
INTERNATIONAL CONFERENCE ON OPERAD THEORY AND
RELATED TOPICS

GABRIEL C. DRUMMOND-COLE

[N.B.: I do not take notes at slide talks]

1. Nov 6: Sasha Voronov: Algebras over operads and BV-algebras

It’s an honor to come to this conference in China, Anhui, and Hefei, and also an
honor to be a first speaker. I’ve never been the first speaker so please bear with
me.

I’m reporting on joint work with Lucy Yang, who was an undergraduate student
at the university of Minnesota and did an undergraduate thesis with me and now
went off to Harvard.

So BV algebras arose as one component of the BV-formalism, created mostly by
Batalin and Vilkovisky to compute path integrals, at least in principle.

Let me start by telling you the definition of what a BV-algebra is.

Definition 1.1. A BV-algebra is a graded commutative associative algebra V (it
has a product ⋅ from V ⊗V to V ) and it has a second order differential ∆ ∶ V → V ,
called the BV operator. What it means is this, I’ll use the convention that ∣∆∣ = −1,
that ∆2 = 0, that ∆(1) = 0, and the second order condition, that [[[∆, La], Lb], Lc]
are zero for all a, b, and c in V (these are graded commutators, everything in my
talk is graded) where La takes x to ax.

This is the condition of being a second order differential operator, first introduced
by Grothendieck. With just two commutators, this would mean that the operator
was a derivation, taking into account that ∆(1) = 0. With one commutator it would
mean being linear with respect to the product. You can write down seven terms,
but an equivalent way of wording this, of writing down this equation, turns out to
be pretty useful, with the BV bracket.

This identity which I promised to give an equivalent version to, is maybe written
down as follows. You define a bracket (sometimes called an anti-bracket), you define
{a, b} to be

(−1)∣a∣ (∆(ab) − (∆a)b − (−1)∣a∣a∆(b))
and the conditions are equivalent to saying that {,} is a Lie bracket of degree −1
and ∆ being a derivation with respect to the bracket, this is the same as saying
that ∆ is a second order operator.

Remark 1.1. There are generalizations,
(1) a dg BV-algebra is a BV-algebra equipped with another differential d which

is a derivation of first order of ⋅ and which commutes with ∆.
(2) a commutative BV∞-algebra where you have a formal power series of dif-

ferential operators d̂ = ∆1 + h̵∆2 + h̵2∆3, where ∆n is a differential of order
1
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n, the whole operator is degree +1, (where ∣h̵∣ = 2) and the whole d̂ squares
to zero.

A dg BV algebra is one of these where ∆1 = d and ∆2 = ∆.

For simplicity I’ll only talk about BV-algebras but most of the things that I’ll
say have analogs with commutative BV∞-algebras.

Theorem 1.1 (Folklore). Suppose that g is a graded Lie algebra. Then the symmet-
ric algebra on the suspension of g, that is, S(g[−1]), carries the canonical structure
of a BV-algebra.

This is folklore because you all know this structure even if you don’t know
BV-algebras. So g[−1]n = gn−1. The dot product is the standard product on the
symmetric algebra. If you started with a Lie algebra, you get the symmetric algebra
on the shift, and this is the Chevalley–Eilenberg complex with coefficients in the
trivial module, and the BV operator is the Chevalley–Eilenberg differential:

∆(x1⋯xn) =∑
i<j

±x1⋯[xi, xj]⋯x̂j⋯xn

and this is the Chevalley–Eilenberg differential.
I should have said earlier, I’m working over a ground field of characteristic zero.
The second example, another source of BV-algebras, is the following somewhat

surprising theorem:

Theorem 1.2 (Terilla–Tradler–Wilson). If A is graded associative, then T (A[−1])
carries a canonical BV-algebra structure. The product, we want a commutative
associative product, it’s not the standard product on the tensor algebra but the shuffle
product, and

∆(x1 ⊗⋯⊗ xn) =∑
i

x1 ⊗⋯⊗ xixi+1 ⊗⋯⊗ xn

These are both known as bar complexes, this is more specifically known as the bar
complex of the associative algebra A, and this is another sort of amazing theorem,
that things that are familiar to us become, from a different perspective, different
objects, with different algebraic structure.

This is a conference not so much on mathematical physics or algebras, but on
operads, so let me bring this to the operad perspective, and recall the operad
perspective on this. Let me recall, as Martin Markl calls them [Markl: this is
from Loday, I learned it from Loday] — oh I thought he learned it from you. So
the three graces are the Lie operad, Koszul dual to the commutative operad, and
the associative operad which is self-dual. So we expect a natural generalization to
algebras over (at least Koszul quadratic) operads.

Theorem 1.3 (main theorem of the talk). The statement of the previous two
theorems can be generalized to other operads under mild assumptions. Let O be an
operad of graded vector spaces which is

(1) connected (the zeroth component is the ground field) and
(2) of finite type (that is, the dimension of each graded component in each arity
O(n)p is finite), and

(3) the operad is quadratic or what is sometimes called binary quadratic, i.e.,
O(≥ 1) is generated by binary generators and quadratic relations, via a
presentation F(E)/(R), that is, E(n) = 0 for n ≠ 2 and R is an ideal
generated by relations sitting in F (E)(3), and
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(4) O is cocommutative Hopf—this means that it’s an operad in the category
of cocommutative coassociative coalgebras—in other words, it has certain
coproducts in each component.

Under those assumptions on O, let’s take its Koszul dual (I’m not assuming Koszul
duality), and then suppose I have V a (graded) O!-algebra. Then the cofree conilpo-
tent O-coalgebra FcO(V [−1]) has a canonical BV-algebra structure.

Moreover, the structure is compatible with the O-coalgebra structure.

Here FcO(V [−1]) is
⊕
n

O(n)∗ ⊗Sn V [−1]⊗n.

Examples of this include the associative operad, the commutative operad (cov-
ered by the two theorems that I gave)—here the Hopf structure on O is given by
O(n)→ O(n)⊗O(n), so in the associative case δ(σ) = σ⊗σ where σ ∈ S(n), writing
As(n) as k[Sn], and in the commutative case, δ(en) = en ⊗ en. Then the Poisson
operad is an example, is also Hopf, you can say it’s generated by µ and [ , ], and
δ(µ) = µ⊗ µ whereas δ([ , ]) is µ⊗ [ , ] + [ , ]⊗ µ. Then graded versions of Poisson,
like the Gertsenhaber operad, are Hopf.

Part of this theorem is actually a result of Livernet–Patras of 2006, but dual-
ized. This is related to the fact that the commutative algebra and the O-coalgebra
structures on FcO(V [−1]) are compatible.

Let me give you a glimpse of the construction in the remaining couple of minutes,
the BV structure on this cofree coalgebra. We need two things, the BV operator
and the graded commutative multiplication.

So the BV operator ∆ is something we are all familiar with, which is the codif-
ferential on the conilpotent cofree O-algebra structure coming from the O!-algebra
structure on V , The multiplication is obtained by playing around with the Hopf
structure on the operad O. Some shuffles are involved even for a general operad.

I don’t want to say more because I’m already a little over time, but one thing
about this is that I actually believe that this way, we get a huge supply of BV
algebras. If you start with the dg category, you get dg BV algebras, and I think
that dg BV algebras are related to a quantized kind of deformation theory, and
I suspect that these constructions for more general O will provide some kind of
quantum deformation theory over more general rings that commutative rings, with
bases not being commutative rings but associative rings or O-algebras. My hope is
that these structures will play off in deformation theory basically.

2. David Gepner: Analytic monads and ∞-operads

It’s a pleasure to be here. This is a paper joint with Rune Haugseng (who is
here in the audience) and Joachim Kock. I thought I’d structure my talk around
describing with these words mean, what an analytic functor, a monad, and an
∞-operad are.

What’s an analytic functor? First we should think about what an analytic
function is. An analytic function is one that locally has a power series expansion,
f(x) = ∑∞n=0 fnxn/n!. This is an analytic function, something like the real numbers
or the complex numbers to itself. If instead of a number we have a category, if C
is a category and for now I’ll let myself also consider an ∞-category, then we can
consider what is an analytic functor, which in this case, our analytic functions went
from, say, the real numbers to the real numbers or the complex to complex numbers.
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Monads have underlying endofunctors so I’ll pick endofunctors but I could do this
more generally changing categories. So in this case, an analytic functor is one of
the form

F (X) =∐
n∈N

Fn ×Xn/Σn.

Here, the coefficients are objects of C. I’ll need my category to have products or
some kind of tensor. I’ll ignore that distinction for now. I’ll need Cartesian powers
and quotients of group actions. I won’t go into detail on this for now. There are
other notions of analytic functor in the literature, there is one due to MacLane and
one due to Goodwillie. In Goodwillie it will be more like a convergent limit. Note
that not all the use of the term analytic functor is consistent. This is what I mean.

What is the main example of a category where we might consider these. The
main one is C = S, this is again an infinity-category of spaces, topological spaces
but up to weak homotopy equivalence. This is the main example because this is
where operads were originally born. These are things like the little n-cubes operad,
which exists on spaces.

We’ll also need other important examples, like where C is ST where T is a space.
This is, ST is the category of functors from T to S, and I’ll say what it means to
think of a space as a category. If I have a space T , then it’s an infinity category
via its singular complex, what is the same, its fundamental ∞-groupoid, where
morphisms are paths and objects are points. This is the same as the slice of spaces
over T . This is either a T -indexed family of spaces, either living over T or as a
functor from T to spaces, given a point it returns the fiber over that point.

Feel free to interrupt if you have any questions. The first thing to notice about
an analytic functor is that it is completely determined by its coefficients.

First let’s give an example of an analytic functor. The primary example of an
analytic function is the exponential where the coefficients are all 1. So Sym(X) is
the analog, where this is ∐Xn/Σn, the free symmetric algebra on X.

This is in general the quotient in the ∞-categorical sense, aka, the homotopy
quotient. So I could change my coefficients to be E(Σn), free contractible Σn-
spaces.

If I have an arbitrary one F (X) = ∐(Fn ×Xn)/Σn (and the bracketing is im-
portant) then you can recover F (X) from the value of F on a point from Sym
because

F (X) Sym(X)

F (pt) Sym(pt)

is always a pullback (in the∞-categorical setting I’m doing the homotopy pullback).
If I do this on a point I get the disjoint union of pt /Σn, which is BΣn, and in the

upper right I get ∐Xn/Σn, and the bottom left is ∐Fn/Σn. To see that it’s the
pullback you want to see that the fibers are the same, and the fibers, you can see, in
both cases, is the nth value I wanted. So the key piece of data is F (pt)→ Sym(pt),
so what is a space with a map to ∐BΣn, so to give something over the disjoint
union is to give, for all n, a space with an action of Σn. So this data is classifying
the associated symmetric sequence, and therefore remembering all the data of the
analytic functor. So this thing is called a symmetric sequence, which is the first
indication that this is related to operads. Traditionally operads were defined as
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something like monoid objects in symmetric sequences under something like the
composition product.

In continuing with the structure of my talk, what’s a monad? I’ll tell you histor-
ically they arose from Godemont’s “standard resolutions” which is something like
an injective resolution to compute the cohomology of a sheaf. But they’re implicit
earlier in Kan’s notion of an adjoint functor. If I have a free-forgetful adjunction,
C might be some sort of category which has a forgetful functor to D, so C UÐ→ D
might have a left adjoint F , and if you have a left adjoint to a functor you always
have a monad lying around. A good example of a monad is the free Abelian group
monad on sets, so I take an Abelian group and freely determine an Abelian group
on the underlying set. So the monad is UF , which goes from D to itself. Then by
how adjoints work, I have a unit from id to UF which I call M , and also something
µ from M2 = UFUF to UF using the counit of the adjunction. This is subject to
some relations.

So a monad is an endofunctorM from some category D to D equipped with stuff
like this unit map η, the multiplication µ ∶M2 →M , and I’ll say et cetera because
in the infinity context, I need to specify a lot more information and conditions.

There is a handy way of summing up in any context what a monad is, all it is is a
monoid in the category of endofunctors, this is a definition that works in complete
generality, as long as you have the theory to make sense of what these things are.

Definition 2.1. A monad M in an (∞−)category D is a monoid in the monoidal
(∞−)category End(D) = Fun(D,D) under composition.

We’ll write as notation, Mnd(D) = Mon(End(D)). You can think of lots of
examples, an adjunction gives you an example of a monad. Now what is an ∞-
category? I won’t say what a category is, but I’ll give an analogy to say what an
∞-category is relative to an ordinary category.

An ∞-category C is (roughly—I don’t want to be precise and my model won’t be
relevant) a category where the hom sets (usually HomC(A,B) is a set) are instead
spaces MapsC(A,B). We should have a composition, if I have a map from A to
B and a map from B to C I should be able to compose them to get a map from
A to C, and this should be a continuous map of spaces, but it really only has to
be continuous up to homotopy. We don’t care about the spaces themselves, only
their homotopy type. We need some rules, like associativity. We don’t need it to
compose strictly, because we’re always concerned with homotopy types, and so you
say “up to coherent homotopy” and that’s where you need a machine or a model.

Let me give you some examples that will be relevant for this talk.
First, if I have an ordinary category, I can take its nerve N to get an∞-category.

This is via taking a set to a space via the discrete topology.
There’s also a way to go back, the homotopy category, I can go from a space to

a set by taking π0.
What∞means here, let me explain by what I wanted to give as my next example.

If I have T a topological space, I get an ∞-category T where the objects are the
points of T and the morphisms are the paths and what’s ∞ about this is that I
need 2-morphisms, and I’ll get paths between paths etc.

There are a lot of models for the theory of ∞-categories, but some key things
where the model of Boardman–Vogt and developed by Joyal and then Lurie, it’s
easy to construct Fun(C,D). If I took topologically enriched categories. I would not
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create the correct ∞-category of functors, which would only be the correct thing if
these were defined on the nose. The whole theory needs to account for laxness. In
many models it’s difficult to construct this, I’d have to resolve C in some way. But
in quasi-categories this is the exponential simplicial set.

That was a note for the experts, if you don’t know what those words mean, don’t
worry about it.

So what about operads now? Or ∞-operads? I would be so bold as to say that
there, the notion of a 1-operad is not well-behaved, because even little n-cubes
are all being considered up to homotopy. So there is not much difference between
operads and ∞-operads, you want to consider this up to homotopy anyway. The
way this is developed in Lurie’s “Higher Algebra” — and I mean coloured operads,
a.k.a. operads with many objects — which gives some technicality. Let me skip
the example of little n-cubes. The motivating example for many-object operads
corresponds in a natural way to ∞-(symmetric) multicategories.

What’s a multicategory? This is a category where you have a list of inputs into
your hom. You instead have Hom(A1, . . . ,An,B). If I wanted to compose in a
multicategory, this is asymmetric, I have a whole bunch of inputs and only one
output. If you think about what you’re forced to do you’re naturally led to think
about trees. I might have a whole list of things that I want to compose. Oh, let
me say, in an ∞-multicategory I’ll have a whole space of maps and the composition
only has to be homotopy-coherent. If I think of having B1 through Bn mapping
to C and if I had a thing from say A11⋯A1m1 to B1, a list of things that maps
to B1, and then I can compose to get to Bn, say An1⋯Anmn to Bn, and the way
you compose in a multicategory is with this sort of data, basically if I have a map
from each A-list to Bj and then a map from the list of Bs to C, then I get a map
from the entire list of As to C. If you remember that these are unordered, then you
can write down the list of axioms of a (coloured or many-object) operads. If you
remember that they are spaces of maps, then that’s what an ∞-operad is.

I told you what an analytic endofunctor was but not an analytic monad.

Definition 2.2. An analytic monad on an ∞-category C (with some properties I’ll
ignore) is a monad on C whose underlying endofunctor M ∶ C → C is analytic.

I haven’t, the beauty of this definition as opposed to definitions of ∞-operads in
the literature is that I haven’t specified any models here. I can say what it means
for an endofunctor to be analytic. The theorem of the talk is that ∞-operads
are precisely analytic monads. It doesn’t mention trees or finite sets explicitly, but
that’s hidden under the hood in what it means to be analytic and how you compose
maps of multicategories.

Let me give a precise statement of a theorem and then I’ll finish my talk.
You have an ∞-category Op∞ of ∞-operads (à la Lurie, in Higher Algebra

[James: what page?] —around page 780, I don’t know [laughter]) and you also
have dendroidal sets, or dendroidal complete Segal spaces, and what is that, you
have Ω the category of trees (roughly) and this is some, let me say the theorem.

Theorem 2.1 (Heuts–Hinich–Moerdijk). ∞-operads embed fully faithfully into
functors from Ωop to spaces, this is dendroidal spaces.

The complete Segal condition is describing the image of this embedding. The
two definitions respectively take the ∞-categorical perspective and work directly
with trees, and they characterize the image as the complete Segal ones.
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The theorem we prove, let me do it in two steps. The annoying thing is that
often you have to work one space of colors at a time. So I have all ∞-operads,
and as just noted that includes into dendroidal spaces, and I can evaluate this
at the trivial tree, and that gives me a space, and that space tells you what the
underlying space of colors of your ∞ operad. I can take a particular space I like
T and can take FunT (Ωop,S) as the pullback, the dendroidal spaces which have
color space T . That’s ∞-operads with objects/colors T , in ad hoc notation OpT∞.
This is just notation, there is no theorem yet here. I chose this notation because
ST is Fun(T,S) but also S/T . The theorem I’ll list in two parts. The first part
characterizes the ∞-operads with objects T and morphisms the identity on T .

Theorem 2.2 (G.–Haugseng–Kock). ● The ∞-operads with object space T
are equivalent to analytic monads on ST .

Then I can string this all together, it’s not quite as easy as I’m making
it sound, string these together over all spaces and get the real theorem, that

● analytic monads on S/∗ (spaces with a varying base) is equivalent to ∞-
operads

I’ll stop there.

3. Nov 8.: Chris Rogers: homotopical applications of convolution

Thanks to the organizers, it’s been an enjoyable and productive conference in
my opinion. This is a vague title, on purpose. As you move toward the end of the
conference you might want to talk about something different from what you wanted
to talk about when you first arrived. I want to talk about the homotopy theory
of filtered L∞ algebras and some interesting examples of these. The examples that
show up will come from operadic convolution. The things I’ll talk about will be
well-known to the experts, and it’s sort of designed to be that way because there are
supposed to be some students in the audience. I think this is important, because
these filtered L∞ algebras are what govern deformation theory in characteristic
zero. Benoit, this morning, was talking about various things and this is touching
on some of the machinery that arose in that context.

I’m going to talk about this homotopy theory and our goal at the end of this talk
is to solve the following problem, to solve the homotopy transfer problem. Let’s
consider the following setup to get us started. Let’s take a cochain complex (A,d)
and a cochain map φ between it and an A∞-algebra (B,d,mB

k ), this is, let’s say,
in cochain complexes, let’s say everything in characteristic zero. Let’s say that a
solution to the homotopy transfer problem is a pair that consists of two things,
(mA

k ,Φ), an A∞-structure on A and an A∞-morphism that is a lift of φ, so that
the restriction to the linear piece is just φ.

The goal here is to produce a space at the end of the talk, we’ve constructed a
space S, actually an ∞-groupoid (but you can think of it as a topological space),
or in reality a Kan complex. The objects, or the vertices, or the points, will be
solutions to the homotopy transfer problem.

We’ll prove two things. The first thing that we’ll show is that S is non-empty.
The second thing we’ll show is that it’s a contractible space. The first thing is
existence, it says that there’s a structure. The second statement is less commonly
talked about, that’s a uniqueness statement, saying that the structure in the transfer
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is unique up to an isomorphism which is unique up to a 2-morphism, and everything
is unique up to one morphism higher.

If this were somehow a 1-groupoid, then π0(S) being a point means you have
one isomorphism class. Then π1 being zero says that any isomorphism is unique.
That’s uniqueness in the strongest sense possible.

This A∞ thing is totally just for exposition purposes. Here we can replace A∞

with any Cobar(C)-algebra where C is a dg cooperad, conilpotent or complete with
respect to the coradical filtration, and we need C(0) = 0. Examples of Cobar(C)-
algebras include L∞, or A∞ or C∞ or something.

This will all spill out of the homotopy theory for these gadgets. I’ll say that
these are not L∞ but shifted L∞ algebras. You have a cochain complex (L,d) and
a shifted L∞ structure is a system of degree 1 symmetric brackets on L, {⋯}k≥2 ∶
S̄kL→ L, satisfying a coherent version of the Jacobi identity up to homotopy.

Such a structure is equivalent to a degree one codifferential Q on S̄(L), the
reduced cofree cocommutative coalgebra such that Q∣L = d. The restriction of Q to
any Sk(L) will give our kth bracket.

One more thing you could write here is that this is the same as putting and
L∞-structure on the suspension of L.

So now we want a filtration on the chain complex we’re talking about, which
should start at L = F1L ⊃ F2L ⊃ ⋯ with L = lim←L/FkL and brackets are compati-
ble with the filtration.

Let me give the example of one of these gadgets in case it looks like we’re talking
about nothing. Take a chain complex (A,dA) in Ch∗. I can look at linear maps
homK(T̄A[−1],A[−1])[−1], which we’ve promoted to a shifted Lie structure. I’ll
take Coder(A) inside here as the maps f which, restricted to A, give zero. This
is the Gerstenhaber bracket and all the higher brackets are zero, so this is just a
shifted Lie algebra. This comes from the preLie structure (up to shifts) of a certain
convolution operad, Conv(s−1 coAss,EndA), and the filtration is by the filtration on
the tensor. This is supposed to be something that everyone is familiar with, maybe
not at this late stage of the day but tomorrow morning, maybe it’ll pop into your
head. This is basically the Hochschild complex. A second example, also coming
from a convolution point of view, let’s say A and B are A∞-algebras. I’ll form an
L∞-algebra which will be, as a complex, map(A,B), linear maps from tensors in A
into B, with some shifts,

map(A,B) ∶= homK(T̄ (A)[−1],B[−1])

and the differential will be ∂(f) = f ○DA ± dBf where DA is the full A∞ structure
and dB is just the first piece.

The brackets, let me just tell you what those are and this is probably as ex-
plicit as I’ll get for the whole talk. It’ll be {f1, . . . , fn} = prBDB(f1 ⊗⋯⊗ fn)∆̄n,
symmetrized to give a symmetric bracket.

Again this is a filtered L∞-algebra. Again it comes from an operad convolution
origin. There is a nice paper by Martin’s postdoc Felix Weierstra and he has a very
nice interpretation of where this L∞-structure comes from. This is an algebra over
a certain convolution operad. He produces a map from the shifted L∞ operad into
the convolution operad. It’s a nice conceptual thing, this kind of idea has showed
up a lot and this operadic idea of its origin is due to him.
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Let’s quickly talk about morphisms in the filtered L∞ category, sometimes I use
a hat to let me know we’re talking about complete things, ŝLie∞, and F ∶ L→ L̃ is
a dg coalgebra morphism S̄(L)→ S̄(L̃) that respects the filtration in the right way.
The emphasis is that these are the weak morphisms. These are not morphisms of
algebras over an operad. These are the weaker ∞-morphisms.

Let’s let f be the restriction of F to cogenerators L, and we’ll say F is a weak
equivalence if f is a quasi-isomorphism of all subcomplexes in the filtration. It’s not
exactly the same thing as an L∞-quasi-isomorphism but it’s close, it’s the natural
filtered analog. The other class is fibrations, let’s define what we mean by fibrations,
these are surjective at all stages in the filtration.

One of the things that’s important in applications is a Maurer–Cartan element.
We can be sure that the things that we want to be convergent are convergent, this
was addressed in Damien’s talk at the end.

The Maurer–Cartan elements of L are going to be the degree zero elements α in
L0 with curvature zero,

∞

∑
k=2

1

k!
{α, . . . , α}k + dα = 0.

I require this to be complete and I start at an element α in F1L
0. What else to say

about this? Just to point out, morphisms are required to be filtered in the right
way so we get a map between Maurer–Cartan sets, and get a weak map between
Maurer–Cartan sets, F∗ ∶ MC(L) → MC(L̃), I won’t give a formula now but we
can talk about it later.

One thing that this lets you do is twist your L∞-structure. I’ll say very briefly
what that twisting is. If you take (L,d,{,}k) then you get a twisted structure
(Lα, dα,{,}αk ), where with dg Lie algebras you turn d into d + [α,−] and it’s some
L∞-version of this.

Okay, the simplicial Maurer–Cartan functor goes from filtered ŝLie∞-algebras to
simplicial sets. ThenMCn(L) will beMC(L⊗̂Ω∗

poly(∆n)). This is the main player
in the game to get the solution space to the homotopy transfer problem.

Now let me put some results on the board. The first theorem is that this cat-
egory that I’ve been talking about ŝLie∞ has finite products (direct sums) and
functorial factorizations, any morphism can be factored into a weak equivalence
followed by a fibration. Then pullbacks of fibrations and acyclic fibrations exist
and are themselves fibrations and acyclic fibrations. This has a category of fibrant
objects structure in the sense of Brown. If you know what model categories are,
this is like saying you have the right half of a model category. It’s open, as far as
I know, it’s not clear to me what, if any, model categories are around where these
are the fibrant objects. They’d have to be some kind of filtered coalgebras, maybe
something that Damien was talking about. So this is what he was calling ad hoc,
we were joking about this.

The last bit of the main theorem is that the simplicial Maurer–Cartan functor
preserves weak equivalences and fibrations, sends fibrations to Kan fibrations, and
so MC(L) is a Kan complex, i.e., an ∞-groupoid. There are variants of this kind of
result. This is an exact functor between categories of fibrant objects. I’ll say some
names because I’m running out of time. The statement about being a category of
fibrant objects is due to Getzler (unpublished) and will appear in a paper of mine
by Christmas. The Maurer–Cartan theorems have versions due to Hinich, Getzler,
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and Yalin. For the fully weak case one part is due to Dolgushev and myself and
the part about being a Kan complex is in a paper from last year.

Okay, so let me solve the homotopy transfer problem. What I’m going to do
is construct (this example is due to Dolgushev and Willwacher), they construct,
given (A,dA) and (B,dB), and they construct cyl(A,B), an L∞ structure, this
is coder(A) ⊕ map(A,B) ⊕ coder(B). The L∞-structure is not just the sum but
is mixed around. The Maurer–Cartan elements are an A∞-structure on A, an
A∞-structure on B, and a map Φ between them. In particular, if you have a quasi-
isomorphism of complexes (A,dA)

φÐ→ (B,dB), then (0, φ,0) = α is an example of
such a Maurer–Cartan element. Then I can twist this and tell you what Maurer–
Cartan elements in Cyl(A,B)

α
. The Maurer–Cartan elements here are just going

to be a subset of the Maurer–Cartan elements where Φ lifts φ. A fact is that φ
being a quasi-iso implies you have a map from the twisted L∞-algebra Cyl(A,B)α to
Coder(B), this is a strict L∞-map. If φ is a quasi-isomorphism, then this projection
is a quasi-isomorphism of L∞-algebras. It’s an acyclic fibration in my category of
L∞-algebras and so I can hit this with my functor MC and get an acyclic fibration
MC●(Cyl(A,B)α) → MC(Coder(B)). Then I can use a point to hit {mB

k }, and I
can take the pullback and Kan complexes are a category of finite objects, so the
resulting set S is contractible (and non-empty). This is the proof of the homotopy
transfer theorem that is not only fast but easy.

I’d be happy to talk about other applications mentioned in my abstract but I’ll
stop for now. Thank you very much for your attention.

4. Nov 9: Martin Markl: Operadic categories

I was really delighted about how you took care of us foreigners in China for the
first time.

Half of this is based on my paper with Batanin, “Operadic categories and duoidal
Delign’s conjecture.”

One sign of advance in age is instead of doing useful things, is starting to phi-
losophize. All people who work with operads, have some feeling, this is something
that looks like an operad or a prop. So the question is how to make a formalization
that encodes all examples we know but also things that have a similar flavor like
permutads or n-operads. The theory that we were after must be strong enough
to reproduce all constructions available for classical operads. We’re writing up a
paper that puts some basics of this theory that already has 100 pages. Then once
that’s done we think all this kind of thing will be easy to prove.

All right, so there are already some approaches that tried to say what an operad
is in a general setup. One started with pasting schemes, which I introduced in 2008,
which I wrote for the handbook of algebra. Let me give you a brief idea of what a
pasting scheme is.

A pasting scheme is graphs that are “of some type.” I’ll give you some examples.
Pasting schemes have a property call hereditarity, meaning that if I take a graph
of my family of graphs and contract a subgraph, I’ll get a graph of the same type.
This concept was later taken up by Borisov, Manin, and most recently by Ralph
Kaufmann who generalized it to Feynman categories. Let me recall the notions
used in this approach.

One example is “planar rooted tree” where this clearly has the property of hered-
itarity, where if I contract an edge I get a tree of the same type. As an exercise,
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you can think of a class of graphs that is not hereditary. I’m sure you will easily
find one.

These govern operads, or non-symmetric operads. If I am given such a tree
and decorate the vertices with elements of a collection [pictures] then if I paste
everything together, I’ll get something in this picture in P (5). There might be
more than one way to do this but however I do it I get the same thing, that’s the
axioms of a non-symmetric operad.

All of these operations are generated by a single edge contraction, say, a ○i
operation, which generates my non-symmetric operad operations as well.

If I take a planar tree with no orientation, decorating as follows, say, here by
P (4), here by P (3), here by P (4), then by contracting you get something in P (7)
if I’m not mistaken. This is the pasting scheme for cyclic operads, or planar cyclic
operads.

Let me give one more example, which I will use again, nothing deep is going on
on this level, are, of course, modular operads. So I’ll talk about a version without
genus grading. Let me draw a pasting scheme for modular operads. Let me draw
a picture, It’s a graph which has a loop, and a double edge if I’m adventurous, and
here I decorate by P (4), here by P (5), and here by P (4), and contraction should
give me something in P (5).

So let me give you the following ingenious notion of Batanin, even if you get
nothing else from my talk, if you get this then your time will not be wasted. I’m
going to define an n-operad, and I’ll actually do n = 2, which is not trivial. So first
I should tell you what is a 2-tree.

So I have [k] the finite ordinal {1, . . . , k}, and [`], and you have a map between
these things, and [`] maps to [1]. This is a “tree with two levels”, the maps are
order preserving. [pictures] And everything goes eventually to the terminal ordinal
downstairs. This is Batanin’s 2-tree. The elements of k are called “tips” in his
language. It’s pretty obvious what it is. So what are morphisms of these things?
Suppose I have one 2-tree and another one, order-preserving maps. A morphism
is a couple of maps ϕ1, ϕ2, not necessarily order-preserving, but the square must
commute, so these are maps of trees, and there’s a condition. If I take a point in
[`] and its preimage in [k]. Then ϕ1 should preserve the order of the preimage.
You have a category of 2-trees in this setup.

Here is an example that I prepared: (1,2); (3) maps to (12,3) and also maps to
(1,23). It’s an exercise to find a map of trees that isn’t a map in this category. A
1-tree is just the category of ordinals, and it’s just ∆, a skeletal category of ordinals
and order-preserving maps.

The next important thing is that each such map has a fiber. Let me modify the
picture slightly to explain what the fibers are. For each tip of the second tree, I
have a line that joins the tip with the terminal ordinal, and now I take a preimage
of this under the map, so you can take ϕ−1(i), which is not the set theoretic inverse.
So in my examples, what are the fibers over (12) and (3)? What is mapped to the
line from (12)? It’s this picture [pictures]. It’s the same kind of picture for (3).

Very good. So now I can give you the following.

Definition 4.1 (Batanin). A 2-operad in your favorite symmetric monoidal cate-
gory, is a collection A(T ) for T in T2 along with maps

γφ ∶ A(T )⊗A(F1)⊗⋯A(Fn)→ A(S)
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and here φ is a map of 2-trees, and F1, . . . , Fn, are the fibers.

This doesn’t correspond to any pasting scheme as far as I know.
There’s a theorem saying that a space is an En-space if and only if it’s acted

on by an n-operad. People in higher category theory know this is close to globular
category theory. So it has many many applications.

Let me give an example that is easier than this one. I’ll write in more detail
what is a 1-operad.

Recall that T1, this is just ∆, so what is ∆? It’s finite ordinals, so for S and T , I
have a map φ ∶ S → T . The fibers are preimages, so to be more specific say that this
was [k] → [`], and this is order-preserving, so this is a division into subintervals,
and these are the fibers. So the structure map is

γφ ∶ A(`)⊗A(k1)⊗⋯⊗A(k`)→ A(k1 +⋯ + k`).

This is then the data of an operad. Everyone knows that a space is a loop space if
it’s acted on by a contractible non-symmetric operad, a 1-operad.

Okay, very good, What about operadic categories? Not much needs to be
changed here. This is the definition of an operadic category. This is a category
O equipped with a functor ∣ − ∣ from O to finite sets (or a skeleton) which we call
cardinality and it has the following properties.

(1) Each f ∶ S → T in this category has fibers f−1(i) for i = 1, . . . , ∣T ∣ (this
needn’t be a set theoretic inverse).

(2) This says something about local terminal objects in O, but as most of you
know, units and constants usually make a lot of trouble. Even though this
is dull it’s somewhat sensitive and subtle.

So what is an operad, I have things for each object in your category, and maps
for the morphisms, and there should be units, this requires the choice of terminal
objects.

So three examples that we saw of this type of structure. We saw n-trees and
finite sets. Actually a 0-tree is just the terminal category and operads over them
are monoids and so monoids fit into the theory.

Let me give you an example with some flavor that will explain the basic pieces
of the theory. Modulo details I’ll define A category of graphs Gr. So a graph may
have loops or double edges, there are some labels and local and global orders, I put
them under the carpet. Benoit would probably call these hairs, but it has legs, it
has edges and vertices, and what is a morphism of graphs? Modulo some details
a morphism is given by a contraction. Let me draw the pictures from my notes.
[pictures]

This is a category. To make it an operadic category, I have to give a cardinality
function. The cardinality of the graph is the set of vertices. The fibers are the
thing that you’ve contracted.

So what is the operation related to this morphism? What are the operads in
this category? We have O which is labeled or indexed by graphs, and the structure
operation related to this morphism, according to this morphism, it’s γf fromO(T )⊗
O(F1)⊗O(F2) into O(S). If you read carefully Getzler and Kapranov on modular
operads, then the operads in Gr are the hyperoperads, at least morally.

I also have to tell you what an algebra in an operadic category is. So first of all I
need an object, for T in O, I have t(T ), the target is simply [T ], the isomorphism
class of T in the set of connected components of my category π0(O), I say that my
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category is small. So what is s(T )? It’s the sequence of classes in P0, [F1], . . . , [Fk],
all in π0, where Fj are the fibers of 1′ ∶ T → T . Connected components are indexed
by corollas with n spikes or whatever, again I’m not taking genus into account.
[pictures]

What is my target? I get a corolla with eight, or whatever. [more pictures].
This is similar to the terminology of globular categories. This analogy is not a
coincidence.

So what is an algebra over an operad. So let P be an O-operad. A P -algebra is
a collection of objects Xc, with c the connected components of O and αT ∶ P (T )→
Hom(⊗cXc,Xt(T )), which is EndX(T ). You need some axioms, including ones
involving the terminal object that I won’t write.

If O is ∆, then the correction is 1,1, . . .1,2 and you immediately get algebras
over non-symmetric operads. Also the n-trees and n-operads are just one thing.
What about for my hypersurfaces example? Then the algebra is given by natural
numbers. If I had genus I’d also have genus here. The structure operations for this
map T are like

αT ∶ P (T )→ Hom(X(5)⊗X(5)⊗X(4)⊗X(5),X(8)).
If P is the terminal Gr-operad, then for each graph I get morphisms of this type,
αT (1). The models follow Getzler and Kapranov, more or less. So now things are
arising as algebras over operads, so for instance we have 1, the terminal Gr-operad,
which is K in each thing. This is quadratic and its quadratic dual, I’d call it “odd”
meaning not that it seems weird, but that there is a shift, this arises in the cyclic
and modular case.

Let me finish the talki by mentioning what I call the opetopic principle. When
I realized how Jacobi was abused, I tried to rename it Jacob’s ladder. You have
the structures you want, which appear as algebras over O-operads, so e.g., modular
operads arising as algebras over Gr-operads. What about O-operads? They appear
as algebras over O+-operads. This is another operadic category constructed from
O. It goes on, so you have O+-operads that are O++-algebras, and so on. If I
have time, I can even explain what O+ means for Gr. Everything improves. As we
“suspend” we get more and more duality.

Finally, it goes up without bound. Thank you very much. Once again, I have
printouts.


