
MINI-WORKSHOP ON LOW DIMENSIONAL TOPOLOGY

GABRIEL C. DRUMMOND-COLE

1. Sept. 14: Min Hoon Kim: A family of freely slice good boundary
links

It’s a pleasure to be here. This is joint work with Jae Choon Cha and Mark
Powell.

This is about links with certain properties, which are important in our field
because they link to a major conjecture.

A boundary link is a link L = L1 ∪⋯∪Lm in the three-sphere such that there is
a map f from the fundamental group of the link complement to the free group on
m generators such that the meridians are mapped to the generators.

There are some equivalent conditions. The first one is that there is a map of
link complements (really from the complement of a tubular neighborhood), well in
here there is the boundary which looks like L × S1, and this can be mapped to the
wedge of m circles (the Eilenberg–MacLane space for the free group)

Tis is also the same as the existence of disjointly embedded surfaces V1 through
Vm in the three-sphere so that the boundary of Vi is Li.

So for example the linking numbers between each component should be trivial
for boundary links. We’ll think of a chosen map f from this fundamental group to
Fm.

We say that a boundary link is good if ker(f) is perfect, the Abelianization of
this kernel is trivial. This is the same as saying that the first homology of S̃3 ∖L
is trivial.

This condition might look peculiar but I’ll explain why it’s important.
Let me give some exampls to give some feeling.
(1) A knot K is a good boundary link if and only if its Alexander polynomial is

trivial. Every knot is a boundary link because it bounds a Seifert surface.
If you Abelianize the complement you get Z. But trying to make it a good
boundary link, you need the homology of the cyclic cover to be trivial,
that’s the Alexander module.

(2) The Whitehead double of L is a good boundary link if and only if the
linking numbers of L are all trivial. The kernel of this map is given by a
Seifert surface. The Seifert form for the obvious surface for the Whitehead
double is the same as the Seifert form of the finite double of the unlink.
Then it should have a trivial Alexander module.

Now I should explain freely slice. A link L is freely slice if there exists topologically
locally flat disjointly embedded disks D1, . . . ,Dm in D4 so that ∂Di = Li and
π1(D4 ∖ ⊔Di) is freely generated by meridians.

Freedman showed in 1983 that knots with Alexander polynomial 1 are freely
slice. This follows from Freedman’s topological surgery for π1 = Z. It’s still open to
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extend this to general fundamental group, and that’s why the following conjecture
is important.

Conjecture 1.1. All good boundary links are freely slice.

Conjecture 1.2. All surgery problems have solutions.

I’ll explain what a surgery problem (and solution) are. A surgery problem is
a degree 1 normal map f from (M,∂M) to (X,∂X) where M is a topological 4-
manifold and X is a Poincaré complex (a CW-complex with Poincaré duality) such
that

● f ∣∂M ∶ ∂M → ∂X is a Z[π1(X)]-homology equivalence.
● the obstruction class σ(f) in Lh4(Z[π1(X)]) is trivial.

A solution is a topological 4-manifold N with the same boundary as M and a
homotopy equivalence g from (N,∂N) to (X,∂X) such that g restricted to ∂N is
f restricted to ∂M .

Remark 1.1. The first conjecture holds if and only if the second conjecture holds.

I’d like to explain one direction of this remark, assuming the surgery conjecture
and showing that boundary links are freely slice.

The first step, a good boundary link gives a surgery problem. Then the second
step is to say that a solution gives a freely slice complement. That’s what I want
to sketch.

So for the first step, let ML be a surgery manifold of L, and since L is a good
boundary link, you can get a map to a wedge of circles, which we can promote to a
map to #(S1×S2) which is the boundary of ♮S1×D3, and so you look at [ML, i○f]
in ΩSpin

3 (♮S1 ×D3) and this is zero. So this is the surgery problem.
Why is [unintelligible]true? Because ΩSpin

3 (♮S1 × D3) ≅ ⊕ΩSpin
3 (S1) ≅ ⊕Z2;

since L is a good boundary link, the Arf invariant of Li is zero.
I didn’t check the conditions to be a surgery problem. The fundamental group

for me is a free group, so I think of the universal cover, so I look at H1(M̃L) →
H1( ̃#(S1 × S2)) which is zero. Since L is a good boundary link H1(M̃L) is zero,
and then actually ML → #(S1 × S2) is a Z[Fm]-homology equivalence in higher
degree as well.

For the surgery obstruction, Lh4(Z[Fm]) ≅ Lh4(Z) ≅ 8Z by Cappell-splitting.
Then you can assume that g ∶W → ♮(S1 ×D3) has trivial surgery obstruction.

This good boundary link gives a surgery problem. Now I’d like to explain why
a solution gives a freely slice complement.

A solution is a homotopy equivalence h from V to ♮S1 × D3 with boundary
f . So you attach two-handles to V along the meridians of L. Then π1 of the
resulting thing B is trivial. Then there is no second homology, and this implies
that B is contractible. The surgery diagram looks like [pictures] which is just the
three-sphere. So the boundary of B is the three-sphere, so B is homeomorphic to
the 4-ball. Now the 2-handles are the slice disks we were looking for. And the
complement is V , drilling out the cocore disks.

That’s why a solution gives a free slice complement.

Remark 1.2. The surgery conjecture and the S-cobordism conjecture is the same
as the disk embedding conjecture.
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The best result on this is due to Freedman and Teichner in 1995. This says
the disk embedding conjecture is true for 4-manifolds with π1 with subexponential
growth. So not for the free group.

Freedman conjectured in 1984 that surgery fails for Z ∗ Z ∗ Z. Specifically, the
Whitehead double of the Borommean link is not freely slice.

There are some partial positive results on this conjecture that I want to state
now.

In 1985, Freedman showed that if L is a boundary link then the Whitehead
double of L is freely slice. In 1988, he showed that if L is two-component with
linking number zero, then the Whitehead double of L is freely slice. In 1993, he
showed that ∂2-links are freely slice. I don’t want to describe these explicitly. The
best result on Whitehead doubles, of Freedman and Teichner in 1995, is that if L
is homotopically trivial-plus, then the Whitehead double is freely slice.

I’d like to remark that boundary links and two component links with trivial
linking are homotopically trivial plus.

Our theorem,

Theorem 1.1 (Cha–K–Powell). Suppose L is a good boundary link that has a
Seifert surface admitting a homotopically trivial plus good basis. Then L is freely
slice.

This theorem recovers all the positive results, i.e., Freedman–Teichner.
It looks a bit technical, so I should explain some technical stuff from now. I

should remark that we couldnt’ get new examples of freely slice finite doubles,
but could get some new freely slice good boundary links. There are some chances
of getting new freely slice Whitehead doubles by looking at non-standard Seifert
surfaces.

A Seifert form θ on H1(V ) is an integer valued form (x, y)↦ lk(x+, y), you push
x and then count the linking number. A good basis is a symplectic basis {ai, bi}g of
H1(V ) such that the Seifert matrix of V with respect to this basis can be reduced
to the null matrix via a sequence of elementary S-reductions.

I think I should give a matrix. A matrix is like this

a1 b1 a2 b2 ⋯ ag bg
a1 0 ε1 0 ∗ ⋯ 0 ∗
b1 (1 − ε1) 0 ∗ ⋯ 0 ∗
a2 0 0 0 ε2 ⋯ 0 ∗
b2 ∗ ∗ (1 − ε2) 0 ⋯ 0 ∗
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
ag 0 0 0 0 ⋯ 0 εg
bg ∗ ∗ ∗ ∗ ⋯ (1 − εg) 0

where ∗ is arbitrary but εi is either 0 or 1.
Here is a little lemma using linear algebra.

Lemma 1.1. A boundary link L is good if and only if it has a Seifert surface
admitting a good basis.

Maybe I should give an example. I told you that a Whitehead double is an
example of a good boundary link. [pictures]

So what is HT +? we say that alink L is homotopically trivial if L can be changed
to an unlink by changing crossings of the form [picture]. A link L is homotopically
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trivial plus if Li ∪ L+i is homotopically trivial for any i, where L+i is a 0-framed
parallel copy of Li.

[pictures] So the Whitehead link is homotopically trivial-plus. But if you take
this link, the resulting four-component link is not homotopically trivial.

I should still define a HT + good basis but I’m running out of time. A good basis
{ai, bi} is HT + if K ∪ bj ,K ∪ bj are HT where K = ⊔b′i and b′i is a praallel copy of
bi so that the linking number of ai and b′i is trivial. The result is K, and take a
parallel copy, take the union with aj and with bj , for any j.

In this example [pictures] So then {ai, bi} is HT + if and only if L is HT +. This
is why we recover Teichner and Freedman’s result.

Lemma 1.2. If {ai, bi} is HT +, then there exist 2g immersed disks ∆+

i and g
immersed disks ∆i in D4 so that ∂∆+

i = ai and ∂∆+

i+g = bi and ∂∆i = b′i for 1 ≤ i ≤ g,
so that ∆i ∩∆j = ∅ = ∆i ∩∆+

j (this latter even for i = j), and the signs of all the
self-intersections add up to zero.

Here is the real thing that we actually prove.

Lemma 1.3. Let L be an m-component good boundary link with a Seifert surface
admitting an HT + good basis. Then there exists a smoooth four-manifold W whose
boundary is ML and so that

(1) π1(W ) = Fm and H2(W ) = Z2g and
(2) there are immersed spheres Σ1, . . . ,Σ2g which form a basis of H2(W ) such

that
● for any i, Σ2i−1 and Σ2i have a distinguished intersection point
● ⋃Σ∗ is an immersion of ⋃(S2 ∧ S2).
● Undistinguished intersection points are paired up by Whitney disks.
● The union of the Σi to W is trivial on π1 for any choice of basepoint

[pictures]

2. BoGwang Jeon: Volumes of hyperbolic 3-manifolds

Thank you to the organizer for giving us a chance to give a talk. I think I’m
the only one who will talk about geometry. I think you all know about hyperbolic
3-manifolds, but let me go over it. So the typical example of a non-compact 3-
manifold is a knot or link complement.

Theorem 2.1 (Thurston, 80s). Most link complements are hyperbolic.

Most of them are a quotient of H3 by a discrete group action.
How about closed manifolds? First, how do we produce closed 3-manifolds? The

typical way is Dehn filling. What is Dehn filling? It’s a way to produce a closed
manifold from a knot complement. First we truncate the boundary of the knot
complement and then attach a solid torus by a homeomorphism from the boundary
torus to the boundary of the knot complement. The topology is determined by the
image of the meridian curve. For instance, [pictures].

Theorem 2.2 (Lickorish–Wallace). Any closed 3-manifold can be obtained by Dehn
filling on a link complement.

Theorem 2.3 (Thurston, 1980s). If M is hyperbolic then Dehn fillings are hyper-
bolic for almost all coefficients.
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Theorem 2.4 (Mostov, 1960s). If M is hyperbolic then its hyperbolic structure is
unique

Then the corollary is that voluem is an invariant of hyperbolic 3-manifolds.

Theorem 2.5 (Thurston). The volume of hyperbolic Dehn fillings approach the
volume of M if ∣pi∣ + ∣qi∣→∞.

Corollary 2.1. There exist only finitely many hyperbolic Dehn fillings of M having
the same volume.

Then we can ask the following question. Does there exist c > 0 such that the
number of Dehn fillings of M having the same volume is less than c?

I’m sure Thurston was aware of this question, but today the theorem I’d like to
talk about is:

Theorem 2.6 (J.). If M is a 1-cusp hyperbolic three-manifold, then the answer is
yes.

How do you answer this question? First let me explain why this question is not
trivial.

Theorem 2.7 (Neumann-Zagier, 1985). There exists an explicit volume formula,
for M a 1-cusped manifold, the volume of Mp/q is Vol(M) +Φ(p, q).

For example if M is a figure eight complement, then

Φ(p, q) − 2
√

3π2

p2 + 12q2
+ 4

√
3π4(p4 + 72p2q2 + 144q4)

3(p2 + 12q2)4
+⋯

So we’re counting when Φ(p, q) = Φ(p′, q′).
So first, the volume formula is given as follows. So suppose Φ(p, q) = − 1

p2+12q2
,

and so for this case this is counting lattice points and the answer will be no, this is
not uniformly bounded.

We don’t believe that this is possible. The conjecture is that this is an infinite
series which is transcendental. But if the volume form is simple then the answer to
the question is no, there is no uniform bound.

Even if the volume formula is of the form, is some power series in terms of
p2 + 12q2, for instance, then the answer is no.

Definition 2.1. Let p1/q1, . . . , pn/qn be a tuple of rational numbers. Then the
height of this tuple is the maximal integer in {pi, qi}.

Theorem 2.8 (Bambieri-Pila, 1988). Let C be a curve defined by y = f(x) in R2.
Suppose that f(x) is analytic but not algebraic. For example, we can take 2x or
ex. For any ε there exists a c(ε, f) so that the number rational points of height less
than T on C is bounded by the growth rate, by c(ε, f)T ε.

For example, rational points on 2x grow logarithmically.
For the surface case we have to be careful. It’s not enough to say non-algebraic.

For instance, z = xy, this is not algebraic, but if y = 1 or any rational y, this has
many rational points. Or similarly 2x+y has many rational points for x+y rational.

Definition 2.2. Let Salg be the union of all connected algebraic components em-
bedded in S.

Definition 2.3. Strans = S ∖ Salg.
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So for instance, if S is algebraic then the complement is empty.

Theorem 2.9 (Pila, 2003). Let S be an analytic surface. Then for any ε, there
exists c(ε, S) so that the number of rational points on Strans whose height is less
than T is bounded by c(ε, S)T ε

Later in 2007,

Theorem 2.10 (Pila–Wilkie). Let X be an analytic manifold, then there eists
c(ε,X) so that the number of rational points on Xtrans of height less than T is
bounded by c(ε,X)T ε.

So let’s think about Φ(x, y) as an analytic function in two variables. Consider
Φ(x, y) = Φ(z,w), this is a 3-dimensional analytic real manifold. Finding these
points Φ(p, q) = Φ(p′, q′), so this is finding rational points.

But we have to remove the algebraic part.

Theorem 2.11 (J.). If and only if X is algebraic, then and only then Φ(x, y)
is of the following form, an analytic function h(t) and a polynomial f(x, y), and
Φ(x, y) = h(f(x, y)), which is the case I mentioned where there are infinitely many
lattice points.

Theorem 2.12 (J.). If Φ(x, y) arises as a volume function of a hyperbolic three-
manifold then Φ(x, y) is not of the form h(f(x, y)) for h analytic and f polynomial.

Then Xtrans is non-empty.

Theorem 2.13 (J.). X has only finitely many algebraic components.

For instance, go back to the figure eight knot complement. There are a few
honest examples, x = ±z, y = ±w.

Then in general it should lie over this part, so there should only be finitely many.

3. Se-Goo Kim:Integer valued knot concordance invariants

Thank you, I’m pleased to be here, I’m, I was, I’m a graduate of POSTECH,
that was almost 23 years ago now. The math department was not in this building
at that time. POSTECH has many new buildings, and I’m pleased to see that the
math department is bigger and has its own building.

Anyway my talk is about integer-valued knot concordance invariants. In fact,
this is joint work with Mi Jeong Yeon and my work, everything in my work is
combinatorial. It’s a topological thing but all the techniques are combinatorial and
very easy.

Let me give you a few things. The most famous invariants that are integer-
valued knot concordance invariants are signature σ and around the 21st century,
the τ -invariant introduced by Ozsváth-Szabó and the Rasmussen s-invariant. I’ll
mostly talk about these three invariants.

These three invariants satisfy many things. Say ν = τ or ν = − s
2
. Then

(1) ν(K#J) = ν(K) + ν(J),
(2) ∣ν(K)∣ ≤ g4(K), the minimal genus of a surface bounding K in B4,
(3) ν(K) = − 1

2
σ(K) if K is alternating,

(4) ν(Tp,q) = (p−1)(q−1)
2

for p, q > 0.
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When Rasmussen first introduced the Rasmussen invariant, he conjectured that
they were the same, τ = − s

2
. It turned out that it’s not true, Hedden–Ording found

examples of a knot K for which these two invariants are not equal.
So the question we could ask is why they are different (or when are they the

same)?
So the goal of today’s talk is that there exists some kind of local move so that if

these three invariants are equal, then they remain equal.
Let ν be an integer-valued knot invariant satisfying the connect sum, genus, and

alternating signature properties.
If K is alternating, then the signature can be written (this is well-known), if D

is a reduced alternating diagram of K, then −σ(K) is 1 − sA(D) + n+(D). Here
sA(D) is the number of circles after A-smoothing of all crossings, and n+(D) is the
number of positive crossings.

We let tA(D) = 1
2
(1 − sA(D) + n+(D)).

One condition that will be necessary is an almost alternating condition on dia-
grams, this is a diagram which becomes alternating after one crossing change.

Theorem 3.1. Let D′ be a reduced almost-alternating diagram with negative al-
ternation crossing d, representing a knot K ′ with ν(K ′) = tA(D′). Suppose D is
obtained from D′ via [pictures], and you get a reduced almost alternationg diagram
with alternation crossing d, then ν(K) = tA(D).

Consider (generalized) pretzel knots [pictures].
Since ν is a concordance invariant, then ν of this pretzel knot

P (a1,−a1, . . . , ak,−ak, b1, . . . , bm)
is the same as for P (b1, . . . , bm) which is tA(P (b1, . . . , bm)), and if you isotope
your negative crossings, [pictures]. By flyping you can make an almost-alternating
diagram [pictures and examples].

Let me explain why this theorem is true. Livingston tells us that if K+ and K−

differ at only one crossing in the evident way, then 0 ≤ ν(K+) − ν(K−) ≤ 1.

Lemma 3.1. Let D be reduced and almost-alternating. Then tA(D) − 1 ≤ ν(K) ≤
tA(D).

The proof of this lemma is, Da is the alternating diagram of D after changing
the alternation crossing. Then you can give a checkerboard coloring on Da. Since
D is reduced the regions are separated. Then sA(Da) is the number of unshaded
regions. But the type A-move will separate, connect two white regions, so sA(D)
is one less than sA(Da). Let’s suppose that the alternation crossing is negative
in D, then n+(D) = n+(Da) − 1. Then tA(D) = tA(Da). Now you can apply the
Livingston equality here, we get

ν(Ka) − 1 ≤ ν(K) ≤ ν(Ka)
but because Ka is alternating, then we get

ta(D) − 1 ≤ ν(K) ≤ ta(D).
Other cases are similar. By this Lemma, tA(D) − 1 ≤ ν(K) ≤ tA(D), and sA(D′) =
sA(D) whereas n+(D′) and n+(D), we have to divide into two cases, if one of the
crossings is minus then they’re the same, and moreover we can use Livingston’s
criterion on one of the crossings involved, and we get

tA(D) ≤ ν(K) ≤ tA(D) + 1.
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The other cases are similar but a little bit complicated but quite easy.
So we could prove the theorem in a very similar manner.
This is basically, as you can se, the pretzel knots of the type I outlined, you can

increase the negative strands to keep the same µ. That’s about it. Thank you.

4. Peter Teichner: Topological phases, field theories and manifold
invariants

[I do not take notes at slide talks]

5. September 15: Motoo Tange: Ribbon disk diagram in handle
decomposition of B4

Definition 5.1. A ribbon disk is an immersion from a two-dimensional disk D to
S3, with singularities which are all double points satisfying the ribbon condition.

[picture]
The boundary of such a disk is called a ribbon knot.

Definition 5.2. A slice disk is an embedding D → B4, and the boundary of such
a disk is called a slice knot

A fundamental remark is that a ribbon disk can embed in B4 as a slice. The
consequence is that a ribbon knot is a slice knot, and the conjecture is that a slice
knot is a ribbon.

I want to consider some generalized ribbon disk diagram. [picture]
We’d like to generalize the singularity diagram of a ribbon disk to any slice disk.

Definition 5.3. A perforated ribbon diagram in a handle decomposition H1∪H2∪
H3 (where H1 is a circle, H2 is a framed link, and H3 is some surface) is an
immersion i ∶ d0 → (S3,HD), where I(i) = d = ∂d + d̊.

The boundary of d is K ∪ h1 ∪⋯ ∪ hn, then (S3,HD,d) is called a PR-diagram
in HD if it satisfies the conditions

(1) K is embedded in S3 ∖HD.
(2) h ∈H1 means h ∩ d̊ = ∅
(3) d̊ transversally intersects H2 ∪H3

(4) hi = h is a component of H1 ∪ H2 and the surface framing aronud hi
coincides with the smooth framing of h.

(5) Separating d and H3 from H2 ∪H1 then we obtain a ribbon hole disk.
[pictures]

Definition 5.4 (Regular). Let (S3,HD,d) be a perforated ribbon diagram. If
H3 ∩ S(d) is empty, then we call the diagram regular.

[pictures]
This is a cancelling pair of HD [pictures] and this is a modified cancelling pair

[pictures]

Theorem 5.1. Let K in S3 be slice. Then there exists a perforated ribbon diagram
satisfying the following:

(1) The boundary of d is K
(2) HD is a modified cancelling pair.
(3) HD is regular.
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[discussion]
For example, for any slice disk in B4 we can get a perforated ribbon diagram,

where HD0 is a handle decomposition of B4 −D0 and HD0 ∪ h2 is B4. [pictures]
LetK be slice. If there is a perforated ribbon diagram (d,HD) satisfying ∂d =K,

that HD is a real cancelling pair, and HD is regular, then K is ribbon.
Let me prove this remark. [pictures]

6. Taehee Kim: The 4-genus of knots and links

I am the last speaker so I want to thank Jae Choon for organizing this nice
workshop. I’ll give some new examples for the stable 4-genus for knots and 4-genus
for links.

The 3-genus (or just genus) of K in S3, denoted g3(K) is the minimal genus of
a surface, compact, connected, and oriented, in S3, which is bounded by K.

The 4-genus of a knot is g4(K), the minimal genus of a surface, the same except
in the four-ball.

As you know, S3 is the boundary of the four-ball. We measure the complexity
of the knot by taking this minimal boundary. I’m allowing topologically locally flat
embeddings so this surface has a topological normal bundle.

Because a surface in S3 can be thought of in the four-ball, we have g4 ≤ g3.
But for the three-genus we have an additive property: g3(K#J) = g3(K) + g3(J).
But for the four-genus we only have subadditivity. Sometimes we have a trivial
four-genus, g4(K#(−K)) = 0 for all K because this is a slice knot.

If g3 is zero then K is the unknot, while if g4 is zero then K is slice. So compared
to the 3-genus, finding the 4-genus is much harder.

If you have the unknot, then its 3-genus is zero. The trefoil has genus 1. How
do you find it. You have many lower bounds, [unintelligible]and the Floer homol-
ogy, and even the [unintelligible]of a 3-manifold which is a generalization. But
determining the 4-genus it’s much harder. So what are the lower bounds that we
have?

The elementary lower bound comes from the signature. Let V be a Seifert matrix
for K. Then we can think of the signature σK = sign(V + V t), and if g3(K) = g,
then we can find a Seifert matrix which is 2g × 2g, and this gives a lower bound
trivially for the three-genus. But σK ≤ 2g4(K). This is not trivial.

When ω ∈ S1, then σK(ω) is the signature of (1 − ω)V + (1 − ω̄)V t, and this is
also less than or equal to 2g4(K). So e.g. σK = σK(−1).

Maybe the strongest classical lower bound is the following, m(K) which is half
the dimension of V less half the dimension of the maximal null space of V . This
gives a lower bound. These all vanish if K is algebraically slice (meaning there
exists a Seifert matrix with top left corner 0).

There are some non-slice knots which are algebraically slice. So then it’s much
harder to find the 4-genus. Using Casson–Gordon invariants there are examples of
algebraically slice knots with 4-genus at least 1 (and arbitrarily high).

Theorem 6.1 (Gilmer, 82). There is an algebraically slice knot K with g4(K) =
g3(K) = g for arbitrary g.

Casson and Gordon in the 70s gave the first examples of algebraically slice knots
that are not slice and this was a generalization.
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Then we see that 4-genus is related to slice. Around 2000 Cochran, Orr, and
Peter Teichner gave the first example of a non-slice knot with vanishing Casson–
Gordon invariants.

Theorem 6.2 (Cochran–Orr–Teichner 03). There exists a nonslice knot with van-
ishing Casson–Gordon invariants.

After their discovery we were interested in finding the behavior of knots with
vanishing Casson–Gordon invariants.

Theorem 6.3 (Cha 08). There is an algebraically slice knot with vanishing Casson–
Gordon invariants such that g4 = g (for arbitrary positive g).

The Cochran–Orr–Teichner theorem uses L2-signatures, which I’ll talk about
later.

Now it’s time to state our theorem, which is about the stable 4-genus.

Definition 6.1. The stable 4-genus of K is gst(K) = limn→∞
g4(nK)

n
.

This limit is a positive real number. Since this is subadditive, then definitely
this is bounded above by the four-genus of the knot.

For example, the stable four-genus of the trefoil, it turns out, that the 4-genus of
the trefoil can be determined from the signature which is additive, and from that
and some work we can see that gst of the trefoil is 1.

The figure eight knot, if you take two copies of it, it’s amphichiral so 41#41 is
slice, so g4(41#41) = 0 which implies that gst of the figure eight is zero.

One interesting question is what are the possible values of the stable genus?

Theorem 6.4 (Livingston 10). Let ε > 0. There exists an algebraically slice knot
K with stable genus between 1

2
(1 − ε) and 1

2
. At this moment we don’t have a knot

with a non-integer stable genus but anyway we get an estimate.

We wanted to use more modern tools to find out more refined behavior, so let
me write down our first main theorem.

Theorem 6.5 (Cha–M.H. Kim–K. 18). Let g ≥ N and ε > 0. There exists an
algebraically slice knot K such that

(1) K has vanishing Casson–Gordon invariants,
(2) g − ε ≤ gst(K) ≤ g.

This depends on both g and ε. For the proof we used L2-signatures, of Cochran–
Orr–Teichner.

For the proof I’ll give the key ingredients. How do we get the classical lower
bounds? People started using Morse approaches, and then branched covers. Nowa-
days people use bordism.

Suppose K is the boundary of a surface in the four-ball of genus g.
Then for MK , a 0-framed surgery on K in S3, there exists a four-manifold W 4

such that
● ∂W =Mk

● H1(M) ≅H1(MK) (induced by the boundary inclusion), and
● β2(W ) the second Betti number is 2g.

This implies that the ordinary signature of W is less than or equal to 2g.
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We obtain W by taking the 4-ball, and attaching 0-framed 2-handles and cap off
the surface, taking off a tubular neighborhood of the surface. This was a surface of
genus g, and we attach a handlebody of genus g, so I’ll write Hg ×D1.

Then we get the bordism whose first homology is that of the surgery.Then
π1MK → π1W

4 agree over Z. But in the algebraically slice case the signature
is 0. So then we use the L2 signature.

So we have the fundamental group of the 0-framed surgery and the 4-manifold,
and we go to the commutator subgroup of π1W quotiented by its commutator
subgroup, G(1) = [G,G] and G(2) = [G(1),G(1)], so this is

(π1W
(1)/π1W

(2) ⊗Z Q) ⋊ Z
´¸¶

π1W /π1(W )(1)

which I’ll call Γ. Then we have ZΓ → CΓ → NΓ, the group von Neumann algebra.
Then we have H2(W,NΓ) ×H2(W,NΓ) → NΓ, and it turns out that for any NΓ-
modules we can take the L2-signature with values in R≥0 ∪ {∞} and we can take
sign

(2)
Γ (W ) in R.

How do we approximate the signature, we use the second Betti number, that’s
the classical case, and it turns out that

Lemma 6.1. The second L2-Betti number of W with respect to Γ, which is the L2

dimension of H2(W,NΓ), this is less than or equal to β2(W ).

I won’t prove this, but [quick argument]. It’s not hard but just believe me.
The corollary is then that the L2 signature is at most the second L2 Betti number

so at most 2g.
This is how we give a lower bound on g using the L2 signature.
Due to lack of time I won’t give other ingredients, but it turns out we need to

look at the difference between these two, and the lower bound we get is 2g+2g = 4g.
Okay. I have twenty minutes so let me change the subject. We measure how

close a knot is to being slice to see its complexity. We can also use gropes to decide
how close a knot is to being slice. I’ll use only symmetric gropes with a height in
this talk. What is a height 1 grope? It’s a surface with one boundary component.
This is a surface of arbitrary genus. A grope with height 2 is a genus 1 surface
(which thus has two symplectic basis curves) with a surface with one boundary
component attached along the two symplectic basis curves. These are all disjoint
except at attaching circles. Continuing this you get gropes of different heights.

What do we do with these gropes?
Let me denote by Gn the knots which bound gropes of height n in B4. Then

it turns out that if C is the knot concordance group, that this gives a filtration
0 ⊂ ⋯ ⊂ Gn+1 ⊂ Gn ⊂ ⋯ ⊂ C. If you have a grope of height n + 1 then ignore the
top surface and you get a grope of height n. Shen 0 is the slice knots, a grope of
any height. A disk, pick any point, and a small neighborhood you can just replace.
The height gets bigger and bigger, then this gets closer and closer to being slice.

A big open question, we know that Gn/Gn+1 has a big subgroup Z∞ ⊕ Z∞2 . All
of these have g4 ≥ 1 but that’s all we know. If K is in G4 then K is algebraically
slice and has vanishing Casson–Gordon invariants. It’s hard to find the information
about what happens in height four. So what baout K in Gn for n ≥ 4, one with
g4(K) > 1.
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Today I can’t give examples of knots, but I can give examples of links. We can
think of the same question for links. Suppose L is an m-component link. We can
define the 4-genus in a strong sense, there are two versions but for me the 4-genus
is the minimum of the sum of genus of surfaces Σi, ∂Σi is Li, this is in B4 and
these are nonintersecting, compact, and oriented. We have the same kind of grope
filtration, Gn(m), here m is fixed and is the number of components.

Theorem 6.6 (Cha–M.H. Kim–K. 18). Let n ≥ 4 and let m ≥ 2g ≥ 4. Under
this condition, there exists an n-component link L which satisfies the following
conditions:

(1) L is a boundary link (has vanishing Milnor concordance invariants in par-
ticular) and has unknotted components

(2) L is in Gn(m) but not Gn+1(m).
(3) (this is our new condition, the other two were known) and g4(L) ≥ g.

In links the connected sum is not well-defined, but with choices we can make a
connect sum, and we can come up with a generalization about the stable case but
let me not say that in this talk.

I’ll give two sentences about the proof, only. We proved this using two differ-
ent methods. The first method is algebraic n-solution, which is due to Cochran–
Teichner and generalized by Cochran and myself. The second method is using
iterated covers. You have Hirzebruch-type invariants from iterated covers (this is
by Cha). Okay so I have five minutes so I think I’ll stop here today.


