ○h ∶ P (m1, n1)⊗ P (m2, n2)→ P (m1 +m2, n1 + n2), like concatenation.
● There is an exchange law relating ○H and ○V .
● There are also maps corresponding to the identity operation k → P (n,n)
neutral for ○V .

An example is the endomorphism PROP EndX(m,n) = Hom(X⊗m,X⊗n) for
X ∈ Ch.

Definition 19.2. A P -algebra structure on X is a PROP morphism P → EndX .
That is, P (m,n) → Hom(X⊗m,X⊗n). These are equivariant and compatible with
○H and ○V

Some examples are associative and coassociative bialgebras, which is free on a two
to one product and one to two coproduct subject to associativity, coassociativity,
and the bialgebra relation which says that bialgebras are algebras in coalgebras or
vice versa.

These kinds of structure occur very often in representation theory or quantum
groups for instance.

Another interesting example is Lie bialgebras, this is a Lie algebra and Lie coal-
gebra structure which are compatible in a certain way. This is freely generated by
a bracket and cobracket, and mod out by some relations, Jacobi and coJacobi along
with the compatibility or Drinfeld 5-term cocycle relation. I won’t write it.

These structures appeared in differential geometry and mathematical physics.
When people are interested in tangent spaces of Poisson Lie groups, the tangent
space of a Lie group is a Lie algebra, and the tangent space of a Poisson–Lie group
is a Lie bialgebra. These also came up in Drinfeld’s work on quantization. About
ten years later these showed up in algebraic topology, where the composition of
the bracket and cobracket is trivial. This appeared in the word of Goldman and
Turaev, studying free loops on surfaces and this has been generalized to equivariant
string topology by Chas and Sullivan, namely, the S1-equivariant homology of LM ,
this has this kind of structure.

Theorem 19.1. (Fresse 2010) Differential grade PROPs form a model category
with fibrations and weak equivalences aritywise.

This is analagous to operads. When you have this, a natural way to define
homotopy versions is as follows:

Definition 19.3. A homotopy P -algebra is a P∞-algebra where P∞
∼Ð→ P is a

cofibrant resolution of P

There are several motivations and examples where such things appear, such as

● the A∞ structure on the cohomology of a space, given by higher Massey
products or
● the E∞ structures which appear in different places in homology, such as
in classifying homotopy types in the word of Sullivan in rational homotopy
theory or Mandell over finite fields.
● The L∞ structures in deformation quantization of Poisson manifolds à la
Kontsevich.
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A priori the notion is dependent on the choice of resolution. We’d like the associated
categories of algebras to be equivalent.

Theorem 19.2. (Y., 2013) If φ ∶ P∞
QÐ→∞, then there is an equivalence φ∗ of

(∞,1)-categories between (Q∞−alg, quasi-isomorphisms)→ (P∞−alg, quasi-isomoprhism).

There is no model category here on algebras over a PROP so this requires much
more work than for algebras over operads.

19.2. Moduli spaces. The geometric idea is that if you have a collection of ob-
jects or structures and a relation between them, you want to associate to this a
space M whose points are your objects. You want the connected components to
give you the equivalence classes of such objects. But you want something more, you
want infinitesimal deformations of your moduli space. You want the deformation
theory of the points and these are, in a sense I’ll be precise about after this, you can
call this a moduli problem. These problems turn out to be controlled by algebraic
data, by a differential graded Lie algebra, or by their homotopy version, an L∞
algebra.

This story goes back to Deligne, Drinfeld, Feigin, Kontsevich, Hinich, Manetti,
and the final form of such a principle was given by Pridham and Lurie.

To define this you need some tangent properties, some geometric structure. So
geometric structure is needed to get a tangent space.

Now the question is how to formalize properly these ideas and construct a moduli
space encoding the structures we are interested in.

So a possible formalization is via derived algebraic geometry, which is a “homo-
topical perturbation or thickening of algebraic geometry.”

I’ll only say a few words. In classical algebraic geometry, affine schemes are the
opposite category of commutative algebras. Then schemes are sheaves, functors
from commutative algebras to sets. Then if you want to study problems where
you have automorphisms, you work with stacks, working with sheaves valued in
groupoids.

Now in the derived setting what people do is homotopically thicken these defi-
nitions.

Your derived affine schemes is the opposite category of commutative differential
graded (nonpositively graded) algebras. Then your stacks are simplicial sheaves up
to homotopy from nonpositively graded commutative differential graded algebras
to simplicial sets.

So here in sSet you can study moduli problems for which you have weak equiv-
alences between your objects.

The fact of adding the differential at the inputs allows us to encode derived data,
a conceptual way of discussing nontransversal intersection, [unintelligible], lots of
things, and this setting is very interesting to me. This is where we want to live to
find our moduli spaces.

Definition 19.4. P∞{X} is Map(P∞,EndX). You can take a model that looks
like MorPROP (P∞,EndX ⊗Ω●) where (EndX ⊗Ω●)(n,m) = EndX(n,m) ⊗ Ω● and
Ω● is the Sullivan algebra of the standard simplex (this is a simplicial dga).

This has many properties, like

● P∞{X} is a Kan complex.
● P∞{X} = [P∞,EndX]
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● P∞
∼Ð→ Q∞ implies that Q∞{X}

∼Ð→ P∞{X}.

Theorem 19.3. (Y., 2015)

(1) The functor P∞{X} from nonpositively graded commutative differential
graded algebras to simplicial sets which takes R to Map(P∞,EndX ⊗R) is
a stack.

(2) For a given φ ∶ P∞ → EndX , the tangent complex of P∞{X} over φ satisfies
the following:

H∗(Tvarphi[−1]) ≅H∗ Def(φ)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

explicit L∞-algebra

where this thing is given in terms of deformations of PROPs.

Remark 1. (1) So not only can we explicitly compute this, but the formal
moduli problem of deformations of φ is given by the following

hofibφ(P∞{X}(R)→ P∞{X}(k))

for the augmentation R → k, the “space of R-deformations” of φ.
So I wanted to say that Def(φ) is the tangent L∞ algebra of this moduli

problem in the sense of Lurie–Pridham, Deligne, and so on.
(2) There is an associated obstruction theory, like obstructions to infinitesimal

deformations, and actually if you try to work in an underived setting, you
don’t see these obstruction groups, which really only live in this derived
world.

Up to a degree shift and so on, you recover the theories you know, Hochschild,
Chevalley–Eilenberg, Gerstenhaber–Schack, et cetera. So it’s really the right kind
of thing you want to consider.

19.3. Bialgebras vs En-algebras. I’ll start with some recollections and proper-
ties.

19.3.1. En-algebras. . There is a sequence of topological operads

E1 ↪ E2 ↪ ⋯↪ En ↪ ⋯↪ E∞

which are “more and more homotopy commutative.” So topological En-algebras in
spaces model n-iterated loop spaces. We’ll be interested in differential graded En

algebras, which are algebras over C∗En. These structures have many interesting
properties.

Theorem 19.4. (1) H∗E1 ≅ Ass
(2) H∗En ≅ Pn, the operad of n-Poisson algebras, meaning you have a com-

mutative and associative algebra sturcture and a Poisson bracket in shifted
degree 1 − n.

(3) For n ≥ 2, C∗En
∼Ð→ Pn (as an operad) (Tamarkin n = 2,Q, Kontsevich,

Lambrechts, [unintelligible], Fresse–Willwacher, others)

I’m interested in the cohomology theory of such structures. So what’s the coho-
mology theory of En algebras?
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Definition 19.5. Let A be an En-algebra. The higher Hochschild or En-Hochschild
complex of A is given by

CH∗En
(A,A) = RHomModEn

A
(A,A),

the En-A-module morphisms.

Remark 19.1. For n = 1 and A associative, you see the usual Hochschild complex.
It turns out that these higher Hochschild complexes have a nice sturcture on them
controlling this deformation theory.

Theorem 19.5. (Francis, Lurie, Ginot–Tradler–Zeinalian) CH∗En
(A,A) is an

E∗n+1-algebra.

This is like taking the derived center; this can be made precise but I don’t have
time. This is also known as the higher Deligne conjecture.

The deformation complex has all this nice structure on it. Let me explain the
link to bialgebras and why we care.

19.3.2. Link to bialgebras. There have been several motivations to study these
relations.

● attempts to relate categories of bialgebras and E2-algebras and their re-
spective deformation theories; if you take the cobar on a bialgebra you get
an E2-algebra. People wondered for a long time what the relationship was.
● Motivation from Gerstenhaber–Schack, who introduced a cohomology the-
ory for bialgebras (in quantum group theory), C∗GS(B;B), which has a
Hochschild and a coHochschild part. They remarked a few things, like

– the fact that this complex has a cup product like the Hochschild com-
plex for an associative algebra.

– They expected a (shifted) homotopy Lie algebra that was compatible
with this cup product. These should gather into an E3-algebra

● Kontsevich (around 2000) conjectured (in working on deformations of Pois-
son manifolds) that if you look at deformations of the symmetric bialgebra,
which is an algebra but also a coalgebra, and he conjectured that this has
an E3-algebra structure which is formal. This H∗GS(Sym(V )) which should
imply Drinfeld and Etingof–Kazhdan for [unintelligible]quantum groups.

With work in collaboration with Gregory Ginot we solved all these questions.

Theorem 19.6. (Ginot–Y.)

● There is a fully faithful conservative∞-functor from E1-algebras augmented
as algebras and conilpotent as a coalgebra to augmented E2-algebras. The
categories are not equivalent but rather we embed one into the other, some
kind of modified cobar construction.
● This embedding lets you study the cotangent deformations; if B is a biage-
bra, then the moduli problem Bialg∞{B} ≅ E2{Ω̃B} so the homotopy theory
is entirely controlled by E2 algebras.

● C∗GS(B;B) ∼Ð→E3 CHE2(Ω̃B). So you can study deformation theory of bial-
gebras by way of higher Hochschild homology.
● We solved Kontsevich’s problem in a more general way, this gives a gener-
alization of Drinfeld and Etingof–Kazhdan quantization theory.
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20. June 16: Chris Rogers: What do homotopy algebras form?

Thanks to Marcy and Phil for letting me participate in this nice workshop in
conference. The goal of this talk is to summarize the results of three papers. Two
are joint work with V. Dolgushev and the third with V. Dolgushev and A. Hoffnung.
This will be a story about an enrichment of a category of homotopy algebras of a
certain type, which should tell you something about the homotopy theroy of these
homotopy algebras. This is reminiscient of the situation with chain complexes,
because you can enrich them over themselves and then with Dold–Kan you move
to a simplicial version. This is like a non-Abelian version of this story.

The things that go into these papers are very well-known; our contribution is
taking things that are well-known and putting them together in the right way. This
will be very explicit, too.

We’ll work with with homotopy algebra structures on differential graded vector
spaces, Z-graded, characteristic zero (I don’t know the analog, if one exists, in
positive characteristic; I’ll always be passing between invariants and coinvariants

VG
≅Ð→ V G, v ↦ ∑g∈G gv). This works for Cobar(C) algebras, an algebra over the

cobar of a coaugmented dg cooperad satisfying mild technical conditions, e.g., if we
have the situation where C(0) = 0 and C(1) = k, this will work. So A∞, L∞, C∞,
Ger∞.

Let me remind people how A∞ algebras work, with special emphasis on A∞
morphisms. An A∞ structure on (A,∂) will be a codifferential (boundary +Q) of
degree 1 on C(A) ∶= (T̄ (s−1A),∆) and Q∣s−1A = 0.

There’s a well-known fact that Q is determined by its restriction, the projection
of this codifferential to the cogenerators prs−1A○Q. What about A∞ morphisms? I’ll

write these as A1
FÐ→ A2, this is a degree 0 differential graded coalgebra morphism

F ∶ C(A1) → C(A2). These are not strict maps. So many people know, these
maps are uniquely determined by the projection to the cogenerators F ′ ∶= prA2

○F ∶
C(A1)→ s−1A2.

Let me remind you of the formula to recover the full coalgebra morphism from
the projection:

F (x) =∑
n

F ′ ⊗⋯⊗ F ′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
○∆n−1

where ∆n ∶ C(A)→ C(A)⊗n+1.
What’s the right notion of weak equivalence? It’s the A∞ quasi-isomorphisms.

Say that F is an A∞ quasi-isomorphism if F ′∣s−1A1
∶ (A1, ∂) → (A2, ∂) is a quasi-

isomorphism in differential graded vector spaces.
Let’s say something about convolution algebras. This is something that’s been

around for a while, various people cite various sources for its origins. This was in
Fregier, Markl, Yau, and at the same time maybe Merkulov–Vallette, around 2009.

Let A1 and A2 be A∞ algebras. I’ll look at a cochain complex Conv(A1,A2). As
a graded vector space it will be L = Homk(C(A1), s−1A2), and this has a differential
given by the differential on A2 along with the full codifferential (∂1+Q1) on C(A1).

This also has more structure, degree 1 “brackets” {. . .}k, which are k-ary maps
that go from S̄k(L)→ L defined using the A∞ structure of A2 by

{f1, . . . , fk}(x) =∑
σ

prA2
Q2(fσ(1) ⊗⋯⊗ fσ(k)) ○∆k−1
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These brackets satisfy L∞-like relations. They give this convolution a stucture
of a (shifted) L∞ structure. There is not just this L∞ structure but also a very
nice filtration on this complex, FnL = {f ∶ C(A1)→ s−1A2∣f(a1, . . . , ak) = 0∀k < n}.
This is a decreasing filtration, where the first piece is the whole complex, L = F1L ⊃
F2 ⊃ ⋯ so that L = lim←L/FiL. The last cool thing about this is that the brackets
are compatible with the filtration in a nice way, {Fi1L, . . .FikL} ⊂ Fi1+⋯+ikL.

What does this do for us? The punchline, which is well-known to experts, is that
this Conv(A1,A2) is a filtered (complete) shifted L∞ algebra.

If L is a shifted L∞ algebra, I can look at a degree zero element α ∈ L0 and
define the curvature of α to be

∂α +∑
k≥1

1

k!
{α, . . . , α}k

This is called the Maurer–Cartan equation, I can defined MC(L) to be the degree
zero elements of zero curvature. Usually you’re used to thinking of this as degree 1
but, you’ll see why I put them in degree zero and why I’m working in the shifted
case.

The cool fact is that when I look at the convolution elements of this L∞ algebra,
if I look at HomA∞(A1,A2), this is bijection with MC(Conv(A1,A2)), sending a
coalgebra morphism to its projection F ↦ prA2

○F .
I think it’s fair to say that people have asked, seeing this, whether the category

of A∞ algebras is enriched over things like this, and then MC turns out to be a
functor and by base change or enrichment you can recover A∞ algebras.

First we’d like to talk about a symmetric monoidal structure on shifted L∞
algebras. So let’s talk about a monoidal category of these algebras. The objects of
the category will be shifted L∞ algebras and the morphisms will be the usual thing
you think of when you think of L∞ algebras, but continuous with respect to the
filtration.

This means that F ∶ S̄(L1) → L2; I get a filtration on S̄(L1), the obvious thing,
and for all n there exists an m such that F (FmS̄(L1)) ⊂ FnL2).

So what was I saying? Those are our morphisms, and the monoidal structure is
just direct sum. If I have two such shifted L∞ algebras takes direct sums of brackets
and filtrations. The unit is then the 0 shifted L∞ algebra.

What’s an example of a morphism in this category. Going back to these convo-
lution L∞ algebras, well I forgot one thing I should say. Why do I care about the
continuity condition? If I have a continuous morphism F ∶ L1 → L2, it will give
me a map from MC(L1) to MC(L2). If I look at the Maurer–Cartan elements
of L1 ⊕ L2, then this is MC(L1) ×MC(L2). So this gives me a strong monoidal
functor.

An example of a morphism in this category that’s interesting is one that gives us
a notion of composition with respect to the convolution L∞ algebras. If I have Ai

are all A∞ algebras (or homotopy algebras satisfying my conditions), then there’s

a nice candidat Conv(A2,A3) ⊕ Conv(A1,A2)
cÐ→ Conv(A1,A3), this should be a

map satisfying compatibilitiy conditions, this will by the symmetrization

c(g1 + f1, . . . gn + fn) ∶= sym(∑
i

gi ○ (f1 ⊗ ⋅ ⊗ f̂i ⊗⋯⊗ fn) ○∆n−2)
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and the cool thing is that passing to Maurer–Cartan sets this gives composition
of A∞ morphisms. We’re on our way now to enriching over the category of L∞
algebras.

There’s actually something even better. We can upgrade MC to a monoidal
functor to simplicial sets. This will be a non-Abelian version of chain complexes
and Dold–Kan. So Deligne–Getzler–Hinich (or DGH) ∞-groupoids, suppose I have
an L∞ algebra with a nice filtration, complete and so on, L, then well, let me tensor
it in the right way with Ω(∆n), the polynomial de Rham forms on the n-simplex,
I can take the completed tensor product with this differential graded commutative
algebra

L⊗̂Ω(∆m) = lim
←
(L/FkL)⊗Ω(∆n)

and I’ll defineMCn(L) to be MC(L⊗̂Ω(∆n)).
This gives me a simplicial set, but it’s a bit better:

Theorem 20.1. MC(L) is a Kan complex.

This uses the fact that this filtered condition makes it pronilpotent, and you use
a famous result of Getzler.

What you’re really getting is a monoidal functor MC● ∶ (sL∞,⊕) → (Kan,×).
This is something we use to say that enriching over this thing is the right thing to
do.

At this point you’d expect me to write down a theorem, let’s enrich A∞ algebras
over shifted L∞ algebras. We have almost everything we need. We have a nice
notion of a mapping object, we have a composition, the only thing I didn’t say yet
is a unit and identity laws. You can prove that composition is associative. This
means for any A∞ algebra, I need a map jA ∶ 0 → Conv(A,A). This is a bummer.
This is bad. At this point you get sad.

I want to get the identity that takes A to A, I should take this under MC to ∗
mapping to the identity A∞ morphism but any L∞ morphism will take 0 to 0.

We can fix this. So let’s twist again (there’s been a lot of dancing). I’ll tell you
two facts about Maurer–Cartan elements and twisting by them. This will fix the
problem for the last bit of the enrichment. If L is a shifted L∞ algebra and α is a
Maurer–Cartan element of L, then from this data I can form a new L∞ algebra Lα,
which has the same underlying complex but a new differential and new brackets.

The differential

∂α(x) ∶= ∂x +∑
k≥1

1

k!
{αkx}k+1

and you do the same thing for the brackets

{x1, . . . , xm}α =
∞
∑
k=0

1

k!
{αkx1⋯xm}k+m

and I can twist morphisms too. If I have L1
FÐ→ L2, and α ∈MC(L1) then Lα

1

Fα

ÐÐ→
L
F∗(α)
2 where

Fα(x) = ∑
k≥0

1

k!
F (αkx)

These let me define a symmetric monoidal category. The objects are shifted L∞
algebras. The morphisms are pairs (α,F ) where F is an L∞ morphism and α is
a Maurer–Cartan element in L2, so L1 ↦ Lα

2 . You may wonder how you compose,
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and it all follows from rules of twisting. At the level of spaces, this is basically
letting me change basepoints, these things, I want to be able to get to the end in a
leisurely way, these things compose just fine. Let me write down the point.

You still haveMC● ∶ (sLMC
∞ ,⊕)→ (Kan,×), but the point is that HomsLMC

∞
(0, L),

and this is MC(L). This is the same thing as the zero simplices of the correspond-
ing Kan complex HomsSet(∗,MC●(L)), and this will probably convince you that
this will solve the problem of having the identity. Now the identity will be 0 with
the Maurer–Cartan element corresponding to the identity.

Let me put in a theorem that kind of summarizes everything and that will be
good.

Theorem 20.2. (Dolgushev–R., Dolgushev–Hoffnung–R.)

(1) There is an sLMC
∞ -enriched category of A∞ algebras.

(2) “Base change” via MC● gives the category of A∞-algebras enriched in ∞-
groupoids

(3) π0(A∞ − alg∆) ≅ A∞ − alg({quasi-isos−1})

21. Gabriel C. Drummond-Cole: Operadic convolution in probability
theory

I do not take notes at my own talks.

22. Ben Ward: Chain models for moduli space operads

Thank you so much and thanks to Marcy and Phil for gathering us all together
here. So let me start by defining an operad, and by that I mean a specific one,
not the concept, it will be called Tree and Tree(n) will be the k span of trees with
n labelled vertices modulo some identification, the edges are directed but I’ll mod
out by that (with signs; switching directions of edges gives a −1). There’s an Sn

action on the vertices. This is the warm-up example. So Tree(2) is the span of

◯1 ◯2

Then Tree(3) is the span of

◯1 ◯2 ◯3

◯1 ◯3 ◯2

◯2 ◯1 ◯3

This has an operad structure which is given by insertion and then sum over con-

nections. So if I insert the 2 to 1 operation ◯1 ◯2 into ◯1 ◯2

by ○1 then I get

◯1 ◯2 ◯3
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which is

◯1 ◯2 ◯3 +

◯3 ◯1 ◯2

This is similar to the pasting schemes we had last week.

Lemma 22.1. There is a morphism from Lie (the operad whose algebras are Lie
algebras) to Tree via the map which takes ℓ2 to the 2 to 1 operation.

To prove this, all I need to do is check that this satisfies skew symmetry (it does)
and that the image of the Jacobi identity is zero on this side.

I’m trying to go at a measured pace; this is obvious to half the audience and the
other half doesn’t think about this.

I need to check that

ℓ2 ○1 ℓ2 + (123)ℓ2 ○1 ℓ2 + (132)ℓ2 ○1 ℓ2 = 0

and this is

◯1 ◯2 ◯3 +

◯3 ◯1 ◯2 +

◯2 ◯3 ◯1 +

◯1 ◯2 ◯3 +

◯3 ◯1 ◯2 +

◯2 ◯3 ◯1

which is zero.
If O is a cyclic operad, then ⊕O(n)Sn+1 is a Tree-algebra.
Later I’ll give a variant with a more concrete presentation. I’ve been to sev-

eral conferences in a row that have the name “higher structures in geometry and
physics.” This is a phrase that means different things to different people. There’s
a very different feel depending on who is in the audience. I think it’s incumbent on
me to say what this phrase means to me. Let me give some examples of objects I
want to study and then talk about things. I’ll amke a table
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object “lower structure” algebraic invariant higher structure
X a space commutative alge-

bra
H∗(X) E∞ (perhaps in the

sequence model) al-
gebra on cochains

A∞ algebras Gerstenhaber alge-
bra governing de-
formations

HH∗(A,A()) a G∞ algebra, but
I want a particu-
lar model, an M -
algebra, where M
is the minimal op-
erad of Kontsevich–
Soibelman.

N a (closed ori-
ented) manifold

“string topology”
(it’s not really
fair to call this a
lower structure);
BV -algebra and
gravity algebra

H∗(LN) and

HS1

(LN)
FM and M↻

N compact sym-
plectic manifold

“Gromov–Witten
invariants” or
hypercommutative

QH∗(N) (FM)hS1

Maybe I’m spending a lot of time making this table but what higher structures in
geometry and physics means to me is: “higher” means “chain level” and “struc-
tures” means “operations,” well, “in” means “in” and “geometry and physics”
means “algebra and topology.”

First I want to give references for relationships and then I want to discuss the
combinatorial chain models, trying to give a feel for how they work.

I’ll do this here. Let me first discuss how these operads relate to each other.
As a way to understand some of these by analogy, let’s consider what’s hopefully
a more familiar sequence, the Lie, associative, and commutative operads. So the
operad As that encodes associative algebras, because it has one for each order of
arguments, I could call this As =H∗(D1), where this is the space of configurations
of little intervals inside a big interval, labelled, in any order, this only has H0, and
the component is determined by the order. That’s how we see this correspondence.
This sits inside H∗(fD1), and a framing is a point on the boundary, this is a
marking on each component. Then I can map to the commutative operad, and As
receives a map from the Lie operad. This is hopefully a more familiar version. This
is the E1 version of this story. Then in the E2 line, I can start with H(D2), drawing
the same [picture], one dimension up, and if you know this, it’s a theorem, and if
you don’t know this it’s a definition, this is Gerst, and this sits inside the version
where I mark points on the boundary, and that’s the operad for BV algebras, the
identification with the S1 action gives me HyComm. It’s appropriate to mention
Gabriel’s work here, BV //S1 = HyComm (Drummond-Cole), and the Koszul dual
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of the commutative is Lie, and the Koszul dual of HyComm is Grav. So I get

Lie As =H∗(D1) H∗(fD1) Com

ΣH(M∗+1) = Grav Gerst =H∗(D2) H∗(fD2) = BV HyComm =H∗(M∗+1)

M↻ M fM (fM)hS1

∼ ∼ ∼

//S1

∼

Chronologically, M came first, building on work of Gerstenhaber and Voronov.
Then fM came next, there ar models of this, include Westerland–Wahl, Tradler–
Zeinalian, and then I have papers for M↻ and (fM)hS1 were third and fourth.

But I’ll go in order left to right instead.
I haven’t given full definitions, let me define

Definition 22.1. M↻(n) is spanned by planar, stable, black and white trees with

n white vertices.

Here stable means no monovalent or bivalent black vertices or edges between
black vertices. If you allow the last thing, the computations will be longer, this is
just for exposition. So for arity three, I get [pictures].

The operad structure is insert and sum. I want to make this differential graded
so I’ll define a differential colloquially as “collapse white angles,” by which I mean
sum over all ways of doing this. [pictures].

I can quickly calculate the homology of this guy, the first Betti number is 1 and
the second Betti number is 2. This does calculate the homology of the moduli space
with four punctures, this is the sphere minus three points, and I can retract this,
Daniela talked about this yesterday.

In arity four, we don’t get a combinatorial explosion, but we do get a sort of
controlled demolition, we get a twenty dimensional space, and go down one degree,
you get no symmetries, this is 24 dimensional, and here you get something 6 dimen-
sional. It’s a little hard to calculate the homology, it’s not impossible. You can see
the bottom homology is one dimensional. The top homology, all you have is the Lie
thing, and when I start composing that, I should get cycles. The dimension 2 is the
dimension of Lie words on three letters, since Jacobi says I go three dimensional to
two dimensional. The same thing happens here. The homology will be identifiable
with Lie words on four letters

Lemma 22.2. H⊺(M↻) = Lie

Nwo you can calculate the middle dimension using Euler characteristic, this
middle one has dimension 5. You can look at the Poincaré polynomial of these
spaces, due to Getzler, this is (1−2t)(1−3t) = (1−5t+6t2). Now my combinatorial
sklls are reaching their limit so I’ll just tell you the theorem at this point. Hopefully
my reason for, well,

Theorem 22.1. (1) gn ∈ H0(Mn+1) maps to the class of the graph with one
black central vertex and n white vertices, this induces an isomorphism of
operads. For this to make sense, you have to know that with this suspen-
sion, you can generate all the homology from suspension and by operadic
composition.
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I would say that, this is an original result, I don’t know where to point you
to find the chain model, maybe you can find this as a suboperad of things
that people wrote down in string topology. You can also give an explicit
presentation for the relations here, you can give the gravity relations.

(2) (this uses the first statement) There exists a zigzag of weak equivalences of
operads between ΣH(M∗+1) and M↻.

(3) If A∞
µÐ→ O is a map of cyclic operads, then (∏ sO(nZn+1),{µ, }) is an

algebra over M↻.

The point is, at the level of homology and cohomology, you know that the cyclic
cohomology of the Frobenius algebra, [unintelligible], then this is Connes’ complex
computing cyclic cohomology. So we get actions on the complexes computing cyclic

cohomology or HS1

● .
It’s better to go a little slow than to race through all of this, I only have a few

minutes left. How do you combinatorially go from step one to step two to step
three to step four?

What you can do is go from M↻ to M by adding roots to the trees. The

only thing I can do is sum over all roots. Once you have the minimal operad
of Kontsevich–Soibelman, you can do a similar thing, pick out an angle to mark
white vertices. You include this with the trivial marking, you can always mark
the trivial flag. We’re increasing combinatorial complexity, the middle two are
finitely generated, and we go back to being infinitely generated, adding cells that
correspond to the cohomology of BS1, we want something, fM acts on homotopy
BV algebras, and we’d like to take the additional operations killing the BV operator
into account. This includes in by adding cells, and you can ask what new comes
about? The new thing that comes in is the fundamental classes of these manifolds.
I’m happy to discuss any of this but for now my time is up.

23. Sophia Raynor: Hierarchical networks and coloured modular
operads

Thank you, thank you Marcy and Phil, it’s been a great conference, I don’t
know about you, but I’m kind of tired, I’m not going to do much here, certainly
not maths. I want to make a suggestion, and then I want your input. I’ve already
had some great feedback from Mark, I think maybe Ben and Martin can help me,
maybe others.

I want to suggest that coloured modular operads (an appropriate notion thereof)
provide a suitable framework for considering questions which arise in the study of
complex networks.

Today:

(1) I’ll provide some support for this suggestion,
(2) I’ll outline a formalism which lends itself to this project,
(3) and describe some applied collaborations

Let’s talk a little bit about complex networks, hierarchical complex networks,
complex problems. We have huge amounts of data on everything and much of it is
arranged in networks. This sometimes is related to problems of scale. You can’t
understand all the data, but only emergent properties that come from zooming out
and looking at the system as a whole. I worked with people at the blue brain project
who want to reverse engineer a brain, and what they’re doing should tally with fMRI



HIGHER STRUCTURES 75

scans and what happens in them. We have lots of problems of extrapolating from
local fine scale information to global structure.

There’s always a question when you take scientific measurements if your mea-
surements are scale-specific, there’s problems with changes of scale. There’s not
really a framework right now across applied sciences for talking about this kind
of problem. You have lots of computing power in biology, so people run lots of
simualtions at different scales.

The project as a whole is:

(1) to find a suitable (categorical) formalism for hierarchical networks and in-
vestigate its structure and properties.

(2) Then we’d like to identify properties (respectively invariants) that could
potentially be relevant (repsectively computable) in “real life” applications
(these may be application specific), then

(3) Adjust and apply the model appropriately to real data.

I’ll do a little of step one, maybe a sentence of step two, and none of step three
today.

Let me give an informal definition of hierarchical networks

Definition 23.1. A network N = (G, α) is
● a finite graph G whose edges and nodes are decorated “via some map α”
by some elements of a given set.

You could imagine a set of cities or a set of dynamical systems or something to
decorate a network with. You want some kind of stability under automorphisms of
the underlying graph G and it will be connected if G is connected.

I’ll tell you a hierarchical network on a slide.

Definition 23.2. A (k-level) hierarchical network is an underlying network N
together with a (k-times) iterated partitioning of N into connected subnetworks.

You’re all thinking “Aha! graph substitution.” We could zoom out, crushing
nested edges. The hierarchy is defined on increasing subsets of internal edges of the
underlying graph.

Another point of view is to zoom in to reveal fine local structure, zozming in
and exploding vertices, after seeing hereditary pasting schemes with graphs, you’re
probably thinking, oh, modular operads are just colored operads so we could think
about taking the small components and building up our network. We can collapse
or build up and so on, all according to the coloring.

I suppose the point [pictures], we have a network of networks of networks of
networks and we have a canonical simplicial structure here.

There seems to be an iteration of a monadic thing, so some kind of simplicial
structure. One thing is that this tree structure is an invariant of the hierarchical
network. You could think of invariants at each level or invariants of the network
tree itself. This is related to work with David Spivak and I think we’ll be interested
in Martin’s operads, because we care about the levelwise structure.

I want to make some assumptions and put some conditions. I want to assume,
first of all, I’m not interested in clustering algorithms. There are lots of people
working on efficient robust clustering algorithms. What you have to do is going to
depend on the data on the network. I can’t say anything about that.
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(1) I’d actually like a framework in which any connected subgraph can form a
cluster. The network could be any shape of connected graph.

(2) It shouldn’t matter if I miss or add extra clustering layers. In my picture
if I cluster first blue and then green, I could have just taking only green.

(3) I want the rule for clustering to depend only on the underlying subgraph.
(4) I want collapse of structures to give a network of the same type. Okay,

fMRI scans are not the same as cells or cell connections. I want to be able
to compare what’s going on at one level and at the other level. I want some
sort of maps from my hierarchical data into a hierarchy where everything
is of the same “type.”

So the first condition makes me think about hereditary pasting schemes.
Condition 2 gives me [unintelligible], and I’m looking at some algebra for 3
and 4.

(5) Finally any decoration, including orientation (or not!) should be part of the
data of specific problems and not of the underlying formalism. Networks
can be undirected (facebook) or directed (disease spread) or some kind of
mixture, where for some maybe we don’t care or something like that.

That’s what I’m actually going to talk about in the formalism today.
I’m going to give, jumping ahead a few steps from that but not quite, I’ll give a

partial definition on this board

Definition 23.3. (partial) A k-level hierarchical network of type A are elements
of a k+1-times iterated free coloured modular operad, they are (k+1)-simplices in
some simplicially enriched coloured modular operad T ●A where, what do we need
to define in this definition? A coloured modular operad is an algebra over some free
monad T ∶ GS → GS, so GS is the presheaf category on el and finite sets is a full
subcategory of el, and T is given by a pasting scheme of undirected graphs with
leaves.

What haven’t I defined? I haven’t defined graphs, the category el, type, or the
monad T . That’s what we’re going to do.

I want to talk about categories of graphs. I’ll revive the formalism of Joyal–
Kock. There’s a problem with their note (of 2011) which is why the full paper
wasn’t written. I’m not thinking about genus or units, so I avoid their problems, a
lot of work comes from trying to solve the problem when I have units, but that’s a
different story.

Their definition of a graph is similar to the standard definition of flags with
involution, but the involution has no fixed points.

Definition 23.4. I graph G = (E,H,V, s, t, τ) is a diagram of finite sets

E H Vτ s
t

where s is injective and τ is an involution with no fixed points. So Eo is E − im(s)
and EI = {e ∈ E∣e, τ(e) ∈ im(s)}.

The edge with no vertices looks like

2 ∅ ∅

or the corolla, there are n loose ends and n attached ends to a single vertex

n ⊔ n n ∗
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Or something else,

● bullet 2 ⊔ 2 2 ⊔ 2 2

or

● 2 2 ∗
Then a map of graphs is a triple fE , fH , and fV which makes the diagrams commute:

E E H V

E′ E′ H ′ V ′

fE fE

τ s
t

fH fV

τ s
t

We also want the map t and fH to be the pullback of t′ and fV
So for instance we have a map of graphs

2 ⊔ 2 2 ⊔ 2 2

2 2 ∗

So within this graph category I can pick out Gr, the full subcategory of connected
graphs, and inside that is el, the set of connected graphs with no internal edges.

Observations, Gr(1,G) ≅ E(G) and there is a canonical fully faithful embedding
of finite sets with isomorphisms to el by taking x to the corolla cx, the graph x⊔x←
x→ ∗

So the category el(1,1) has {idϵ, τϵ}, and el(cx, cy) ≅ bijections(x, y).
We had the observation before and so el(1, c) = c and el(cx,1) = ∅.
Why do we like this category? What can we do with it? The key thing is that

for any graph, let’s just stick to the connected graphs, G ∈ Gr, we have the category
of elements of G, el(G), given by el(G) = el ↓ G, the restriction of the slice category
Gr ↓ G.

Most importantly, it holds that G is canonically isomorphic to the colimit

colim
(c,f)

c

So you build a graph by sticking it together what is happening over the edges. So
it’s pretty trivial.

Definition 23.5. The category GS of graphical species is presheaves on el. So for
F ∈ GS we have a set of colours togehter with an involution, τC , for every finite
set X you have F (X) with an action of Aut X and then you have X projections
compatible with the involution.

The point here is that we can extend a graphical species to a presheaf over the
whole category of graphs. This defines sieves over each graph, which give us a
canonical Grothendieck topology. The [missed] with respect to this topology.

For F ∈ GS and G in Gr, we define F (G) to be the limet

F (G) = lim
(c,f)∈el(G)

f(c).

Very quickly I’ll give two examples and then hurry up.
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(1) F = Comm, the terminal graphical species, then F (G) is G. You can see
that F (G) is the graph G decorated compatibly by the elements of F . This
is a single term, so this looks like G.

(2) I could also take F where F (∣) is either “in” or “out” and do ∗ for other
things in el. so then we get orientations on G. You can add colours or extra
information as you wish.

I have to be quick, so we want to think about this monad T now, and for that I want

Definition 23.6. The groupoid X − Griso, where X is a finite set, has objects
X = (G, ρ) where ρ ∶ E0(G)→ X and with morphisms isomorphisms of G compatible
with the labelings. Then define the free monad T ∶ GS → GS by TF (∣) = F (∣) and
TF (cX) as the colimit

colim
(G,ρ)∈X−Griso

F (G)

Normally when you see this kind of free monads, you get a tensor product of
evaluation at vertices. If F of the stick graph is a singleton, this reduces in this
way. By F (G) beoing defined as the limit or colimit over G, you can add information
on the edges within the formalism. So elements of this guy are isomorphism classes
decorated by F . This is the sense, I think, in which I have all these things.

I’ll take two minutes to mention some applications. One is the brain things, we’ve
been talking about that, I mentioned that, In general, there are a lot of problems in
computer science that come under the umbrella of constrained satisfaction problems,
this is to do with getting complex systems of multiple variables, finding solutions
when you have constraints, and an issue in computer science, apparently, is a way
to organize constraints at different scales.

An example with extremely real world applications, in the UK, something that
people were worried about a few years back was badgers, they’ve been implicated
in the spread of TB in cows, cows spread to badgers and badgers to cows. They
spent millions on a badger cull, killed thousands of badgers but it was very expen-
sive, thousands of pounds per badger. The cows are mapped, carefully tracked, but
we only have coarse information on badgers. I’ve started talking with someone in
the government who works with badgers about applying operadic methods to this
problem.

24. June 17: Simona Paoli: Weakly globular structures in homotopy
theory and higher category theory

[I do not take lectures at slide talks].

25. David Cardechi: Étale homotopy theory for higher stacks

Thanks, and thanks to Phil and Marcy for being awesome and stuff. I couldn’t
remember my title so I put both of them up here.

I’ll start with some things that aren’t higher at all. Before getting to étale ho-
motopy theory I’ll say some things about étale cohomology. This was an important
ingredient in the proof of the Weil conjecture, introduced by Grothendieck and Artin,
the first step in producing a Weil cohomology theory.

Here are two important properties you should know about it.
First of all, it’s a way to attach cohomology theories to a scheme.



HIGHER STRUCTURES 79

(1) Étale cohomology is defined for a scheme X over any base, or Deligne–
Mumford stack, in any characteristic. Something defined over Fp, you don’t
know what a cohomology theory should be.

(2) If X is a complex variety and A a finite Abelian group, on the one hand you
can look at Hn

ét(X,A); on the other hand you could give X the usual topology
(this is the analyticization Xan) and this étale cohomology is isomorphic to
Hn

sing(Xan,A).
If you’re a topologist you might care about other invariants, so, say,

(1) what about homotopy groups?
(2) Maybe I can’t get a topological space but maybe I can get a homotopy type

whose cohomology is the étale cohomology?

The answer is almost, but not quite. You can’t get a homotopy type, but you can
get a pro-homotopy type. I’ll explain what that means in a second.

I’ll be a bit agnostic about what it means, I’ll start with a naive description and
move to something a little more sophisticated later.

So let me give a reminder or an introduction about pro-objects.
The idea is that I have C a category, and then I produce a new category Pro(C),

which are formal cofiltered limits of objects of C. If you don’t know what that means,
direct or inverse limits, that’s enough for a definition. So this has a universal

property, there’s an embedding of C j↪ Pro(C). If D has cofiltered limits, then j
induces an equivalence of categories between

Funcofilt(Pro(C),D)→ Fun(C,D).

I’ll give you two different concrete descriptions. Concretely, I’ll put Pro(C) into
Fun(C,Set)op. Suppose C is an object of C, then I’ll define a functor C → Set which
takes D ↦ Hom(C,D). We’ll say F is in Pro(C) if and only if it can be written as

F = lim
←cα

j(cα)

in Fun(C,Set)op.
This is still not very concrete. When C has nice properties, you can describe these

functors; when C has finite limits, then F is in Pro(C) if and only if F preserves finite
limits. This gives a concrete description, this is finite limit-preserving functors to
Set, or well the opposite category.

Let me give the example that you might have seen before. Take C to be the
category of finite groups. Then Pro(C) is the category of profinite groups. There’s
a functor, given any group I can construct any group called its profinite completion
Gp→ Pro(FinGp) where

G↦ lim
←N⊴G

G/N

where this limit should be in quotes because it’s formal.
If G is finite then Ĝ = G and Pro(FinGp) ⊂ TopGp, and this will be those which

are actual cofiltered limits of finite discrete groups.
Let’s do another example, taking C = Ho(Top). Then Pro(C) might be something

you’d call prohomotopy types, although later we’ll do something better.
What we can try to do is something like what we did for groups, but for homotopy

groups.
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Definition 25.1. A space (I’ll be agnostic about what kind) X is π-finite if it has
only finitely many non-trivial homotopy groups and π0 is finite, all of which are
themselves finite.

So now you can try to play this game, can I do a profinite completion of a
topological space to a a profinite object?

If I want to get pro-objects here I can’t give a good description but it exists.
Artin–Mazur show that there exists a “profinite completion functor”

Pro(Ho(Top))→ Pro(Ho(Topπ))

where Topπ is π-finite spaces. This is very hard to describe. It’s impressive that they
did this, but because you did this for the homotopy category, it’s hard to get your
hands on what properties it has. Call this functor .̂ We had this nice comparison
theorem between étale cohomology of a complex variety with finite coefficients and
its singular cohomology. Now we can improve that a lot. Before I say it, let me
tell you something. I’ll black box the étale homotopy type for now. They also show
that if X is a locally Noetherian scheme, then they can produce a pro-object [X]ét
in Pro(Ho(Top)), called the étale homotopy type of X. I won’t describe this now
and will give a better definition using more recent technology.

Theorem 25.1. (Profinite comparison theorem) If X is a pointed connected scheme
over C of finite type, then there is

[X]ét [Xan]

such that the induced map on profinite completion is an isomorphism.

The homotopy groups, all toplogical invariants are the same. This is a slight lie,
no one catch me.

I want to formulate all of this using infinity categories.
First of all I want to say that doing profunctors does not commute with taking

homotopy categories. The theorem will be more general, get rid of many of the
conditions, and I’ll do this before the homotopy category. This is somewhere else,
you have an isomorphism after applying a functor, it’s better to have it beforehand.

Let me top rambling and start doing stuff. All I’m going to say about ∞-
categories is that I can replace a set of morphisms with a space or ∞-groupoid
of morphisms.

So I told you how to construct pro-objects, let me do this for an ∞-category. I
can produce another ∞-category Pro(C), I really only care about this for spaces or
π-finite spaces. When I had finite limits I could do a simpler description, let me
just jump to that in this ∞-categorical setting.

Let S be the ∞-category of spaces (or ∞-groupoids), then Pro(S) will be a sub-
category of Fun(S,S)op, and something in the functor category will be in Pro(S) if
it preserves finite limits (and under my breath, is locally accessible).

Now let me do the other example that I care about, let Sπ be the ∞-category of
π-finite spaces, and let me define Pro(Sπ), let me call this Prof(S), the ∞ category
of profinite spaces.

The nice thing is, before it was very difficult to say what the profinite comple-
tion is, let’s do profinite completion. I have to produce a functor from Pro(S) to
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Prof(S). So suppose I have F ∶ S → S, then Sπ iÐ→ S, this preserves finite (ho-
motopy) limits, and then I take F , and the composition F ○ i, this is the profinite
completion.

Moreover you actually have the universal property that the profinite completion
is left adjoint to the canonical inclusion Prof(S)→ Pro(S). In particular, you want
this to be left adjoint, in the homotopy category it will be killed. Now we can prove
things by looking at simple things and gluing them together.

Let k be a commutative algebra, and let Affk be the category of affine k-schemes
(of finite type, I’m only doing this for some size issues, this is a convenient choice
but not the only one). Now let Sh∞(Affk, ét) ⊂ Fun(Affop

k ,S) be those functors
satisfying étale descent, that is, ∞-stacks with respect to the étale topology.

The inclusion, that is, has a left adjoint, a sheafification functor a which pre-
serves finite limits. Since I care about this kind of preservation, that might be nice
to know.

Some examples:

(1) Any algebraic stack X is a sheaf of groupoids, which are 1-types in S. If
you’re worried about using the Grothendieck topology I’m using, these embed
fully faithfully in the étale topology.

(2) Suppose I have Z ∈ S, and you consider the constant presheaf ∆pre
Z ∶ Affop

k →
S. This is stupid, but I can turn anything into a sheaf, so a(∆pre

Z ) is the
constant stack with value Z, called ∆Z .

I’ll smash these together to give myself étale homotopy type.
Let X be any ∞-stack. Then define the following functor πét

∞(X ) ∶ S → S, which
takes Z ↦ HomSh∞(Affk,ét,∆Z). Limits are computed objectwise, a preserves finite
limits, and so the whole thing preserves finite limits. This thing we will call the
étale homotopy type of X . This can be defined for any kind of stacks, doesn’t
really have to be finite type, this is like the most general you could actually do,
and now you have control over this construction actually. This construction that
preserves colimits, this preserves colimit-preserving functors from ∞-sheaves or ∞-

stacks Sh∞(Affk,ét)
πét
∞ÐÐ→ Pro(S).

I want to tell you a profinite comparison theorem. The first thing I’ll do is to
tell you how to produce analytification as well. This is also my construction, it’s
not that bad. There’s a functor ( )⊺ ∶ Sh∞(Affk,ét) → Sh∞(Top) where Top is
the 1-category of topological spaces. This is totally categorical. This is the unique
colimit-preserving functor such that for X an affine scheme, X⊺ =Xan. This shows
it’s unique but not that it exists. The theorem is the existence of this thing.

If X is an algebraic stack, then X⊺ is the underlying topological stack in the
sense of Nouhi, this agrees with previously done constructions. So if you had a
groupoid presentation in schemes and you take the underlying topological stack,
this [unintelligible].

Okay now I want to extract a homotopy type. I just need to describe, now what
it does on my site.

Theorem 25.2. (C., ’15) Let π∞ ∶ Sh∞(Top)→ S be the unique colimit preserving-
functor such that π∞(T ) = T . This is about the homotopy colimit of a hypercover
of a space being equivalent to it

Let me put this together and unwind what it means, safely removing almost all
of the adjectives that we put.
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Theorem 25.3. (C., 15) The following diagram commutes in the ∞-categorical
sense (up to equivalence). This will capture anything that is locally finite type.

Sh∞(Aff ft
C,ét) Pro(S)

Sh∞(Top) S Prof(S)

( )⊺

πét
∞

(̂)

π∞ (̂)

In particular, for any algebraic stack LFT/C, we have X̂⊺ ≅ π̂ét
∞(X ).

So how do you do this? All the functors preserve colimits, so you just need to
prove it for affines.

Now I have to go really fast, this was my plan all along, to give a nice talk and
then scream at you guys for five minutes.

I lied to you, this is not how to define étale homotopy type. First go to ∞-topos.
If I have a ring, I can take ∞-sheaves on its small étale type. There’s again a
(nonobvious) colimit-preserving functor. You do it, done. That’s hard, whatever.
done. Let’s assume we all know what an ∞-topos is. Think of a sheaf on a site.
We know how to take the constant stack. I can take global sections, that preserves
limits, and that gives me a prospace, called the shape of this sheaf. This gets me to
Pro(S). There’s a theorem, that the shape of Sh∞ is the same as πét

∞. So I didn’t
lie.

Something here has to be nonformal. First let me tell you one more thing that’s
formal, so for X a separated scheme of finite type over C, you can prove that
π∞(Xan) is the same as the shape of Sh∞(Xan) in prospaces. Then analytification
produces a geometric morphism which goes from ∞-sheaves on Xan to Sh∞(Xét).
Finally this is a profinite homotopy equivalence if and only if for all π-finite V ,

Γét∆[unintelligible](V )
∼Ð→ Γ∆(V )

Grothendieck hit this with a hammer for me. By GAGA, if this map induces an
isomorphism on π1 and on cohomology with local coefficients in any finite Abelian
group, then I can do it by induction on Postnikov towers and I’m done. There’s
actually a lot more but I’m out of town. I hope you liked it up to my shouting and
then hated me for the ending.

26. Christian Haesemeyer: On the K-theory of monoid algebras

There won’t be much higher structure in this talk although there will be some
under the hood. I’ll try to use Dave’s language. The goal of what I want to talk
about, this is joint project with Gordiñas, Walker, and Weibel, studying the algebraic
K-theory of singularities.

The goal of what we are trying to do, R or k will be a commutative ring, and
I actually mean a (discrete) commutative ring, and A or B or M will be a coum-
mutative monoid, for example the natural numbers. Normally I will write them
multiplicatively and they will be pointed, so they will have 0 with the usual proper-
ties. So for instance, lattice points in a cone. This is what toric varieties are built
out of, in particular because they model simple types of singularities.

We’d like to study the algebraic K-theory K∗R[A], and I want to address how
much is contributed by R and how much by A.
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I give talks about algebraic K-theory all the time, I never say what it is, it’s
really the stable homotopy groups of some spectrum built out of the category of
finitely generated projective modules over the ring, π∗KR[A]. So π0 classifies these
things, π1 gives automorphisms, and so on.

As an example, if R is a regular ring, so every module has a finite projective
resolution and A is the monoid Nr, then what is R[A]? It’s the polynomial ring in
r variables, and a theorem of Quillen says that

Theorem 26.1. (Quillen)

K∗R
∼Ð→K∗R[A]

So for a monoid like this, this rational cone, the K-theory doesn’t see the monoid
at all. To see the monoid, it should be uglier than this.

Here is something true for a lot of monoids, surprising if you think about it.

Theorem 26.2. (Gubeladze) If k is a regular domain and M ⊂ Zn is finitely gener-
ated (this is not really necessary, but it’s a way to reduce the number of hypotheses)
normal (this means for a monoid that if x ∈M and 1

n
x is in Zn then 1

n
x is in M)

which does not contain a line, then every projective k[M]-module is induced from
k.

This is a generalization of a famous theorem of Quillen and [unintelligible], doing
Serre’s conjecture, which is this for a field and A as above.So this led to

Conjecture 26.1. (Gubeladze) Let k be a regular ring and A a submonoid of a
torsion-free Abelian group not containing a nontrivial unit. Let c = (c1, c2, . . .),
with ci ≥ 2 and Oci ∶K(k[A])↺ the “dilation” induced by a↦ aci . Then the map

K(k) ∼Ð→ colim
Oci

K(k[A])

or equivalently, “dilations act nilpotently on K(k[A])/K(k).”

That’s a conjecture, I could be more precise. I will sketch the proof of this
today, special cases were done before. Gubeladze proved this in some cases, say if
Q ⊂ k. His methods, first he proved it for fields and then noticed it was the same
for regular rings. His methods are totally affine, using methods from polyhedral
geometry. He says I can put this inside, let’s say we have a monoid where we can
take sufficiently many roots. Then I can approximate the monoid by something
like Nr with sufficiently many roots added. Then I can understand the difference
with trace methods (like cyclic homology). He uses a continuous theorem about
excision for the fiber of the map from K-theory to cyclic homology. This was done
in 2005–2008.

When k contains a field, then we proved this, somewhere between 2007 when
[unintelligible]gave a talk about it and 2014 when it finally appeared. Using what
I’ll call global methods (and I’ll say more about those because basically I’ll only
sketch the case where k contains a field).

I wont’ stay in the affine world. I’ll glue them together to get schemes. You take
spectra of the rings and localize, but I’ll only [unintelligible]glue together monoid
schemes. I’ll explain what these are and how to deal with them later on.

The characteristic here, if you want something fancy, will be 1.
I should make a statement of the conjecture that applies in the non-affine case,

and even when M doesn’t satisfy these annoying conditions. The statement uses
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[unintelligible]version of [unintelligible]theory called homotopy K-theory which is
forced to satisfy Quillen’s theorem no matter what R is.

Definition 26.1. Let R be a ring over a scheme X, as noncommutative as you
like. Define KH(R) to be the realization of a simplicial spectrum

KH(R) =hocolim
∆op

R[∆]

KH(X) =hocolim
∆op

K(X ×∆)

where ∆n = SpecZ[t0, . . . , tn]/∑ tj − 1.

I won’t prove this but if you think about it you can see it must be true.

Lemma 26.1. If A is as in the conjecture and k is any commutative ring then

KH(k) ∼Ð→KH(k[A]).

Okay in another words, the conjecture is completely trivial if you replace K with
KH.

Theorem 26.3. (CHWW) Let k be a regular Noetherian commutative ring (of
finite Krull dimension—I think this is not actually necessary) and let X be a sep-
arated pctf (I’ll explain in a second) monoid scheme of finite type [this is not a
scheme in the usual sense, it’s built out of monoids; it’s completely combinatorial]
and ci are integers infinitely many of which are at least 2. Then the dilations Oci

act on monoid schemes and the theorem says there is an equivalence

colim
Oci

K(Xk)
∼Ð→ colim

Oci

KH(Xk).

Note that this implies the conjecture, and also let me note that this should work
whenever K(k) ≅ KH(k). This should work, for instance, for commutative C∗

algebras. For now this is work in progress and we need a regular ring (of finite
Krull dimension).

Okay, how would you prove this? You reduce to the case that you know is true,
the theorem of Quillen that I just erased.

In order to tell you how it works, I should tell you something about monoid
schemes. These are built out of pointed commutative monoids, I’m thinking multi-
plicatively and then there’s an element 0 that kills everything. An ideal in a monoid
is a subset mapped by multiplication to itself. So we build this the way you build
schemes out of rings. A lot of people who want to do characteristic 1 want to do
this. This is nothing to do with that. One way to think about things in characteris-
tic 1 are geometric objects that are completely combinatorial, so their behavior does
not depend on the coefficients at all.

Now I’ll write M for the category of monoid schemes and if you have a com-
mutative ring k, you have a realization functor M → Schk which sends X → Xk.
This is adjoint to the forgetful functor Schk → M that forgets the addition. For
properties like separation, it’s important that it’s an adjoint.

I won’t really explain separated, I’ll say one thing that held us up for years; if you
have a surjective monoid map, it might not be a quotient by an ideal. In general
that creates problems, it’s not easy to think of what separatedness is.

Now pctf, the tf means torsion free, that means there are no roots of unity. The
pc means partially cancellative. This is not necessarily, in general, quotients or
cancellative monoids by an ideal, but that’s the condition to be partially cancellative.
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Definition 26.2. X is smooth if and only if all stalk monoids are equivalent to
Nr ×Zs.

You should not be surprised by this if you have experience with toric varieties,
you want to be able to complete extremal rays to a Z-basis of the lattice.

There’s an easy lemma. If X is smooth then K(Xk)
∼Ð→ KH(Xk) and then the

theorem follows in this case.
So the plan is to reduce to this using resolution of singularities, the way I think

about this, this is a process that allows you to take an algebraic variety and associate
to it smooth manifolds and a recipe to put those together and contract pieces of them
to regain your variety. The recipe follows fairly strict rules, otherwise it wouldn’t
be very useful.

Resolution of singularities is [unintelligible], and even more unknown in positive
characteristic, and even more in mixed characteristic. Here’s the plan. We’ll take
some liberties with notation, I’ll write Mpctf , and a functor on schemes will give
me a functor on monoid schemes by fixing k and composing with k-realization. If
E ∶ Schop → Sp, then I’ll write E for E ○ ( )k. I’ll fix c and write Ec for the
appropriate homotopy colimit, computed objectwise.

We need to show that the homotopy fiber of Kc →KHc, let me call this fiber G,
vanishes.

Now I’ll introduce a topology. If X is smooth, then I know this is true. I’ll
introduce a topology where I know everything is smooth and then I’ll show [unintel-
ligible]in that topology. That’s the goal.

Definition 26.3. A Cartesian square of monoid schemes in Mpctf is an abstract
blowup square if p is proper and surjective (proper is not easy to define), i is a closed
immersion (these are the maps to the target), and p is an iso outside p−1(imi).

For example, this will only make sense if you’ve seen toric varieties before. One
way to get p from a cone is to subdivide [pictures].

Definition 26.4. The cdh-topology onMpctf is generated by

(1) the Zariski topology and
(2) {i, p} where you have an abstract blowup square.

In characteristic zero, you can resolve by blowing up, replacing a point in the
plane by a tangent vector. In characteristic zero everything is locally smooth.

Theorem 26.4. (classical) Every object in Mpctf admits a smooth cover in the
cdh-topology.

You do this with toric varieties by subdividing cones. It’s nasty combinatorics
but classical.

If you believe this, then it suffices to show that for an abstract blowup p (I’ll

ignore i), if we apply G, then G(X) p∗,∼ÐÐ→ G(X ′).

Theorem 26.5. KH is a sheaf in the sense of, it’s an (∞-)(hyper-)sheaf.

We work just with the model structure on presheaves of spectra. This is similar,
but now you have to do something. Using a Chern character:

Theorem 26.6. the fiber of the map to negative cyclic homology (over Q)

K ⊗Q chÐ→HN(quad⊗Q/Q)
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is also an ∞-sheaf as is the fiber of the cyclotomic trace

K/p cycÐÐ→ TC/p
for p a prime.

I have two minutes left. These are hard theorems that come down to understand-
ing not just that there is a resolution of monoid schemes but that there is one not
given by subdivisions. Why would this in any way tell you anything? Now you can
separate the part that comes from k, that’s the whole point. We apply Hesselholt–
Madsen to say that if you have a commutative monoid, you can compute

TH(k[A]) ≅f TH(k) ∧ ∣N cy(A)∣.
Now we’ve separated out the k, now the negative cyclic homology can be computed
from Hochschild homology. This reduces us to showing that if you take the cyclo-
tomic nerve and promote it to a functor on monoid schemes, a Zariski [unintelli-
gible] space with values in [unintelligible], then this is a cdh ∞-sheaf in S-spaces.
This is basically where the separating out part interacts with monoid schemes.

That’s a direct computation (sort of). A direct calculation plus some hard stuff
in monoid schemes.

27. Mark Weber: Operads and polynomial 2-monads

[I do not take notes on slide talks.]


