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1. September 4: Owen Gwilliam: Formal matrix integrals via a
quantization of the Loday–Quillen–Tsygan theorem

Thank you for the chance to talk and participate. My goal in this talk is to
advertise a theorem from the 1980s that has some applications to large N limits. It
relates cyclic homology of algebras to Lie algebra homology. It’s not obvious that
it has anything to do with probability and physics. My goal is to look at a concrete
examples. If you have any ideas here I’d love to discuss. My assumption is that
everyone knows what is the homology of a chain complex but not necessarily Lie
algebra homology. I’ll start with a (very incomplete and biased view) of what that
is. Everything here is joint with M. Zeinalian and G. Ginot.

Let me start with the key example. I’ll letHN denote N×N Hermitian matrices.

This supports a Gaussian measure etr(X2)/~dX where X = Xij is a variable matrix.
The goal of the talk is to give a different way of understanding the associated

probability measure (I’m just lazy and not normalizing things) especially in the
large N limit.

Let me make some remarks. First of all, really cool stuff happens when N
gets big, like the distribution of eigenvalues by the Wigner semi-circle law. If
you’re a physicist it looks like you’re studying a Euclidean path integral with action
S(X) = tr(X2), this is the simplest matrix model, and it’s clear that this admits
generalizations, you could have the action start with this quadratic piece and have
a cubic piece and so on, S(X) = tr(X2) + c tr(X3) + · · ·

So I’ll use a physical motivational approach to move to Loday–Quillen. It’s
pretty clear that these functions admit a natural symmetry by the unitary group
by conjugation, and the questions I want to focus on include like computing the
expected values of invariant observables (functions on the vector space HN )

If you do read what the physicists talk about in this context, they have this
Feynmann diagrammatic expansion which let them give asymptotic expansions. In
the large N case, there is this beautiful ribbon graph expansion.

In these kinds of matrix models, the Feynmann graph expansion leads to a differ-
ent, very beautiful and combinatorial expansion called the ribbon graph expansion,
and you don’t need to know it for this talk, but let me give a fact that comes out
of it. ∫

HN
tr(X2n)e− tr(X2)/2dX =

∑
g≥0

cg(m)Nm+1−2g

where cg(m) is the number of ways to glue a 2m-gon to a surface of genus g. The
thing I want you to take away is that there is a connection between something
you compute for surfaces and computing this expectation. There’s a beautiful
exposition of this by Etingof, very short.
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What I’d really like is to give you a homological perspective on this computation.
Now I’ll jump into the heart of the talk. Like I said I want to use some ideas

from physics. There’s a formalism known as the Batalin–Vilkovisky formalism, sort
of a fancy version of the BRST procedure. I have no expectation that you know
what any of this is, I’ll call it BV and give a gloss of the essentials. The idea is to
shift from studying the measure to studying the expected value map, and in fact
to a chain complex whose zeroth homology is what the expected value is supposed
to factor through.

So we have a measure E : O(V ) → C and in particular we want to characterize
the kernel of the expected value map in a natural way. Let’s think of this as being
the Gaussian measure for instance. What sort fo things integrate to zero? Total
derivatives integrate to zero. I’m thinking about Stokes’ theorem. Let’s see what
that means here.

I’ll think here about O(V ) = Sym(V ∗), and expected value will just be reading
off moments. I claim that if I think about polynomial vector fields Sym(V ∗)⊗V , and
there’s an operator called divergence against the measure, X = f ∂

∂xi
, So suppose

I have a map S : V → C which is, lets say quadratic in x, and the fact is that
divergences of polynomial vector fields against a Gaussian measure always integrate
to zero, have zero expected value, and in fact span the kernel of this expected value
map.

Let me do the one dimensional example. Say that the measure is e−ax
2/2dx =: µ

and suppose I have a vector field xm ∂
∂x . The definition is that

divµ(xm∂)µ = Lxm∂µ = d(xme−ax
2/2) = (mxm−1 − axm+1)e−ax

2/2dx

so the divergence is mxm−1 − axm+1.
Let’s think abotu the cokernel of the divergence map. If I have a polynomial

xm+1, its cohomology class is the same as m
a [xm−1]. This is the recursion relation

satisfied by moments of a Gaussian. If m + 1 is even, you go down by 2 and the

expected value 〈x2n〉 = (2n−1)!!
an , the usual Wick expansion or whatever you call it

in probability theory for the moments of a Gaussian.
So the BV formalism tells you how to extend to a cochain complex, you could

view this as the first part of a cochain complex which in the Gaussian case recovers
the usual expected value by looking at zeroth cohomology.

The BV complex, let’s say, will look like

Sym(V ∗)⊗ ∧kV → · · · → Sym(V ∗)⊗ V → Sym(V ∗)

and I claim that this lets you read off a lot of the data about the expected value
map.

There’s really no reason we can’t apply this to the matrices, so that’s what I’m
going to do. I’ll introduce some notation. If you don’t want to do a Gaussian
measure, the recursion relations are more complicated, it doesn’t respect degrees,
and this becomes an asymptotic expansion and not an actual integral.

Let me introduce a little notation. I want to write this BV complex as (Sym(V ∗⊕
V [1]),div). This is a commutative graded symmetric algebra, which gives me
the wedge k powers. For us, we want to use V = glN and divergence against

e− tr(X2)/~dX. If we view ~ as a parameter, as a variable, then we get

BVn = (Sym(gl∗N ⊕ gln[1]), dcl + ~∆).

The part dcl is classical and doesn’t depend on ~ and a “BV Laplacian” ∆.
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I don’t have time to unravel this. I claim that this is how a physicist might
want to study a Gaussian integral. I also want to consider (BVN )glN , the invariant
subcomplex (so in degree zero the invariant functions on Sym((glN )∗)).

Now I want to reinterpret using Lie algebra cohomology.
Let me explain Lie algebra cohomology. Homology is easier, first, say I have a Lie

algebra g. What is a representation M , it’s a map g⊗M →M , and the coinvariants
coinv(ρ) = M/g·M = Mg. This will be the zeroth Lie algebra homology. Homology
extends this to the left, looks like

· · · → ∧kg⊗M → · · · → g⊗M →M

and what is the differential? I can bracket two elements of ∧kg, or I could have
elements of the Lie algebra act on M . You can check here that, well, anyway, that’s
homology, this complex I’ll denote by CLie(g,M), and it looks like (Sym(g[1]) ⊗
M,dLie), a symmetric thing with an interesting differential.

The cohomology is the dual, and hopefully you see where I’m going, reinterpret-
ing the BV complex in this way. So I can get a map M → Hom(g,M). I can ask
what the kernel of this map is, it’s the m such that g · m = 0, this is called the
invariants and is the zeroth Lie algebra homology. You extend, taking linear duals
(continuous linear duals is best)

C∗Lie(g,M) = (Ŝym(g∗[−1])⊗M,dLie).

I can define C∗Lie(g) := C∗Lie(g,k). Let g be the following very silly Lie algebra,
where g is glN in degrees 1 and 2, no bracket, and there’s a differential which
is the identity. I said this for regular Lie algebras but we can do this for Lie
algebras with differentials by taking a total complex of a double complex. Then
BVN mod ~ = C∗Lie(g), the “classical BV complex.”

Let me point out something. I’m leaving lots of holes in this exposition, talking
about BV itself is an involved process that I want to avoid. The crucial thing is that
there is something related to the one we want coming from Lie algebra homology.
So gN is glN (A) where A has generators a and b in degrees 1 and 2, with all products
zero.

Probably everyone who hasn’t done BV kinds of stuff is confused. I want to
massage this question of studying these integrals into a very funny framework of
Lie algebra cohomology because of this amazing theorem. Maybe you’ll find a
better use for it than I have. Tsygan stated this theorem first in one of these Soviet
journals, but didn’t give the proof, and Loday–Quillen did it (independently?) a
few years later.

Theorem 1.1. (Loday–Quillen–Tsygan) Let k be characteristic zero and let A be
a unital dg k-algebra (it can be A∞). There is a natural quasi-isomorphism

lim
N→∞

CLie
∗ (glN (A)) = CLie

∗ (gl∞(A))
∼=−→ Sym(Cyc∗(A)[1]).

So the large N limit of the Lie algebra homology is the symmetric thing on the
cyclic homoology. We want the dual statement

Ŝym(Cyc∗(A)[−1])
∼=−→ C∗Lie(gl∞(A)).

which tells you that stable classes come from cyclic cohomology. I didn’t tell you
what cyclic cohomology is. Tsygan called this “additive K-theory.”
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I need to tell you what cyclic cohomology is, very quickly. I’ll recapitulate the
kind of description I gave for the Lie algebra case. Suppose A is an algebra an M
an A−A-bimodule. You have a map A⊗M →M , called the action, I am thinking
A⊗M 7→ a ·m−m · a. The cokernel is M/[A,M ], which is called 0th Hochschild
homology, and traces factor through this.

So Hochschild homology extends to the left. I get

· · · → A⊗k ⊗M → · · · → A⊗M →M,

and this looks like (Hoch∗(A,M) = Tens(A[1]) ⊗M,dHoch). If M = A, this gives
the cyclic bar complex

· · · → A⊗k+1 → · · · → A⊗2 → A.

If you rotate, the differential descends, and so you can look at

· · · → A⊗k+1/(Z/k + 1)→ · · · → A⊗2/(Z/2)→ A.

This is something very natural if you’re thinking about associative algebras. The
cyclic cohomology is the linear dual, and let me sketch the idea, let me say just a
little more here.

You can imagine arranging the elements of your algebra on a circle, and then
the differential runs through all the ways of taking two in a row and tensors them
together. [picture]

The idea of the proof of Loday–Quillen–Tsygan, remember the homology ver-
sion, one piece are these k-polynomials in the Lie algebra, Symk(glN (A)[1]), and
you can symmetrize, getting MN (A)⊗k[k] and so this determines a map from
C∗(glN (A)) → Cyc∗(MN (A))[1], and a great property of cyclic homology is that
it’s Morita invariant, there’s an equivalence to Cyck(A)[1], and then you unravel
things to show tha there’s a quasi-isomorphism, once you take primitives. The ex-
tra juice is the invariant theory that show that you get a quasi-isomorphism after
taking invariants.

In my last three minutes, I told you what the algebra was, this funny algebra
with generators in degree 1 and 2 with a differential between them that is an
isomorphism, you can work out that Cyc∗(A)[−1] is concentrated in non-positive
degrees. In degree 0 it’s C[x] and in degree −k it’s the vector space of cyclic words
in {x, ξ} with precisely k copies of ξ. In degree −1, I can always make this C[x]ξ.
The Loday–Quillen–Tsygan map takes C[x] to the degree 0 piece of BVN modulo
~ which is Sym(gl∗N ) which takes xm 7→ tr(Xm). The question is, is there a way to
go from this relationship modulo ~ to the relationship involving ~? Can I quantize
the Loday–Quillen–Tsygan map. I don’t want to give succinct formulas, but let me
give an abstract description that may not be helpful for anyone except Jae-Suk. I
want to say, as Roland said, it’s exciting that there’s a collision among homotopy
theorists, physicists, and probabilists, but there’s not a common body of knowledge
yet so it’s hard to communicate in a talk.

So suppose I have a finite dimensional A∞ algebra with a non-degenerate cyclic
pairing of degree −3. Then glN of this thing is an L∞ algebra with the same kind

of thing. Then LQTN : Ŝym(Cyc(A)[−1]) ∼= C∗Lie(glN (A))glN . You can lift this to
a P0-algebra map senting the variables ν to N . The great thing about having a
map of Poisson algebras determines a BV quantization on the other side. This is
uniform in N , and the assertion is that if you cherry-pick some A, you can get some
large N limit of Chern–Simons, and in particular there’s a distinguished thing on
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the one side coming from an involutive Lie bialgebra structure. I think this has
potential in physics and hopefully also in probability theory.

2. Carlos Vargas-Obieta: Non-commutative distributions for
simplicial complexes

Thank you very much, today I want to talk about a simple example within
the realm of noncommutative probability theory. We’d like to show that some
algebraic topological features of spaces can be encoded in noncommutative distri-
butions. For this we need not just scalar-valued noncommutative probability but
also operator-valued noncommutative probability. One motivation is using non-
commutative probability to understand random matrices.

We start, one of the easiest ways to produce a random matrix is to pick a normal-
ized matrix ZN with entries independently and in a complex normal distribution.
The question of computing the eigenvalues is a bit hard. Wigner considered one way
of modifying this matrix to get a self-adjoint matrix, consider XN := 1√

2
(ZN +Z∗N ),

and his pioneering result is that Λ(X), the value of a single eigenvalue, the distribu-
tion is semicircular, from −2 to 2, just pushed down so that the integral is 1. Later
the Wishart model was considered, instead of adding the adjoint, you multiply by
the adjoint, ZN · Z∗N , this is a random positive matrix. Call this WN , and then
the random eigenvalue here Λ(Wn) is a positive distribution, the Marcenko–Pastur
distribution (1967). They also considered taking ZN and conjugating some DN by
it, there have to be some regularity conditions on D. We ask that 1

N Tr(D
k
N )→ mk,

the moments of some probability measure µ.
These were the main results for a long time. Some people summed some of

these ensembles, but it was really hard to do some new models. In 1991, Professor
Voiculescu came up with the following idea, I’ll rephrase these results. The main
result is that “the involved matrices satisfy an independence relation defined for
noncommutative random variables.”

At the beginning this allowed to understand the Wigner and Wishart matrices
from other points of view, but then it allowed more general matrices, such as a
combination of these.

Some nice facts, moreover: the semicircular law plays the role of the Gaussian

distribution in probability theory. If you consider 1√
N

∑N
i=1 ai, this converges to

some semicircular distribution.
Also in the same sense, the Marcenko–Pastur distribution plays the role of the

Poisson distribution in classical probability theory.
Then, maybe at the beginning it was maybe just recording known results. Then

this idea thinking of these as random variables with some notion of independence
led to new tools to let you compute new things. One can also say that the Cauchy–
Stieltjes transform plays the role of the Fourier (characteristic function) and here
I mean that if we know the distributions of random variables then we can use
Fourier to compute invariants for combinations of them. An important development
later in 1995, there is also the notion of freeness with respect to a conditional
expectation, and this allowed, the relation between the random matrices is that
they are free. There is an objection, maybe this is too specific. But if we allow
ourselves to consider freeness with respect to something conditional, then we can
treat more models. Then a year later, immediately, it was noticed that this notion of
freeness can be applied to random matrices. There was a long list of developments,
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Voiculescu, [unintelligible], Biane, many more, and there’s a nice paper by Belischi–
[unintelligible]–Speicher where they compute for any polynomial evaluated in these
matrices.

I hope that this convinces you that non-commutative probability is important
to study [unintelligible]distributions. The moral here is that it’s very important
to think of random matrices as non-commutative random variables satisfying an
independence condition.

Outside the world of random matrices, Roland Speicher introduced the notion
of cumulants, and this led to new notions of independence, Boolean independence,
and also the story of how to produce independent random variables in a simple
way, and this is related to spectral graph theory, this is the simplest example of in-
dependent noncommutative random variables. I’ll try to give some basic examples,
but especially in spectral graph theory.

Before doing this I want to tell you something about topological data analysis.
You are comparing data sets through their topological invariants and at diferent
scales. I gave you a picture, you have two donuts, on the left they are randomly
distributed and on the right they have some repulsion property so that they are
more evenly distributed.

I’m going to make a simplicial complex where I add a simplex among a collection
if the balls of radius r around each of them intersect. If you have enough points
you will eventually recover the homology of the torus, but the main idea is that
using the Betti numbers let us use the shape, the idea of topological data analysis
is to do this with data sets, and somehow these Betti numbers capture important
information about the shape of the data.

The main question of my talk (and the main goal) is: can we get the Betti
numbers from the noncommutative distributions?

Let’s start now with main definitions.

Definition 2.1. An operator-valued non-commputative probability space is a triple
(A,B,F), where B is a unital ∗-subalgebra of a star algebra A and F is a conditional
expectation to B, that is, F : A→ B satisfies F(bab′) = bF(a)b′ and F(1A) = 1B .

The main example is conditional expectations in probability theory. So the first
example is in the context of a classical probability space (Ω,F , P ), we define A to
be the algebra of complex F-measurable random variables and ask for F to be the
expectation. Any sub-σ algebra of F gives one of these: if H is a a subalgebra of F ,
then we have a unique map F : AF → AH. So if H = {∅,Ω} then F is the regular
expectation. On the other hand, if H = F then the expectation is the identity.

One of the reasons to do this is that the algebra of matrices with the trace gives
an operator-valued probability space.

The second example is, take A to be the complex matrices, N × N , and take
B = C and F is the normalized trace 1

N Tr. Now the main idea is that we will be
interested in the distribution of the elements of our algebra. We call, let me fix
the case B = C with F = τ , this is scalar-valued, that’s what I mean by τ . So a
tuple (a1, . . . , ak) are in A1 and (b1, . . . , bk) ∈ A2 have the same distribution if, let
me say what I’m doing.. I want to extract everything from probability theory in
terms of moments. No we say they have the same distribution if τ1(ai1 · · · ai(m)).
So if X is distributed as a Bernoulli variable, then X has the same distribution as(

0 1
1 0

)
.
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The third example tells me that I can consider tensor products, I get (A1 ⊗
A2, B1 ⊗ B2,F1 ⊗ F2). The distribution of the matrices with respect to this, if
I can make [unintelligible], we get matrices with entries now in our probability
space, and the functional is the normalized trace, and so I get 1

N Tr⊗F. This puts
everything in context, tells us why we can consider [unintelligible]. We can considr
free inedependence in this case.

There were some works, started by Roland on how to classify independence.
There’s a nice description, well, this gives us a way to compute mixed moments.
Say that Ai are all distinct subalgebras. I say that these are freely independent if
〈ak1 · · · ak〉 is F(am1 ) · · ·F(ankk ), I want to assume that 〈A1 ldtosAk is a comumutative
algebra.

To discuss independence consider ·a = a − F(a), and if I want F(ȧ1 · · · ȧm) = 0
whenever aj and aj+1 never match.

So for Boolean independence, this is the same as F(a1 · · · am) = F(a1) · · ·F(am)).
Now I want to present some Segal realizations in terms of graphs. So classical

independence can be realized using the tensor product. In the context of the second
example of matrices and the normalized trace. If a matrix A is normal, then we
can associate the sums of,

1

N
Tr(AkA∗`) =

1

N

N∑
i=1

λki λ̄i
`
.

Say that A ∈Mn(C) and B ∈Mm(C), then we can consider A⊗ Im and In⊗B. If

these are Ã and B̃, tensoring with the identity doesn’t affect the spectral measure.
Then Ã and B̃ are realizations of independent random variables.

One can also see that if UAU∗ is diagonal, and likewise for V and B, then U⊗V
simultaneously diagonalizes Ã and B̃. If we are now in the, [unintelligible]Muraki
invented monotone independence. Think now that A and B are adjacent. The
tensor products of two adjacency matrices is again an adjacency matrix, so this
realizes ⊗ in terms of graphs.

Now we consider MN (C) and the functional is instead τ1,1, I consider the first
vertex to be the root. This τ11 is just the first entry. So τ11(Ak) is the moments,
a weighted version of [unintelligible]. I’ll associate a probability measure to each
matrix and then [missed some]

The interesting thing is that it is possible to realize other kinds of independence
in terms of graphs like this. Maybe I’ll just tell you what to do with the Boolean
case.

The Boolean realization, the realization of Boolean convolution, this is, if I con-
sider AG1

and AG2
with a root, say G1 is this [picture] and G2 is this [picture] then

the star product G1 ?G2 is to identify the two graphs by their roots. This formula
that I displayed for the moments is satisfied by this construction, I have no time to
introduce the cumulants but the combinatorial picture is very important, there are
cumulants which are important because they are polynomials in the moments that
linearize the sum of independent random variables. Let me just say it in words.
Boolean cumulants count irreducible cycles within the graph and what I mean is
that, there is a path within the vertices of the graph going through the edges. A
cycle is irreducible if the root is only visited once. Then the irreducible cycles of
size k is the sum of the number for each of the graphs because if I want to make a
cycle that goes through both components, then I have to go through the root.



8 GABRIEL C. DRUMMOND-COLE

I was thinking, then, what other kind of functional can I compute for graphs.
If you compute Betti numbers and paste them, you get additivity. There are also
versions to give monotone and free independence.

Maybe the last minute, the idea is how to work with simplicial complexes? The
idea is that all our analysis was in the [unintelligible], we now want to use the faces.
So the idea is to use the incidence matrix instead. One can recover the adjacency
matrix from the incidence matrix. For instance, let me see, we have an incidence
matrix of a simplicial complex and consider I∗I, this gives the degree matrix of X,
plus the adjacency matrix of X. Then for dimension 2 (a graph) all the moments,
we’re getting nice information [missed something]. The question is what you get for
higher dimensions, for higher dimension you no longer has I2 = 0 and you can look
instead at the boundary, and then the differential squaring to zero turns into the
square of this matrix being zero, and if you consider J∗J+JJ∗, and the eigenvalues
satisfy [unintelligible]. I have no time to say why but we can discuss.

3. Claus Koestler: Algebraic central limit theorems from
distributional symmetries

So thanks for the invitation, I think I’ll give a hint about what I’m not talking
about today, which are semi-cosimplicial objects and spreadability, joint with Gohm
and Evans. One knows that in physics, whenever you have systems and you look at
joint distributions, expectations of monomials in several variables, this gives you a
whole lot of data and when you have symmetry that incorporating that makes things
simpler. So we have some general abstract nonsense approach for when symmetry
comes from some data on a semi-cosimplicial objects. Today I’ll talk about how
distributional symmetries imply central limit theorems. This is a credo, basically.
Say these are an infinite series of random variables that are exchangeable, and then
you get conditional independence, and that leads to a central limit theorem. I’ll do
things only by example today in making this work in a non-commutative setting. So
the task is to make the credo rigorous. And we want to identify the possible central
limits. What I’m looking at today is the probability space which will become more
explicit and explained, is (C[S∞], tr1/d). So I’ll take S∞, the group of all bijections
of the natural numbers such that there exists some N such that σ(k) = k for all
k > N . This is the inductive limit over n of Sn. I’ll consider T the set of all
transpositions. For non-identity σ in S∞ we define this as

||σ|| = min{k ∈ N|τ1 · · · τk = σ, τi ∈ T }.

For the identity we give length 0.
Then, well, how do we go, we observe, put χq(σ) = q||σ|| for some q ∈ R, and this

is constant on conjugacy classes and normalized Xq(id) = 1, and so what we need
to produce a character is that it is positive definite. This is a condition we want to
have, which just means that if we look at χq(σ

−1
i σj)

n
i,j=1 is positive definite. This

is in general not the case. There is a very nice argument by [unintelligible](2012)
where this q should satisfy, this is equivalent to q being either ± 1

d or 0 for d a
natural number. So χ1/d is a character, which complex linearly extends to a trace

on the group algebra C[S∞]. I’m considering the positive case 1
d , one can reduce

by taking the sign permutation, so it’s really enough to consider that one. So we
fix d ∈ N and work over it. For those with a little more background, in the infinite
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symmetric group, the so-called “block characters” of the infinite symmetric group,
these have a few very important features, [unintelligible].

Okay, so this is our probability space. I have to talk a little bit about exchange-
able sequences. Given (A, ϕ) a ∗-algebraic probability space (a unital ∗-algebra
over the complex numbers and a unit preserving positive definite functional), we
say that what we need, we say that given some sequence in A, then ϕ(ai1 · · · aik),
these are the joint moments, and what we do is that, say two sequences (an)
and (bn) have the same distribution if whenever we compare the joint moments
ϕ(ai1 · · · aik) = ϕ(bi1 · · · bik) for all i1, . . . , ik. Then exchangeability compares with
a permutation. So if we have ϕ(ai1 · · · aik) = ϕ(aσ(i1) · · · aσ(ik)) for all i1, . . . ik and
all σ ∈ S∞.

Let’s give an example. If you have ϕ(aiajaiak) with i, j, and k pairwise disjoint,
then this is the same as ϕ(a1a2a1a3). This uses quite a lot the complexity and
that this only depends on the type of the underlying partition. So P (k) is now
the partitions with are blocks V1, . . . , Vm which are nonempty and disjoint, and the
union is {1, . . . , k}. For example we could have {1, 4}, {2}, {3, 5}, {6} is a partition
in P (6). Then one sees that by exchangeability, the joint moments depend only on
the partition.

Then we can define απ := ϕ(ai1 · · · aik) for som π ∈ P (k).
So potentially under the presence of exchangeablity, it’s sufficient to look at

the etalon collection of joint moments απ for π ∈ tkP (k). Maybe what one sees
immediately, if one wants to look, some simple observations are, ϕ(aki ) = ϕ(ak1) so
all of the random variables are identically distributed. One also sees the following.
For notation later on, put ϕ• = ϕ(a1). What one sees from this etalon collection,
we’d like to study those that go along with [unintelligible]partitions. So we define
P2(k) = {π ∈ P (k)|each block has size 2}, and examples are, well, let α̂k be the
sum

∑
π∈P2(k) απ. So α̂2 = α{1,2}. When k is odd there is nothing. If α is four, we

see three of them.
So let me come next to, what I’m marching toward is a central limit theorem in

an algebraic setting, and there one knows that only pair partitions should survive
in the central limit. So now what we’re doing is, working in ∗-algebraic probability
spaces. To make the credo rigorous. The symmetry I described is not strong
enough. One can’t control [unintelligible]in the algebraic point of view. So what
I introduce next is the singleton-factorization property. I’ll just give an example.
Whenever we have ϕπ, and π has one or more singletons, that means that you can
put in ϕn•ϕ

′
π where you pull n singletons out of π to make π′. A simple remark,

Proposition 3.1. Suppose (an) is exchangeable. Then when you pass over to
bn = an + λ, this is also exchangeable.

So

Proposition 3.2. For

f(z) = 1 +

∞∑
k=1

α̂k
k!
zk

and g(z) the same for β, where α̂k is as before for (an) and β for (bn). Then the
relation is

g(z) = eλ(λ+2α•)z
2/2f(z).
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[missed a little] Now the next part is the central limit theorem for an exchange-
able sequence with the singleton factorization property.

Theorem 3.1. If (an) is exchangeable with the singleton factorization property,
then put Sn = 1√

n
(a1 + · · ·+ an)− nα•. Then (Sn)∞n=1 convergence in distribution

, which means that there exists a probability measure on the reals such that

ϕ(Spn)
n→∞−−−−→

∫
R
tpµdt.

Just a hint on the proof: you extend and only the pair partitions remain in the
limit. Now a remark. Essentially one could say, I could have said µ : C[x]→ C has

certain properties, but what one has to say essentially is that µ(xk) = β̂k for all
k ∈ N.

What I’m doing next is returning in the last step to the model which we had

there, for ϕ1/d(uσ), this is now χ 1
d
(σ) = 1

d

||σ||
and now what one has to do is

compute in pair partitions if one wants to see the limit.
First one has to figure out the exchangeable sequence. If one looks at the Coxeter

generators (i, i+1), these are not exchangeable, they don’t commute if they’re next
to each other but they do if they’re far. So instead take (1, i). So ai = (1, i + 1),
these are self-adjoint and it’s easy to see that these only have spectrum ±1. These
do not commute, so one has to have many ±1 signs. If they all commute then it’s
just a sequence of [unintelligible], but they don’t commute.

Now is the bad thing, one has to compute or prove something. So the proposition
or the lemma or something, we only have to look at pair partitions, so let k = 2`
and we look at α̂2` which is

d`−1
∑

π∈P2(2`)

(
1

d
)||Pπ(σ2`)||.

Where σ2` is (1, 2, . . . , 2`) and π = {(p1, q1), . . . (p`, q`)} and Pπ = (p1, q1) · · · (p`, q`).
The good thing about collaborations, my collaborator knew what this formula is,
this is essentially the exponential moment generating function of Gaussian unitary
ensembles, self-adjoint d×d matrices with independent entries. One has seen these
guys. This is the sequence α, the unshifted ones, but for the unshifted ones, we
can’t carry this out. One knows what distribution belongs to that. For those we
can’t carry out the central limit law. We had to do the shifting to center them,
which produces the Gaussian distribution. We can’t work with ai directly, they are
not centered, so we have to center them, and what we have to understand is that,
we’re interested only in central moments. If one plugs in, choose λ = −α•, then

you get e−α
2z2/2, and this is g(z)ez

2/2d2 = f(z). We know, then, that ν (this is the
measure of a GUE normalized d× d matrix) and this is µ ∗N(0, 1

d2 ) where µ is the
central limit law for an exchangeable sequence of star generators with respect to
this given state 1

d . So we started with this noncommutative exchangeable sequence
and carried out a central limit argument and could identify that the central limit
law of that sequence is the law of a GUE. That, we were a little bit surprised.

This is where I can stop but as a remark, there are several remarks about gen-
eralizations.

• One could do tuples of Gaussian unitary ensembles by taking the first n
blocks, then the next and so on.
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• The Taylor algebra is [unintelligible]and we’d want to pass to an operator-
valued version. One nice thing that we don’t know whether it’s a nice
observation or we can capitalize further is that we started with exchangeable
sequences and a character on them, and now what we did was somehow did
an N → ∞ thing and came to d × d GUEs, but we can also do, sending
d → ∞ and we have CS∞ with the left regular representation, and there
you find the semicircle law as your central limit and now you can take
the d → ∞ for the GUE. We have somehow in distribution a commuting
diagram. Maybe this is only the most simple example where one can do
this. We have general results identifying the [unintelligible]algebra. Just to
control, to identify this, then one can make this rigorous, [unintelligible],
[unintelligible], and of course this is all capital letters, we wanted to see new
examples, and this is the most simple example and one already meets an
interesting connection between block characters on the infinite symmetric
group and Gaussian unitary ensembles.
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4. September 5: Jae-Suk Park: Homotopy Theory of Probability
Spaces I

My goal was to arrange a kind of marriage between homotopy theory and prob-
ability theory in the algebraic world. I’m not a specialist in either so I thought my
role could be the arrangement of this marriage.

I’d like to give a very simple talk, a plain talk, and start with an example
of what I want to achieve here. As a former physicist my favorite distribution
is Gaussian, but many people here are non-commutative so theirs might be the
semicircular distribution. So let me start with that. Let A = R[x] and consider a
map ι : A→ R which is

ι(o) =

∫ 2

−2

o
√

4− x2dx/

∫ 2

−2

√
4− x2dx

and the goal is to compute ι(etX) = Zt, the moment generating function. I’m not
good at integrals so I won’t do any integration. I’ll indicate three ways of doing
this. Let me pick a Lie algebra g = Re, and a representation of this Lie algebra
ρ : g → LDiffR(A), this is part of the endomorphism Lie algebra, LEndR(A,A),
and this is one dimensional, so the representation is completely specified by its
action on the generator e, which is (4 − x2) d

dx − 3x·, this is a very simple linear
representation. Then I claim (easy to check) that the image of ρ, that ι ◦ ρ = 0.
This is really taking a total derivative out of this guy. This, I’ll say, is because

ι ◦ ρ(o) ∝
∫ 2

−2

d(o · (4− x2)3/2) = 0.

A simple computation shows that ρ(xn−1) = 4(n−1)xn−2− (n+ 2)xn. This means

that ι(xn) = 4(n−1)
(n+2) ι(X

n−2), and we know that ι(1) = 1 and the conclusion is that

ι(xn) =

{
0 n odd

2n+1 (n−1)!!
(n+2)n! n even.

So we see the Catalan numbers already, and we can write down Zt =
∑
n≥0

t2n

(2n)!Cn
and we’ve solved the problem without doing any integration.

Another method, take a family ρt = e−txρetx, and let ιt, instead of measuring
with

√
4− x2dx, measure with etx

√
4− x2dx, and we can check that ιt ◦ρt = 0 and

ιt(1) = Zt, and you can work out Zt using this formula, ρt(1) = −tx2 − 3x + 4t,
which gives us a relation which can easily be translated into the differential equation(
t d

2

dt2 + 3 d
dt − 4t

)
Zt = 0 and this is the same as a recursion relation satisfied by

the Catalan numbers: (n+ 2)Cn+1 = 2(2n+ 1)Cn.
The third method, a little more complicated, gives a way to give the cumulant

generating function directly, using L∞ homotopy theory, a more advanced language.
So what I did here, let me give a variant of the first method, remember the

original representation matrix acting on e, is (4 − x2) d
dx − 3x, and we originally

had A = R[x]. The variant would use some cohomology or homology theory. Let’s
change, extend this algebra A to R[x, η], I’ve added a variable η, and let me intro-
duce a grading (ghost number) where x has degree 0 and η has degree −1. Then
η2 = 0 and xη = ηx. So this breaks into A−1 ⊕ A0 and this is R[x]η ⊕ R[x]. The
commutative product is extended into a supercommutative product and from ρ let

me create some differential which is written as ρ(e) ∂∂η = −3x ∂
∂η + (4− x2) ∂2

∂x∂η . If
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you apply to A−1 I’ll land in A0. This operator then satisfies K2 = 0. This is a
very simple cochain complex.

Now we have A and K, and note that I just made up K out of the representation.
Consider the image of K in A0. Any element Σ in A−1 can be written as O(x)η.
If I apply K to the Σ, this is the same as applying ρ to O(x), so the image of the
operator ρ is in the image of K. Then we can construct a map c from A to our
ground field R, of ghost number 0. It has two pieces, c = ι on A0 and the zero
map on degree −1. Then we know that c(1A) = 1 and c ◦K = 0 (this latter is a
translation of the fact that ι◦ρ = 0). So this is just a unit-preserving cochain map.

So I’ll call this a homotopical realization of the original probability space. Then
what is the relation from the ρ action on xn−1? it now says that 4(n − 1)xn−2 ∼
(n+ 2)xn. This is a homotopical method to achieve the calculation, but it’s more
than that. Let’s turn to cumulants. What are the cumulants? They are maps Kn

from SnA → R. These are defined by the formula, using the sum over all partitons:

ι(x1 · · ·xn) =
∑

π∈P (n)

K(B1) · · ·K(B|π).

For me the striking property of probability theory is the following. In algebraic
topology or geometry, we study algebras with structure-preserving morphisms. We
study Lie algebras with Lie morphisms or associative algebras with algebra maps.
But in this case ι does not preserve structure. Everyone knows that K2(x1,2 ) =
ι(x1 · x2) − ι(x1)ι(x2). This way of writing classical cumulants gives a particular
way of telling how the morphism deviates from preserving structure. This is the
heart of probability, telling you how the variables are correlated.

We can of course generalize this, applying the same set of arguments for the
graded one too. The grading gives some sign factor, we can derive some formula
for the cumulants and c, now an expectation, let me derive φc, so this is φc1, φ

c
2, . . .

all maps SnA→ R, these are the “descendents” and this gives cumulants.
There’s one more thing that probability theorists usually didn’t consider. This

differential has a striking property, which is that it does not preserve the algebra
structure. A is an associative and graded commutative unital algebra. But the
differential K, if I apply K(o1o2)−K(o1)(o2)−(−1)|o1|o1K(o2), this is not zero, and
let me define this as `K2 (o1, o2). You can easily compute that `2 is a derivation of this
guy, that K`K2 (o1, o2) = `K2 (Ko1, o2) ± `K2 (o1,Ko2). If you compute further, then
you can measure whether `2 is a derivation of the product, then if I do `K2 (o1, o2o3)−
`K2 (o1, o2)o3−o2`

k
2(o1, o3) this turns out to be zero. This happens to be true because

K is a second order differential operator, and (A,K, `K2 ), this is a differential graded
Lie algebra, in particular something shifted because the degrees are wrong. This
should have a degree 1 differential and a degree 1 bracket.

We can also do the same thing with our target R, and there we have another
shifted differential graded Lie algebra with no differential or bracket.

In general you could have third or higher order operators. Then you’d end up
with an sL∞ algebra, a shifted L∞ algebra.

Okay, this might not be obvious to you, but actually you see that I’m using
exactly the same methodology as how you define cumulants. I’m going to use
classical partitions, we have this expectation.

So out of an ordinary probability space I created something with a differential
and some version of cumulants, and also because I have K, I introduced some
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version of cumulants with respect to them here. Then we see that φc is an sL∞
morphism.

In topological spaces we have singular chains or cochains, we have some alge-
braic structure there, sometimes it wants to be commutative but it’s not strictly
commutative. [some questions]

Let me emphasize why K can’t be a derivation of the product in doing corre-
lations. Because c ◦K = 0, if I have o which is KΛ, and this says, oh, c(o) = 0.
Then consider c(on), this cannot be zero in general. If K is a derivation of the
product, then on is K of something so the nth moment is zero. The failure of be-
ing a derivation of the product tells you something about the correlation between
random variables here, using the same kind of argument.

This is an L∞ algebra, and an L∞ morphism, and in this case this comes with
a notion of homotopy. There’s some other L∞ morphism which looks completely
different but they’re the same in the L∞ world. The generating function turns
out only to depend on the homotopy class of the L∞ morphism. All these sort of
things are invariant of the homotopy type. Algebraic topologists want some kinds
of homotopy functor. The law of random variables has to be regarded as, [some
questions].

What is the use of the notion of homotopy. I’ll explain my third method of
computation. You can always find another L∞ morphism which is just the actual
cumulant generating function. We can, we have some cumulants corresponding to
this generating function, there is some very simple L∞ morphism homotopic to this,
where the map is given by a number times the unit. I won’t tell you the details of
how to get this guy here.

This is my example, and I’ve already spent the entire lecture explaining the
entire example, but let me give just a little more remarks about physics that Owen
was talking about. Owen had a differential that looks like something called classical
and something that was called ∆, the classical part was a first order operator and
∆ was second order. He had a measure that looked like dxe−S(x). The semicircular
is dx

√
1− x2. It doesn’t really matter. He showed how to compute the Gaussian

integral, this was the same kind of computation I did for this one, right?
So, now, another way of measuring the failure of structure-preserving ones, we

could use interval partitions, instead of classical partitions, and throw away the
assumption you’re dealing with a commutative thing, and you end in the sA∞
world, homotopy associative. You change the way of measuring here. Classical
cumulants lead to L∞ and Boolean lead to A∞ world.

These are two famous examples coming from algebraic topology.
Up to this part was kind of easy to do.
I’m very familiar with A∞ and L∞, but what about free independence? There

must be some kind of homotopy theory. It turns out that there’s no corresponding
example, Gabriel will talk about this part. So for me, homotopy probability theory
can be thought of in two ways. You can either think you’re using homotopy theory
to do ordinary probability theory. In that sense every probability theory is a ho-
motopy probability theory. There you have a unital algebra and a unit-preserving
map to the ground field. The target is one dimensional, so the kernel is a huge
thing, always codimension 1, you can do x − ι(x)1A, this is in the kernel. This
argument, familiar to you, says this is codimension 1. So two elements differing by
a kernel, give the same expectation.



HOMOTOPY PROBABILITY THEORY 15

So you use this symmetry to drive everything to the known situation. We can
kind of use that thing to figure out some kind of symmetry. The usual symmetry
should be a representation of a group to a representation of A, so that ι ◦ ρ = ι.
But you can also consider an infinitesimal symmetry ρ ◦ ι = 0. This is the version
I’m using here. For a discrete symmetry the infinitesimal version can’t see it.

Then the original map A → k should factor through the coinvariants A/g · A.

Then there’s a unique map A/g · A ιg−→ k, but this causes a huge problem because
when you push to the coinvariants, it will almost never have an algebra structure.
There’s not a natural algebra structure unless the kernel of ι belongs to an ideal of
the algebra. When it’s an ideal, ι must be an algebra homomorphism. We are not
interested in that case. The combined idea here is to create some larger space, we
upgrade, and this does not preserve the structure of this guy, and then you measure
the failure together and using the homotopy theory you can induce a probability
space which knows all about the original information, but the induced thing has
not only a binary product but also a triple product and so on, but can be nicely
organized using some gemoetric data like flat connections and describe the law of
random variables from here. That’s the basic idea of how, of the computational
method. I think tomorrow I’ll give a more abstract setting without examples, and
how we can solve this problem in this way.

Thank you for listening.

5. Patrizio Frosini: An approach to topological data analysis via
persistent topology and invariant operators.

[I do not take notes at slide talks.]

6. Frédéric Patras: Probability and shuffle products I: shuffle
bialgebras

Thank you. This is the first talk of the series. Kurush Ebrahami-Fard is going
to give two lectures coordinated with this one and explain how shuffle bialgebras
can be used in the context of free probability. This is an introduction to the general
setting. This, I’ll try to argue, it’s natural to use shuffles in thinking about non-
commutative probability. I won’t speak about free probability. I’ll discuss shuffles
in the commutative setting first and discuss the relations with classical probability.
In particular I’ll state how some results can be stated or translated into this context
of shuffle algebras. In the next talks you’ll see that there’s a way to make this non-
commutative in a natural way. A shuffle is an operation you perform to mix two
decks of cards, so that the two decks of cards are kept in the same relative order.
For instance if you mix 123 with 45 you get all the configurations where 1, 2,
and 3 stay in the same order and likewise with 4 and 5 so for instance 14235. So
this is called a (3, 2)-shuffle. You see immediately that there’s a bijection between
shuffles and partitions. If you take the example, and you look at the positions of
the cards 1 through 3, then this corresponds to the ordered set partition of 5 as
{1, 3, 4} t {2, 5}. In a certain sense this is why you can encode computations in
terms of shuffles. They are a natural framework in which to encode set partitions.
Dually, there is unshuffling, which is an operation that you perform when you want
to split a deck of cards in two decks, where you split the first card either to the
right or to the left and similiarly for the next card, in order. So you could separate
12345 into 134 and 25, for instance, creating two decks.
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What you get with the unshuffling operation is, unshufflings are encoded by all
ordered partitions if you have [n] = S t T . You can decide to divide the first deck
into two new decks or you could do the same thing by splitting the second deck
of cards. When you do so, moving from the initial deck and doing either of these,
you get all partitions of [n] into three subsets. If you iterate unshuffling, you’ll
get all partitions of your set. This is the basic idea, which goes back, essentially,
to Poincaré in something like the 1910s or around these dates, when he used this
concept to study probability. I should mention in view of the talks we already
had in this conference that shuffles play an important role in algebraic topology
and also in homological algebra. In a certain sense this makes a connection with
what we’ve heard about in other areas. They encode Cartesian products of spaces
or topological objects like simplices, and in homological algebra they show up in
Hochschild and cyclic homology of commutative algebras. That’s an interesting
connection to what we’ve seen. The first axiomatization I’ll discuss was done by
Eilenberg and MacLane in the 1950s. They really want to understand how to
construct a product in homology. This won’t really appear in what I’m going to
say later on.

If we want to go further, the next step is to construct algebraic structures con-
trolling what’s going on. So construct the tensor algebra and equip it with a Hopf
algebra structure. I don’t want to enter into details but a Hopf algebra H is an
algebra and a coalgebra, where you can split the space H → H ⊗H, and you ask
this map to be coassociative in the sense that the diagram

H
∆ //

∆

��

H ⊗H

∆⊗id

��
H ⊗H

id⊗∆
// H ⊗H ⊗H

commutes. There’s a compatibility when you request that the product H⊗H → H
is a morphism of coalgebras and the coproduct is a morphism of algebras. There is
also a technical condition, the existence of an antipode, but this will be automatic
and not very important in my case.

It’s important to start from this systematic picture in the classical case. The
tensor algebra of X is the linear span of words, sequences of letters in X, and I’ll
write X∗ for the set of words including the empty set.

This space is equipped with a Hopf algebra structure, by defining the product
and the coproduct. There are two ways, dual to each other, to equip this with
a product and coproduct. One is to use the shuffle product, by the process I’ve
indicated, but it’s useful to do this recursively. You can define

y1 · · · yn � z1 · · · zm = y1(y2 · · · yn � z1 · · · zm) + z1(y1 · · · yn)� z2 · · · zm).

and I’ll break this apart into the sum of two operations which I’ll write y1 · · · yn ≺
z1 · · · zm+y1 · · · yn � z1 · · · zm. The coproduct is deconcatenation, cutting into two
words in all possible ways.

That’s the first Hopf algebr astructure and you can dualize. The product is
concatenation, gluing words together, and the coproduct is unshuffling, essentially
the same definition dealing with words. The coproduct δ splits into a left and right
piece δ≺ and δ�.
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We want to relate this to probability. When you have two linear forms, something
you can do, given f and g in T (X)∗, you can make a new linear form using the
convolution product, by first using the coproduct and then using the product. So

you go T (X)
δ−→ TX ⊗ TX f ·g−−→ R and ∗ is commutative and associative.

Let’s look at a concrete example. Look at X = {x1, . . . , xn} and X1, . . . ,Xn
random variables with all moments, then I can write µ ∈ T (X)∗ by sending xi1 ⊗
· · · ⊗ xik to E(Xi1 · · · Xik). Now you are in an algebra so you can solve equations
like µ exp∗(κ) and it’s easy to see that there’s a solution if you require κ(1) = 0.

What happens if you do so? You want to write µ =
∑
n≥1

κ⊗n

n! δ
(n) where δ(n) goes

from T (X) to T (X)⊗n. Then what happens is when you apply δ to a word, for
example the trivial word x1, . . . , xn, you’ll get the sum over all ordered set partitions
I1 t · · · t Ik = [n] as follows: ∑

xI1⊗ = cdots⊗ xIk .

So by doing this I get all ordered set partitions of n. I’m averaging over the
corresponding factorial, and I get the sum over all non-ordered partitions

µ(x1, . . . , xn) =
∑
k

∑
Pk(n)

κp1 · · ·κpk

and when I solve for κ I get the classical cumulants. But even the case where you
take just one variable X = {x} it’s interesting.

Then you have X1 and X2, say, as an exercise, if X1 and X2 are independent then
µ1 ∗ µ2, the moment map for X1 + X2, is exp∗(κ) which because it’s commutative
is the exponential of κ1 + κ2, the sum of the corresponding cumulants. This is one
way to state that cumulants linearize.

The next step is to understand shuffles formally. If you remember the recursive
definition of shuffle products, we can summarize the construction that way. The
shuffle product is commutative and associative and decomoposes as the sum of a
left and a right product, and a ≺ b = b � a.

This operation tells me that if I know one of the two products I know everything.
In the end the key relation is the one that is satisfied by one of the two products,
which is

(x ≺ y) ≺ z = x ≺ (y� z) = x ≺ (y ≺ z + z ≺ y)

which gives me the abstract definition of a shuffle algebra. This is a vector space
V equipped with a product map ≺ satisfying the relation given above. It’s useful
to go back to Schützenberg. He says that if you start with a set X and look at the
algebra freely generated by X using a product generated by X and ≺ satisfying
this, then this is the free algebra.

The next point is to move from algebra to bialgebra in this context. I gave the
definition of a bialgebra actually, and the Hopf algebras I want are just bialgebras
with antipodes.

So what are bialgebras in relation to shuffles. When you have a notion of algebra,
you can associate to it a notion of bialgebras. Now what happens is if A and B
are algebras, then I can construct a shuffle algebra on the tensor product and the
definition is simple, you have to define (a ⊗ b) ≺ (a′ ⊗ b′) and you define this to
be (a ≺ a′) ⊗ b � b′. Categories of algebras that satisfy this property are called
algebras over Hopf operads, whatever it means, so you can define a consistent
notion of algebra in this way. So you can define a notion of a shuffle bialgebra,
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and namely this is a shuffle algebra equipped with a coassociative coproduct such
that ∆ is a morphism of shuffle algebras. This is exactly the definition we have for
classical algebra and bialgebra. There’s a way to define, a framework to deal with
coproducts in this world. In particular, if you look at TX with the shuffle product
and concatenation coproduct you get a shuffle bialgebra. In a way we capture all
the shuffle structure here.

I’ll change all these things moving from commutative to noncommutative. So
to make this theory non-commutative, what I’ve done with set partitions, suppose
I start not from partitions but from non-crossing partitions. I want to construct
them recursively. What I did previously was to extract a component and then put
to the right hand side the remaining part. [picture]. Then I’d like to construct
this by iterating. But I have to take into account that the partition needs to be
noncrossing. So I have to remember the process of extraction I’ve used. So I should
keep track of some information. This will be the key of the definition I make for the
Hopf algebra involivng non-crossing partitions. There is something that is going to
make impossible the use of the same tools when I move from the classical to the
free world.

This tells us something about moving to non-commutative. The other argu-
ment is more formal. What happens if you want to make shuffle algebras non-
commutative? The simplest way to make an algebra non-commutative is to move
from a commutative algebra A to its algebra of matrices. We can try to do this
with shuffle algebras to see what happens. Start with a shuffle algebra B and see
what happens when I look at matrices over it. Take M2(B), that’s enough. I take
a product (

a11 a12

a21 a22

)(
b11 b12

b21 b22

)
and this is (

a11 ≺ b11 + a12 ≺ b21 · · ·
· · · · · ·

)
and this gives the matrices the structure of an associative algebra, but then M � N
is not N ≺M . I have

b11 ≺ a11 + b12 ≺ a21 6= a11 � b11 + a12 � b21.

For the rest everything is kept and so I end up with a definition, again, a classical
process to study algebraic theories, these are particularly meaningful for shuffle
algebras. If I collect everything I say together, what I get is a notion of a non-
commutative shuffle algebra, also called a dendriform algebra in the literature. For
various reasons I don’t like this name, which is not informative or historical. This
is a vector space equipped with two operations ≺ and �, we don’t have the identity
so we have to take both of them in the definition, that add up to an associative
product �, and satsifying

(x ≺ y) ≺ z = x ≺ (y� z) = x ≺ (y ≺ z + y � z)(1)

x � (y � z) = (x� y) � z(2)

(x � y) ≺ z = x � (y ≺ z)(3)

and this is the definition we used to move to the non-commutative setting. Now
it will be essential that we have three products, and the study of each of these
products will give one of the probability theories. This will be important, to have
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all three of these products together. These will give access to different pieces of
information.

Now one last comment and then I’ll stop here. We’ll need a suitable notion
of bialgebras. What is a bialgebra in this context? The answer is essentially the
same, the axioms when you write them down, are a little different, but it’s the
same theoretically as in the classical or commutative case. If you take two non-
commutative shuffle algebras, then the tensor product is again a non-commutative
shuffle algebra, with (a⊗ b) ≺ (a′⊗ b′) = (a ≺ a′)⊗ (b� b′) and similarly (a⊗ b) �
(a′⊗ b′) = (a � a′)⊗ (b� b′). Then a non commutative shuffle bialgebra is a shuffle
algebra equipped with a coassociative coproduct and such that ∆ is a morphism
of non-commutative shuffle algebras. What’s going to happen is that the algebraic
structures we’re going to capture will be associated to this kind of object (actually
the dual).

7. Franz Lehner: Spreadability, Cumulants and Hausdorff Series

Let me thank the organizers for the invitation. There’s nothing new in this talk
except part of the audience, which hopefully justifies things. For me, this is joint
work with Hasebe, for me, cumulants are functionals κn, so these are functionals
on random variables, with some axioms,

(1) they are additive, κn(X+Y ) = κn(X)+κn(Y ) if X and Y are independent
(2) they are homogeneous, κn(λX) = λnκn(X), and
(3) they are polynomial, mn(X) = κn(X) +Qn(κ1, . . . , κn−1)

So missing from this is monotone cumulants, because if X and Y are independent,
then Y and X need not be. One replaces the first axiom with the axiom that this
holds for things with the same distribution: κn(X(1) + · · ·+X(n)) = Nκn(X).

So existence follows from general nonsense, we’ll hear about this in Roland
Friedrich’s talk, we’ve seen a logarithm and exponential in previous talks. In the
classical case, you have

∑
κn

zn

n! = log
∑
mn

zn

n! , but there is another idea from
discrete Fourier transform, found by [unintelligible]and [unintelligible]around 1975.
Let ω = e2πi/n and X(i) independent copies of X. Then κn(X) = 1

nE(Snn) where

Sn = ωX(1)+ω2X(2)+· · ·+ωnX(n). So E(Snn) has the sum of independent variables
so by the first axiom, you have κr(Sn) = κ1(ωX(1) + · · · + ωnX(n)) and so this is
κr(ωX

(1))+· · ·+κr(ωnX(n)) and then this is eventually (ωr+ω2r+· · ·+ωnr)κr(X)
whire this sum is 0 if n - r and is n if n|r. So then you have mn(Sn) = κn(Sn) =

nκn(X). Similarly, κn(X1, . . . , Xn) = 1
nE, where Si = ωX

(1)
i + · · ·+ ωnX

(n)
i .

This is the background for the following definition. The basic and trivial obser-
vation is the following. If you have a random vector (X,Y ) of two variables and
you take (X(1), Y (1)) and (X(2), Y (2)) of this random variables, then X and Y are
independent if and only if the joint distribution of X and Y is the same as the joint
distribution of the vector (X(1), Y (2)). What do you actually need? This is what I
call

Definition 7.1. Let (A,ϕ) be a noncommutative probability space. An exchange-
ability system is a triple (U, ϕ̃, J) where (U, ϕ̃) is another noncommutative prob-
ability space and J is a collection ιk of embeddings A → A(k) ⊂ U preserving
the expectation. The notation is that X 7→ X(k). We demand that ϕ̃(X(k)) =

ϕ(X). Moreover we require that ιk are exchangeable, that ϕ̃(X
(i)
1 X

(i2)
2 · · ·X(in)

n ) =

ϕ̃(X
(h(i1))
1 · · ·X(h(in))

n ).
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To give an example,

ϕ̃(X(1)Y (2)Z(1)W (3)U (2)) = ϕ̃(X(3)Y (1)Z(3)W (5)U (1))

so this now is called ϕπ(X,Y, Z,W,U) where π is the partition encoding this pattern
of indices. So in this example U = A⊗∞ and ϕ̃ is ϕ⊗∞. This is classical. For free,
you take U = ∗∞(A,ϕ), the reduced free product.

Then you can define cumulants just the same way as you did here. Then this
depends on which exchangeability you take. So instead of E you put ϕ̃ where

Si = ωX
(1)
i + · · · + ωnX

(n)
i . So what is, for example, the second cumulant? The

root of unity of order two is −1, so you get

1

2
ϕ̃((−X(1) +X(2))(−Y (1) + Y (2)))

=
1

2
ϕ̃(X(1)Y (1) −X(1)Y (2) −X(2)Y (1) +X(2)Y (2))

=
1

2
(ϕ(XY )− ϕ11(X,Y )− ϕ11(X,Y ) + ϕ(XY ))

= ϕ(XY )− ϕ11(X,Y ).

So in general, you get

Proposition 7.1.

κn(X1, . . . , Xn) =
∑

π∈P (n)

ϕπ(X1, . . . , Xn)µ(π, 1̂n)

where µ(π, 1̂n) = (−1)|π|−1(|π| − 1)! And so

κπ(X1, . . . , Xn) =
∑
σ≤π

ϕσ(X1, . . . , Xn)µ(σ, π)

where in the free case this vanishes unless the partition is non-crossing.

Okay let’s move on to independence.
So let’s do an example. We’ll say that two variables are independent if the

distribution of the pair is the same as taking X from the first copy and Y from the
second copy in some exchangeability system. So we have

ϕ{1,2}(X,Y ) = ϕ(XY ) = ϕ(X(1)Y (2)) = ϕ11(X,Y )

or

ϕ{1,2,3,4}(XYXY ) = ϕ(X(1)Y (2)X(1)Y (2)) = ϕ{{1, 3}, {2, 4}}(X,Y,X, Y )

so you’re separating out the variables.

Definition 7.2. Subalgebras A1 and A2 of A are called E independent if for all
X1, . . . , Xn in A1 ∪ A2 and I1 ∪ I2 = {1, . . . , n} so that (Xi)i∈I1 are in the first
algebra and (Xi)i∈I2 are in the second algebra, and that ϕπ(X1, . . . , Xn) = ϕ(π ∧
ρ)(X1, . . . , xn) where π ∧ ρ is what you get when you intersect the blocks of π with
the blocks of ρ, where ρ is the partition into I1 and I2.

So for ϕ{1,3,4},{2} this is

ϕ{1,3,4},{2}(X,Y,X, Y ) = ϕ̃(X(1)Y (2)X(1)Y (1))

= ϕ̃(X(1)Y (2)X(1)Y (3))

= ϕ({1,3},{2},{4})(X,Y,X, Y )
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How does this translate to cumulants? As we expect. Namely:

Proposition 7.2. Subalgebras A1 and A2 of A are E independent if and only if
mixed cumulants vanish, i.e., if X1, . . . , Xn in A1 ∪ A2 with ρ = I1 ∪ I2 as before,
and π � ρ then Kπ(X1, . . . Xn) vanishes.

Here π ≤ ρ means that any block of π lies either in I1 or I2. So if there’s one
block with elements from both subalgebra, then it vanishes.

Proof. One direction is easy. If mixed cumulants vanish, then we have this ϕπ
equation, this is

ϕπ(X1 . . . , Xn) =
∑
σ≤π

Kσ(X1, . . . , Xn) =
∑
σ≤π,ρ

Kσ =
∑

σ≤π∧ρ

Kσ = ϕπ∧ρ

and this is the definition of independence. For the ether direction we use Weisner’s
lemma. Let (P,≤) be a lattice containing a, b, and c, then∑

x∈P,x∧a=c

µ(x, b) =

{
µ(c, b) a ≥ b
0 otherwise.

So this turns out to be exactly the thing we need. So we compute these cumulants.
Kπ(X1, . . . , Xn) =

∑
σ ϕσ(X1, . . . , Xn)µ(σ, π) and we acn replace ϕσ with ϕσ∧ρ

and this is ∑
τ

∑
σ

ϕτµ(σ, π)

and we can move ϕτ out and then we use Weisner with x = σ, a = ρ, cτ and b = π
and get that this is ∑

τ

ϕτ =

{
µ(τ, π) ρ ≥ π
0 otherwise,

but then this is zero because π � ρ. �

I gave this proof because I need to generalize it, what about monotone indepen-
dence? Well, monotone independence is not exchangeable. So ϕ̃(X(1)Y (2)Z(1)) =
ϕ(Y )ϕ(XZ). But if I permute 1 and 2, I get ϕ̃(X(2)Y (1)Z(2)), then this gives
ϕ(X)ϕ(Y )ϕ(Z) which is not the same in general so we do not have exchange-
ability. But we have spreadability when we keep the relative order. We do have
ϕ̃(X(3)Y (7)X(3)). This I call a spreadibility system.

So S is (U, ϕ̃, J) so that ϕ̃(X
(i1)
1 , . . . X

(in)
n ) = ϕ̃(X

(h(i1))
1 · · ·X(h(in))

n ) where h is
now a monotone function. So this is ϕπ(X1, . . . , Xn) where now we have to keep
track of the order of the partition. So for ϕ̃(X(1)Y (2)Z(1)U (3)V (2)) we get the par-

tition {1, 3}, {2, 5}, {4} where now the order is important. So for ϕ̃(S
(N)
1 , . . . , S

(N)
n ),

and you calculate this thing, with S
(N)
K as X

(1)
k + · · ·+X

(N)
k and this is polynomial

in N with no constant term and we say this is Kn(X1 ldots,Xn)N +O(N2).
So for instance, for K2(X, y), we compute

ϕ((X(1) + · · ·+X(N))(Y (1) + · · ·+ Y (N)))

=
∑

ϕ̃(X(i))Y (i)) +
∑
i<j

ϕ̃(X(i)Y (j)) +
∑
i>j

ϕ̃(X(i)Y (j))
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and this is Nϕ(XY ) so we get

N(N − 1)

2
(ϕ1,2(X,Y ) + ϕ2,1(X,Y ))

= N(ϕ(XY )− 1

2
(ϕ1,2(X,Y ) + ϕ2,1(X,Y ))

K2(X,Y )
) +

N2

2
· · ·

and in general

Kn(X1, . . . , Xn) =
∑
π

∈ OP (n)ϕπ(X1, . . . , Xn)µ̃(π, 1̂n)

where

µ̃(π, 1̂n) =
(−1)|π|−1

|π|
=
µ(π̄, 1n)

π!
.

This is not a lattice. How do we define independence? You have π f ρ = (P1 ∩
R1, P1 ∩R2, . . .) deleting empty blocks, so for example, (3/12/4)f (13/24) you get

(3/∅/1/2/∅/4)→ (3/1/2/4)

and then we define independence as before using this operation. So now mixed
cumulants do not vanish because that would imply commutativity. We need an
analogue of Weisner’s lemma and in the end what comes out is, for ρ = (I1, I2) as
before

Kn(X1, . . . , Xn) =
∑
τ

ϕτ (X1, . . . , Xn)w(τ, ρ)

where the weight

w(τ, ρ) =
∑

σfρ=τ

µ̃(σ, 1̂n) =


(−1)(|τ|−ascλ(π,ρ)−1)

|τ |( |τ|−1
ascλ(π,ρ))

τ̄ ≤ ρ̄

0 otherwise.

What is λ? So for λ(τ, ρ), I look at each block of τ and ask which block of ρ it’s
in. Now I count how many rises I have in the word I make out of this, and so this
is ascλ(τ, ρ)

Now if I express the moments in terms of cumulants, I get∑
τ

Kτ (X1, . . . , Xn)gλ(τ,ρ)

where gw is the Goldberg coefficient from the Baker–Campbell–Hausdorff series. If
a and b commute then eaeb = ea+b. If a and b do not commute, then this has a
replacement eaeb = ec where c is the Hausdorff series c =

∑
w∈{a,b}∗ gww and these

gw are what appear here.
There’s another way that the Goldberg coefficients arise. Namely if you look

at the following, I’ll take two more minutes, the following spreadability system,
you can replace everything with operator-valued maps, so you take the following,
A = C〈X〉, the algebra of non-commutative polynomials, and ϕ is the identity map
A → A. the big algebra U is again A⊗∞. The embedding is again ιk(X) is the
kth tensor, and ϕ̃ is the concatenation. You see immediately that this preserve
the identity, since ϕ̃(ιk(A)) = [unintelligible]. And it’s spreadable. But what is
the cumulant in this case? Here eaeb =

∑
p1,p2

1
p1!p2!Kp1+p2( ︸︷︷︸

a p1 times; b p2times

). I’ll

stop here.
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8. September 6: Patrizio Frosini: Some advances in the application of
group-invariant persistent homology to topological data analysis.

[I do not take notes at slide talks.]

9. Jae-Suk Park: Homotopy Theory of Probability Spaces II

Okay, I’ll begin my second talk, I’ll draw some diagram. Say, I’ll define a certain
category called probability data PDatC(k), where k is a field of characteristic zero,
I’ll do this category, which is very simple, and design a functor to the category
of shifted L∞ algebras over k, and do some kind of commutative probability, and
the functor will be the (commutative) descendant functor DC , which will organize
classical cumulants and so on. I’ll explain the domain category and then explain
sL∞, objects, morphisms, and homotopies.

So a probability datum (A, 1A,M,K) is a tuple where A is a Z-graded k-vector
space,

⊕
z∈ZA

z, the unit 1A is a distinguished element in A0, and M : S̄(A)→ A,

where S̄(A) = A ⊕ S2A ⊕ S3A ⊕ · · · This M should satisfy something, we can
project this to each summand, M = M1,M2, . . . , with Mn : Sn(A) → A. So
M1 is the identity from A → A and |M |, the degree, is zero, and I require that
Mn+1(X1, . . . , Xn, 1A) = Mn(X1, . . . , Xn), so this plays the role of the unit. So
suppose that (A, 1A, ·) is a unital graded commutative associative algebra over
k, then Mn(x1, . . . , xn) = x1 · · ·xn. So K is a differential, a degree 1 operation
A• → A•+1 which annihilates the unit and squares to zero, K1A = K2 = 0. What
is the idea behind this one? We usually assume that random variables have an
algebra structure and an expectation, a linear functional, so that higher moments
are determined by iterated products applied to a single expectation. I think that’s
too much assumption, I want to get rid of that. Instead of that, I want to assume
in the space of random variables, I have some expectation A→ k, I can get a map
S̄(A) → k by composing c with M and that gives the moments, and then we do
some analysis of the data. If there’s an underlying binary product we can proceed
as usual but that doesn’t need to be, so we should do some sort of obstruction
theory for this.

Now what is the morphism of these guys, if I have (A, 1A,M,K) and another
one (A′, 1A′ ,M

′,K ′), what is a morphism? It’s a linear map of degree zero. We
want f : A→ A′ to preserve the unit, f(1A) = 1A and we want it to commute with
the differential, K ′ ◦ f = f ◦K. If you forget from the probability data, you have
pointed cochains and pointed cochain maps. I assume no compatibility between M
and the differential. This obviously forms a category.

Let’s now think about homotopy. We say f and f̃ are homotopic to each other
if f̃ = f +K ′ ◦λ+λ ◦K where λ is a degree −1 map that annihilates the unit. It’s
elementary to check that if f is a morphism then f ′ is a morphism for any λ. This
is the usual definition of homotopy between (pointed) cochain maps. Now we can
say that this probability data, we can change it to something called the homotopy
category, and what is the homotopy category, we’re doealing with the same objects,
but instead of morphisms, we regard them as homotopy types of morphisms. This
defines the homotopy category.

So you now can write AC as an object here and cook up a very simple example
of an object, the ground field k is an object in the category, you can see that this
is the initial object in the category, and then a homotopy probability space of type
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C is an object AC and a morphism AC
c−→ kC . This is a diagram in the category.

If I translate this one, c : A → k, and the degree of c is zero, and c(1A) = 1, and
c ◦K = 0. Here the target has no diffrential, so that’s why you have c ◦K = 0.

What is the example of homotopy probability space? Every classical probability
space is an example. It’s ungraded so there’s no differential, the M is given by the
product, and then you get a probability datum in this sense.

Now I’ll explain what is this category, this L∞ algebra category over k. To define
this category, I have to give objects, morphisms, and composition of morphisms.
Here composition was obvious. So an sL∞ algebra is the data (A, 1A, `) where A
is a graded vector space, 1A is a distinguished element, and ` ∈ Hom(S̄A,A)1 so
` = `1, `2, . . . , all of these of degree 1, and usually we write K = `1, satisfying a
bunch of relations.

Let me write the relations in a couple of ways. What is K? It’s a map A → A
which squares to zero. What is `2? It’s a map S2A → A, with K`2(x, y) −
`2(Kx, y)± `2(x,Ky) = 0 and you can regard this as a bracket.

What about `3? It’s like, your bracket doesn’t quite satisfy Jacobi, but

`2(x, `2(y, z)) + · · ·︸ ︷︷ ︸
Jacobi

= K`3(x, y, z)± `3(Kx, y, z)± `3(x,Ky, z)± `3(x, y,Kz),

and so this is like a generalization of Jacobi that collapses to the Jacobi relation if
K = 0. And there are a bunch of higher relations, let me write down the general
form of the relations.

The relation is that∑
π∈P (n),|Bi|=n−π+1

±`(XB1 , . . . , XBi−1 , `(XBi), XBi+1 , . . . , XB|π|) = 0.

Here you write π = B1 t · · · tB|π|.
Usually this relation is written in terms of unshuffles. You’ll maybe be happier

to see the definition of L∞ morphisms. There should also be a unit condition,
but let me ignore it for now. So suppose I have (A, 1A, `) and (A′, 1A′ , `

′), and
what is a morphism? It’s a map in Hom(S̄(A), A′) where φ = φ1, . . . , φn, . . . where
φn : SnA→ A′. This also satisfies a bunch of relations. What are these relations?
These relations can also be written∑

π∈P (n)

`′(φ(XB1
), . . . , φ(XB|π|))+∑

π∈P (n),|Bi|=n−|π|+1

φ|π|(XB1
, . . . , `(XBi), . . . , XB|π|).

So what does this mean? So you have a map φ1, which is not strictly a homo-
morphism of `2 and `′2, but is so up to homotopy, so

φ1(`2(x, y))− `′2(φ1(x), φ1(y)) = Kφ2(x, y)± φ2(Kx, y)± φ2(x,Ky)

so it’s not really structure preserving but is so up to some relations. This is an
L∞ morphism. If I have, I’ll say something about how we compose these guys, If I

have (A, `)
φ−→ (A′, `′)

φ′−→ (A′′, `′′), then I have a composition φ′ • φ, where the nth
component

(φ′ • φ)n(x1, . . . , xn) =
∑

π∈P (n)

±φ′|π|(φ(xB1
), . . . , φ(xB|π|))



HOMOTOPY PROBABILITY THEORY 25

and you can check that this composition is associative so that these form a category.
Maybe this is too complicated to remember, so let me introduce a shorthand

notation using coalgebra structures. If A is a graded vector space, you can consider
the reduced symmetric coalgebra, (S̄A, N̄) where

N̄(x1 � · · · � xn) =

n−1∑
i=1

∑
σ∈sh(i,n−i)

xσ(1) � · · · � xσ(i)⊗xσ(i+1) � · · · � xσ(n)

and this coalgebra has a freeness property, it’s cofree as a conilpotent symmetric
coalgebra, if I have any map ` : Hom(S̄(A), A), I can always extend it to a coderiva-
tion D : Hom(S̄(A), S̄(A)), so that N̄ ◦ D = (D ⊗ I + I ⊗ D) ◦ N̄. If ` is an L∞
algebra, then this coderivation D squares to zero. In fact, these are equivalent, that
D2 = 0 and that ` forms an L∞ algebra. You’ll see the explicit formula soon.

Perhaps, for better understanding there should be a separate talk purely about
L∞ and A∞ algebra. But unfortunately, oh well. So what does this coderivation
look like?

D(x1�· · ·�xn) =
∑

π∈P (n),|Bi|=n−|π|+1

xB1
�· · ·�XBi−1

�`(XBi)�XBi+1
�· · ·�XB|π|

So for example

D(X1) = KX1

D(X1 �X2) = KX1 �X2 +X �KX2 ± `2(X1, X2)

Okay, some linear algebra. Now if you have this L∞ algebra and L∞ morphism be-
tween them, you obtain this coderivation (S̄(A), N̄, D) and likewise (S̄(A′), N̄, D′),
and the basic analysis tells you that for any φ : Hom(S̄(A), A′) there exists a
unique extension to a coalgebra map Hom(S̄A, S̄A′), so that N̄◦F = (F ⊗F )◦N. If
F ◦D = D′ ◦F , this is equivalent to saying that φ is an sL∞ morphism. How does
this extension look like? What is the extension of φ as a coalgebra map. It’s easy
to work out that F (x1 • · · · • xn) =

∑
π∈P (n) φ(XB1

) � · · · � φ(XB|π|), this is how

you translate individual φ to a coalgebra map. This already looks like the definition
of the classical cumulants. This is related to the presentation yesterday. So then
there’s a notion of homotopy between morphisms, but it’s a little too complicated
to say. They’re homotopic when there is a one-parameter family connecting the
two. So there’s some flow equation and time zero is one of the morphisms and time
one is the other morphism then they’re homotopic. Then these can be composed
and reversed, so this forms an equivalence relation. I’m not going to write down
the formulas.

So from the probability data, you can define a functor DC to sL∞(k), but you
have homotopy categories on both sides, you have equivalence classes, I’m going
to define this functor, it induces a well-defined functor at the level of homotopy
categories. Most of the statistics will be defined in this language. From the data
AC = (A, 1A,M,K), I have to produce an L∞ algebra (A, 1A, `

K). If I have another

one A′C , then I have a simple morphism, and another L∞ algebra (A′, 1A, `
K′) and I

should obtain an L∞ morphism φf . This should also induce a well-defined functor
in the homotopy category. Okay so we have K : A → A and we want to make
a coderivation S̄(A) → S̄(A) that squares to zero. So you have the following
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commutative diagram

S̄(A)
D //

M

��

S̄(A)

M

��
A

K
// A

and this defines D, you define K ◦M = M ◦D. The fact that K2 = 0 implies that
D2 = 0. So what is the formula? Let me rewrite this in terms of formulas. Let’s
assume that Mn(X1, . . . , Xn) is an iterated binary product, so that this is

K(X1 · · ·Xn) =
∑

π∈P (n)

xB1
· · · `(XBi) · · ·xBπ ,

this is the definition of ` out of K. So you can find out

Kx1 = `1(x1)

K(x1x2) = `2(x1, x2)±KX1 ·X2 ±X1KX2

so for instance `2 is measuring the failure of K of being a derivation of the product.
And the claim is that this is automatically an L∞ algebra.

So what about morphisms? You make a unique lifting as before as a coalgebra
map:

S̄(A)
φf //

M

��

S̄(A′)

M ′

��
A

f
// A′

and so what sort of formula do you get out of f ◦M = M ′ ◦ φf? You get

f(x1 · · ·xn) =
∑

π∈P (n)

φf (xB1
) · · ·φ(xB|π|).

Then you further prove that this is functorial and respects homotopy, so that, for

instance, if A
f−→ A′

f ′−→ A′′ then φf
′◦f = φf

′ • φf .
This is the end of my L∞ exposition? What about A∞? You replace S̄(A) with

the tensor coalgebra with the deconcatenation, and you replace classical partitions
with interval partitions.

I’m already over time. Let me draw this diagram, I have

AC
c //

��

k

(A, `K)

φc

<<

and so this interpolates between expectation and cumulants. What about random
variables? Let me distinguish between homological and homotopical random vari-
ables. For the former, x ∈ A and Kx = 0, that’s a homological random variable. If
I have no K then any element is a random variable. I say that x̃ ∼ x if x̃ = x+Kλ.
I have expectation c(x) = c(x̃), and the expectation of a homological random vari-
able depends only on the homology class of the random variable and the homotopy
class of the expectation c. But what if I take products? I have K(x · y) (let me
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assume these are random variables so Kx = Ky = 0), then this is `2(x, y) and it’s
not a random variable. More seriously, even if this is a random variable, if x ∼ x̃
and y ∼ ỹ then we do not necessarily have xy ∼ x̃ỹ. So I can’t define the moment
generating function with this definition.

A homotopy random variable, take a graded vector space with a trivial (0) struc-

ture of an L∞ algebra, and then suppose we have an L∞ morphism (V, 0)
φ−→

(A, `K), that’s my definition of a homotopy random variable. This may look mys-
terious but if I compose with φc I get a map, an L∞ map (V, 0)→ k, and this has
components S̄V → k, and these are joint cumulants of the random variable which
only depend on the homotopy type of ϕ and of φc (thus c). So this is the statistics
that only depend on homotopy type. Let me finish, emphasizing what this means.
Assume we have such a situation, and that V has a basis {eα}. Then we can form
the series (choose a dual basis tα) depending on ϕ as

Γϕ =

∞∑
n=1

1

n!
tα1tαnϕn(eα1

, . . . , eαn) = tαφ1(eα) +
1

2
tαtβφ2(eα, eβ) + · · ·

and the two claims are
KeΓϕ = 0

if this is an L∞ morphism, and second that

c(eΓϕ̃)− c(eΓϕ) = c(K( )) = 0

if ϕ and ϕ̃ are homotopic.
Finally I want to talk about “hidden” integrability. So suppose we can find

ϕ̃n(eα1 , . . . , eαn) = K∨n (eα1 , . . . , eαn)1A. Then if you do c(eΓϕ̃), this is just

e
∑
tα1 ···tαnK∨n (eα1

,...,eαn )

and your question is basically homotopic to your answer, you don’t need to do any
calculation.
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10. September 7: Gabriel C. Drummond-Cole: A homotopy-algebraic
point of view on free probability

[I do not take notes at my own talks]

11. Antonio Rieser: An introduction to algebraic topology,
stochastic topology, and topological data analysis I

[I do not take notes at slide talks; I didn’t realize until too late that this was
mostly a chalk talk.]

12. Kurusch Ebrahimi-Fard: Probability and shuffle products II:
moment-cumulant relations and shuffle-exponentials

Thank you and thank you also for this nice workshop and the opportunity to
present our work here. This is jonit work with Frédéric Patras relating shuffle
products with moment cumulant relations. Let me briefly recall some of what
Frédéric said last time. We start with random variables X = {X1, . . . , Xn} and
look at the tensor algebra over this set, and look at a linear map µ(Xi1 , . . . , Xin)
that thakes this to the expectation of the product E(Xi1 · · ·Xin), and µ(1) = 1.
So now we introduce another map κ, with κ(1) = 0 and try to solve the equation

µ = exp∗(κ), and here exp∗(κ) =
∑
n≥0

κ∗n

n! , where this is convolution using the
unshuffle coproduct. We know already from the cocommutativity of the shuffle
coproduct, that the convolution product is commutative. If we take µ(xi1 , · · · , xin),
and when you extend this, working out that κ(1) = 0, using this principle multiple
times, you find out that you get∑

π∈Pk

∏
pi∈π

K|Pi|(XPi)

and this provides the classical moment cumulant relation through this exponential
representation.

Now Frédéric briefly mentioned the following statement, that the space of linear
maps (T (X)∗, ∗), is a commutative shuffle algebra. What does that mean? In
particular, it means that f ∗g can be written f ≺ g+f � g, and by commutativity,
this is f ≺ g + g ≺ f . With this information, we can have another look at this
exponential, and that’s what I’ll try to indicate by doing some calculations. Let’s
look at κ ∗ κ. Then following this rule, we get 2κ ≺ κ, so we get a 2 here. If we
look at κ ∗ κ ∗ κ, it’s somewhat of a lengthy calculation, you get

κ ∗ κ ∗ κ = κ ≺ (2κ ≺ κ) + κ � (2κ ≺ κ)

= κ ≺ (2κ ≺ κ) + (2κ ≺ κ) ≺ κ
and then I use one of the shuffle rules and get

= 2κ ≺ (κ ≺ κ) + 2κ ≺ (κ ∗ κ)

= 6κ ≺ (κ ≺ κ)

and what you can show in general is that

κ∗n = n!κ ≺ (κ ≺ (· · · (κ ≺ κ)))

and so

µ = exp∗(κ) =
∑
n≥0

κ∗n

n!
=
∑
n≥0

κ≺n
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and so now I can motivate this with the fixed point equation

µ = 1 + κ ≺ µ

and this will be carried over to the non-commutative world. In the commutative
case, this would coincide with the fixed point equation µ = 1 + µ � κ. So now we
get two equations in the non-commutative world and you can wonder what is the
right one and how to deal with this.

So then to make this precise I should tell you what is ∗ and ≺ at the level of the
tensor algebra? So let me give the splitting of the shuffle in explicit form.

∆(xi1 ⊗ · · · ⊗ xin) =
∑
J∈[n]

xJ ⊗ x[n]\J

where xJ = xj1 ⊗ · · · ⊗ xjk where J = {j1, . . . , jk}.
What we observed, what we want to see is a splitting, that the splitting is

extremely simple, if you look into the work of Neu–Speicher where they introduce
non-crossing cumulants, you can see that what we do now at the classical level
amounts to this. So what we want is that xJ must contain the first letter, all the
time,

∆(xi1 ⊗ xin) =
∑

1∈J⊂[n]

xJ ⊗ x[n]\J +
∑

1/∈J⊂[n]

xJ ⊗ x[n]\J .

Let me make some observations, that ∆≺ = τ∆� which is equivalent to this co-
product being commutative. What you see then here is that µ = 1 + κ ≺ µ, you
see that if you now apply (κ ⊗ µ)∆≺ to a word, you get a word, and if this is a
word with one letter, you get something with Bell’s numbers that you use to do
moments cumulants in the classical setting.

So now let me do a calculation at order 4, let me do µ(x4), which I mean a
word with four letters, I want to not put in the tensor symbol. We want to see
the part with division into two blocks of size two. So within the expansion you get
(κ ≺ κ)(x4), and this is the same as (κ⊗ κ)

∑
1∈S⊂[4]XS ⊗X[4]\S and if you work

this out, you get

(κ⊗ κ)(xx⊗ xx+ xx⊗ xx+ xx⊗ xx)

where in the three cases I’ve got three different partitions, 12|34 and 14|23 and
13|24 and this term makes the crossing partition that we’d like to get rid of in the
moment cumulant expansion.

The idea here is to add structure, when we do this extraction operation, I put
a bar there, write x1x3 ⊗ x2 | x4. Then it’s clear that in doing this, I add this
information and I’d like to require (this is ad hoc and I’ll provide definitions in the
next minute) that κ(x | x) = 0. The compatibility of my κ is whenever I have a
bar, I get zero, and then we get the moment cumulant relation as I expect in the
free case. In this identification I get

µ(x4) =
∑

π∈NC4

κπ(x, x, x, x)

but for that we need more sturcture on TX (and in fact need to go to a larger space).
For this I take (A,ϕ) and what I’m interested in is working with T (T̄A), words made
out of words by a new product, and an element here I write w = w1 | w2 | · · · and
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wi ∈ T̄A. Now the coproduct, this is of course non-commutative, the coproduct is

∆(w) = ∆(a1, . . . , an) =
∑
S∈[n]

aS ⊗ aJ1
| · · · | aJ` ,

where aJi is the sequence of letters broken by bars where something in S was taken
out. So this lands in T (A)⊗ T (T (A)).

Let me make an example, with S = {2, 4, 5}, ancting on a1a2a3a4a5a6a7, I get
the term

a2a4a5 ⊗ a1 | a3 | a6a7

and I extend this multiplicatively ∆(w1 | w2) = ∆(w1) | ∆(w2).
The theorem is that H = T (T̄A) is a non-commutative, non-cocommutative

graded connected Hopf algebra.
Now H∗ with the convolution product is non-commutative, and let me briefly

remind you

(1) a character is a map φ ∈ H∗ such that φ(1) = 1 and also φ(w1|w2) =
φ(w1)φ(w2).

(2) an infinitesimal character α is a linear map on H such that α(1) = 0 and
α(w1|w2) = 0.

Between these, G and g a group and a Lie algebra, I have an exponential and
a logarithm. All of this is kind of hinting at finding this analogous picture for
moments and cumulants in a non-commutative setting.

Definition 12.1. Φ(a1 · · · an) = ϕ(ai ·A · · · ·A an), this defines a character,

Φ(w1|w2) = φ(w1)φ(w2).

So this defines Φ in G.

Let’s simply again do some calculation, considering ρ ∈ g, I want to find ρ so that
Φ = exp∗(ρ). Let’s calculate. So simply look at Φ(aa) = m2 = ρ(aa)+ 1

2 (ρ∗ρ)(aa),
this is unshufflings of aa, and if you extract a letter from between two you put a
bar. So you find ρ(aa) + ρ(a)ρ(a) = h2 + h1h1. Now I’m interested in Φ(aaa) =
m3 = (ρ+ 1

2ρ ∗ ρ+ 1
6ρ ∗ ρ ∗ ρ(aaa) and I get

ρ(aaa) +
1

2
(ρ ∗ ρ)(aaa) +

1

6
ρ∗3(aaa).

Remember that ∆(aaa) = aaa⊗1+1⊗aaa+2aa⊗a+a⊗aa+a⊗a | a+aa⊗a+a⊗aa
and you get 1

2 (ρ ∗ ρ)(aaa) = 5
2ρ(aa)ρ(a) = 5

2h2h1. So at the end I get m3 =

h3 + 5
2h2h1 + h3

1.
Without doing the complete calculation, if I do the fourth moment, I get

φ(a4) = m4 = h4 + 3h1h3 +
3

2
h2h2 +

13

3
h1h1h2 + h4

1

and the theorem is that for hn = ρ(an), Φ(an) = mn and Φ = exp∗(ρ), that

mn =

n∑
s=1

∑
1=i0<···<is=n

1

s!

s∏
j=1

ij−1hij−ij−1
.

Let me remark:

(1) ρ = log∗(Φ) =
∑ (−1)n

n (Φ− ε)∗n,
(2) Φ ∗Ψ = exp∗(BCH(α, β)),
(3) and I have an inverse Φ−1 ∈ G which is Φ ◦ S =

∑
n>0(Φ− ε)( ∗ n).
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What does inverse really mean? I will come to it.
We have understood monotone moment cumulants in terms of this Hopf algebra,

but there’s a motivation. Recall the splitting,

∆(a1, . . . , an) =
∑
S⊂[n]

aS ⊗ aS ⊗ aJ1 | · · · | aJs

which is ∑
1∈S⊂[n]

· · ·

︸ ︷︷ ︸
∆≺

+
∑

1/∈S⊂[n]

· · ·

︸ ︷︷ ︸
∆�

Theorem 12.1. (H∗,�,≺) is a unital shuffle algebra (with f ∗g = f ≺ g+f � g).

The noncommutative relations are

(f ≺ g) ≺ h = f ≺ (g ∗ h)

(f � g) ≺ h = f � (g ≺ h)

f � (g � h) = (f ∗ g) � h.

Theorem 12.2. For Φ ∈ G and κ, β in g,

(1) Φ = 1 + κ ≺ Φ which looks like

Φ(a1 . . . an) =
∑

κ(aS)Φ(aJ1) · · ·Φ(aJ`) =
∑

π∈NCn

Kπ(a1 · · · an)

gives the free moment cumulant relation.
(2) If I look instead at 1 + Φ � β, which looks like

Φ(a1, . . . , an) =

n∑
k=1

Φ(ak+1 · · · an)β(a1 · · · ak) =
∑
π∈IPn

βπ(a1 · · · an)

which is the inversion formula for Boolean cumulants.

So this is a rewriting of Φ in terms of two sets of cumulants. I can say that
Φ � β = κ ≺ Φ and if I now define Lf�g = f � g and R≺fg = g ≺ f , then

LΦ−1�(Φ � β) = Φ−1 � (Φ � β) = (Φ−1 ∗ Φ) � β = β = Φ−1 � κ ≺ Φ

and similarly

κ = Φ � β ≺ Φ−1

and this is something, we were trying to understand the paper of Arizmendi et al.
in Adv. Math., 2015, and then you get the theorem

Theorem 12.3.

β(a1, . . . , an) =
∑

1,n∈S⊂[n]

κ(aS)Φ(aJ1
) · · ·Φ(aJ`)

and so you get

bn(a1, . . . , an) =
∑

π∈NCirrn

rπ(a1, . . . , an).
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The point is that I want both the first and the last letter which leads to ir-
reducibility. If you invert this, you work with inverses and involve a little more
shuffling, and get a formula for free cumulants in terms of Boolean cumulants, but
you get something like (−1) to the number of blocks minus one.

My very last statement, the link between the monotone infinitesimal cumulants
and the free cumulants, here it’s a little more complicated, we don’t have a fixed
point formula here, at least not until the next lecture, when we’ll have three expo-
nentials, at which time we’ll have a relationship among the three cumulants using
them as infinitesimal characters, and this will use the preLie Magnus expansion.
This is another angle of shuffle algebras, and this has an inverse, and for those
of you who know, this is a refined version of the classical Magnus expansion and
this then links the monotone cumulants with the others and you can get formulas
involving the preLie expansion. But I think I will do this tomorrow in the last
lecture.

13. Roland Friedrich: Types, Structures and (Free) Harmonic
Analysis

[I do not take notes at slide talks.]
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14. September 8: Kurusch Ebrahimi-Fard: Probability and shuffle
products III: additive convolutions

Let me first recall the picture, so to say. The starting point is a noncommutative
probability space with an expectation ϕ, that is, (A,ϕ) with ϕ : A→ k. Then the
first step was to define a Hopf algebra (H = T (T̄A),∆), with the | product. This
is a non-commutative non-cocommutative graded Hopf algebra. The coproduct,
remember, is ∆(a1 · · · an) =

∑
S⊂[n] aS ⊗ aJ1

| · · · | aJ` . There is a splitting of this

coproduct

∆ =
∑

1∈S⊂[n]︸ ︷︷ ︸
∆≺

+ 1 /∈ S ⊂ [n]︸ ︷︷ ︸
∆�

.

The splitting dualizes and we get (H∗,�,≺) a unital shuffle algebra. Here the
product is f ∗ g = (f ⊗ g)∆ = f ≺ g + f � g. Inside here we have G the group of
characters and the Lie algebra g of infinitesimal characters, and the natural relation

between the two is given in terms of the exponential and the logarithm: g
exp∗−−−→ G.

Coming back to the probability situation, we have Φ ∈ G, then trying to calculate
the expectation, well, we can look at Φ = exp∗(ρ), this is one way of looking at Φ,
as a (proper) exponential of a Lie algebra element. I also, due to the splitting, I
can also write Φ as a solution to a fixed point equation

Φ = 1 + κ ≺ Φ

for a Lie algebra element κ ∈ g, or I could write

Φ = 1 + Φ � β

and this gives three different answers: ρ is the monotone case, κ the free case and
β the Boolean case.

This is the most exciting situation, this gives three ways of writing a grouplike
element in terms of these characters.

Okay, so one thing that comes naturally with these two fixed point equations
is that we immediately see that β can be written in terms of κ: β = Φ−1 � κ ≺
Φ. So this gives some linear combination of moments with signs, this inversion,
in principle I can just calculate what is Φ−1 = Φ ◦ s, this is −Φ(w) plus many
terms. This adjoint operation, this group acting on the Lie algebra in terms of
half-shuffles, that contains all the interesting structure. The other question where
we stopped yesterday is, what is the relationship between free, monotone, and
Boolean cumulants. Let me introduce something you’d do immediately if you see
the fixed point formula, you get a Dyson expansion, so I define the object E≺(α)
for α ∈ g and I define this to be ∑

n≥0

α≺n

where αn = α ≺ (α≺(n−1)) and α≺0 = 1. Then I similarly have E�(α) =
∑
n≥0 α

�0.
So you have 1 + α + α � α, and so this expansion order by order gives you all

the parts with one cumulant, with two cumulants, et cetera. So these αs aren’t just
maps but send 1 to zero and combining this you get some cancellation and it adds
up to the right moment cumulant formula, in this case the Boolean case.

The next results will be about abstract shuffle algebras but I’ll state them in
this context.



34 GABRIEL C. DRUMMOND-COLE

Lemma 14.1.

E≺(α) ∗ E�(−α) = 1

so that E−1
≺ (α) = E�(α).

The central property you use is the associativity f � (g ≺ h) = (f � g) ≺ h .
This is most of what you use.

Now that we have left and right half-shuffle exponentials, let me state the fol-
lowing. If you’re interested in the infinitesimal character of cumulants:

Lemma 14.2. For Φ = E≺(α), you have α = (Φ − 1) ≺ Φ−1 and for Φ = E�(β)
you have β = Φ−1 � (Φ− 1).

Then you can write this as L≺(E≺(α)) = α and L�(E�(β)) = β, defining half-
shuffle logarithms. Here Φ−1 = Φ ◦ s =

∑
n≥0(−1)n(Φ− 1)∗n.

Okay, so we have written Φ = exp≺(κ) = exp∗(ρ), writing this in two different
ways, and now we can calculate the left half-shuffle logarithm, which should be

κ = L≺(exp∗(ρ)).

You do a little calculation,

d

dt
exp∗(tρ) � (exp∗((1− t)ρ)− 1) = − exp∗(tρ) � ρ ≺ exp∗((1− t)rho).

Integrate this from zero to one and you get

exp∗(ρ− 1) =

∫ 1

0

exp∗(sρ) � ρ ≺ exp∗((1− s)ρ)ds

and I rewrite this in terms of left and right half-shuffle operators, La�(b) := a � b
and R≺a(b) = b ≺ a, and so I can write my integral as∫ 1

0

esLρ�e−sR≺ρ(ρ)ds ≺ exp∗(s) =

∫ 1

0

es(Lρ�−R≺ρ)(ρ)ds ≺ exp∗(ρ)

and this operation Lρ� −R≺ρ I call Lρ� and then by a standard step this is

eLρ� − id

Lρ�
(ρ) ≺ exp∗(ρ)

the inverse of the generating function for the Bernoulli numbers. So let me finish
the calculation:

exp∗(ρ) = 1 +

(
eLρ� − id

Lρ�
(ρ)

)
︸ ︷︷ ︸

W ′(ρ)

≺ exp∗(ρ)

and so I can say this is exp∗(ρ) = E≺(W ′(ρ)) so that κ = W ′(ρ) and I can invert

this as so I can write ρ = Ω′(κ) which is the same as
Lρ�

eLρ�−id
(κ) and this is the

(preLie) Magnus expansion ∑
n≥0

Bn
n!
L

(n)
Ω′(κ)�(κ)

This preLie product is another binary product on the shuffle algebra.

Proposition 14.1. The product a� b = a � b− b ≺ a is left preLie:

(a� b)� c− a� (b� c) = (b� a)� c− b� (a� c)
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and the interesting thing is that the Lie bracket [a, b] = a � b − b � a is a Lie
bracket, in fact the one from ∗ itself.

Now W ′(ρ) = ρ+ 1
2ρ� ρ+ 1

6ρ� (ρ� ρ) + · · · and now we can go between all of
these cumulants using the preLie expansions:

Φ = E≺(κ) = exp∗(ρ) = E � (β)

= E≺(W ′(ρ))

= E�(−W ′(−ρ))

and so at the end I get κ = W ′(ρ), ρ = Ω′(κ), β = −W ′(−ρ), and ρ = −Ω′(−β).
Then I can forget the half-shuffle exponentials, so E≺(κ) = exp∗(Ω′(κ)) and E�(β) =
exp∗(−Ω′(−β)). This can be further extended, writing something we already know
from a preLie algebraic point of view. I can write κ = W ′(−Ω′(−β)), and of course
I know that this is the same as Φ � β ≺ Φ−1 and same for the Boolean cumulants,
β = −W ′(−Ω′(K)) = Φ−1 � κ ≺ Φ.

You’ve here gotten a slightly more conceptual point of view, that the transfor-
mations involve the preLie structure of the shuffle algebra.

A natural question to ask is, what is the group law for the half-shuffle exponen-
tials. Let’s simply calculate the shuffle product E≺(α)∗E≺(β) = E≺(α#β), and the
product is just

α#β = W ′(BCH(Ω′(α),Ω′(β))).

In fact, one can be more precise here, this is

α+ E≺(α) � β ≺ E−1
≺ (α)

and the same (with more minus signs) for the other half-shuffle exponential. To
calculate this, there is a beautiful intertwining between Baker–Campbell–Hausdorff
and the preLie expansion first noticed by [unintelligible]in control theory.

Let me now introduce some notation. It’s clear that to get to this, I first write
E≺(α) in terms of the proper exponential, and then multiply the exponentials to
get the Baker–Campbell–Hausdorff part, and then I use the intertwining to get the
formal group law.

So now for notation, if I have α and β in g, then I’ll write

αβ = E−1
≺ (β) � α ≺ E≺(β).

I’ll use this a few times to simplify notation. Let me define

Φ1 = E≺(γ1), Φ2 = E≺(γ2)

and now I’ll define

Φ2 i Φ2 := E≺(γγ12 )

and when I translate this, writing ψ1 = E�(α1) and ψ2 = E�(α2), then ψ1 h ψ2 =
E�(α−α1

2 )

Lemma 14.3. For φ1 and φ2 in G, and φi = E≺(γi), we have

φ1 ∗ (φ2 i φ1) = φ2 ∗ (φ1 i φ2) = e≺(γ1 + γ2)

and analagously for h.

This now, I turn this into a definition and define

φ1 2� φ2 = E�(α1 + α2)
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and

φ1 2≺ φ2 = E≺(γ1 + γ2)

and this gives a shuffle-additive convolution for free and Boolean cumulants. One, at
least, for myself, benefit, is that this has a very precise description showing how the
Baker–Campbell–Hausdorff description fits into this definition. This should amount
to the fact that I can always write additive convolution in terms of [unintelligible].

As a remark, you see quickly a distributivity

Lemma 14.4.

(E≺(γ1) 2≺ E≺(γ2)) i E≺(γ3) = (E≺(γ1) i E≺(γ3)) 2≺ (E≺(γ2) i E≺(γ3))

And a final observation, for φ = E≺(γ) for γ ∈ g, we have

L�(φ) = φ−1 � (φ− 1) = φ−1 � γ ≺ φ = γγ

so that

φi φ = E≺(γγ) = E≺ ◦ L�(φ)

and this is something called B(φ), the Berkovichi [unintelligible], and this is using
the subordination product, using this half-shuffle exponential and the other half-
shuffle logarithm in this formalism.

15. Antonio Rieser: An introduction to algebraic topology,
stochastic topology, and topological data analysis II

I want to start by talking about the origin of A∞ algebras. So Stasheff in 1963
wanted to study the loop space ΩX, this is the space of all loops {f : ([0, 1]/0 ∼
1, ∗)→ (X, ∗)} and you can define a concatenation

f ∗ g(t) =

{
f(2t) t ∈ [0, 1

2 ]

g(2t− 1) t ∈ [ 1
2 , 1].

and this is great but it has a problem, (f ∗ g) ∗ h 6= f ∗ (g ∗ h). You can see this
by seeing which portion is when you do f , g, and h. In the first, the first quarter
is f , the second quarter is g, and the second half is h; in the second, the first half
is f , the third quarter is g, and the fourth quarter is h. But these are homotopic.
There is a homotopy

H : [0, 1]× ΩX × ΩX → ΩX[sic]

where you get f ∗ g, but what if you do three things? Then you have five ways of
multiplying here, and you get a pentagon when you put things together, and you
want to fill this with a polygon K4. Stasheff has a beautiful picture of this, at least
in words, of how to construct these. For the next case, I’ll draw it [picture].

There is an infinite sequence of these where you construct the next one from the
ones before. For each one of these, note that M3[0, 1] × (ΩX)3 → ΩX, and my
chain complex C∗(ΩX) now has a differential, and I’m going to define a bunch of
mi : C⊗i∗ (ΩX)→ C∗(ΩX). Our m1 will be the differential and all the rest of them
will be mi(a1 ⊗ · · · ⊗ ai) = Mi,∗(Ki ⊗ a1 ⊗ · · · an) [sic].

Theorem 15.1. C∗(X, d) and mi for i ≥ 1 form an A∞ algebra.
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There’s one theorem I’m going to state that came a little later. These are the
reason these are called homotopy associative algebras.

The theorem I’m going to state is by Kadeishvili, around the early seventies. If I
take C∗ an A∞ algebra and a chain complex then H∗(C∗) has an A∞ structure such
that m1 = 0, the differential, you already took homology, and m2 is induced by the
the product m2 on C∗, and the others are something different. The extraordinary
thing is that there is a quasi-isomorphism between as A∞ algebras between these
two objects H∗(C∗) and C∗. So this is definitely not true if C∗ is just a chain
complex. If you take homology you lose information but here you can recover
everything up to homotopy.

So that was part one. Now I’ll talk about a number of models of generating ran-
dom simplicial complexes and then say some things known about them as objects.
These are, with the Laplacian I mentioned yesterday, this has a non-commutative
thing sitting around somewhere.

Let me start with the notion of an Erdös–Rényi random graph G(n, p). This
is a graph on n vertices, and edges exist chosen independently with probability p.
The game is that, let p = f(n) and describe asymptotic structure of the graph.
So the kind of thing that we’ll concentrate on are the phase transitions that are
topological in nature. There are plenty that are combinatorial in nature but the
ones I know are topological.

Theorem 15.2 (Erdös–Rényi 1959). For p ≥ logn
n , then with high probability

(which means probability approaching 1 as n→∞) then g ∈ G(n, p) is connected.

This is the most basic topological feature of a graph. You could also ask about
π1, but the main thing that’s interesting is whether it’s connected. This is sharp,
and so if p is less than this, then with high probability it’s not connected.

Many many years later, Linial–Meshulam in 2006 generalized this to random 2-
complexes. What is a random 2-complex? You have Y (n, p), a simplicial complex,
with 2 dimensions, so X0, X1, and X2. My X0 will be my n vertices. My X1 will
be all possible edges, all

(
n
2

)
of them, and then I add faces with probability p. Here

you see an analagous theorem.

Theorem 15.3 (Linial–Meshulam, 2006). For p ≥ 2 logn
n , with high probability

s ∈ Y (n, p) has H1(S,R) = 0.

This is the analogous result to saying that the graph is connected.
A little later, this is peculiar, by a bunch of people,

Theorem 15.4. (Koslov, 2010; Lineal–Peled; Aronshtam–Lineal 2015) If p ≥ 2.753
n

implies that H2(S,R) 6= 0.

This is not sharp. The rest of this talk will be basically writing down theorems
of this nature.

There was another group studying 2-complexes at the same time, looking for
counterexamples (or the lack of them) to the Whitehead conjecture. What’s the
Whitehead conjecture? This says that for X an aspherical simplicial 2-complex,
every subcomplex of X is aspherical. This is an old conjecture, either from [unin-
telligible]or slightly before, that πn(X) = 0 for n ≥ 2. Often creating examples by
hand is difficult but you can sometimes show with positive probability that graphs
with some property exist. They didn’t resolve the conjecture but learned a lot of
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things about 2-complexes. The theorems have a slightly different flavor. You can
say things like

Theorem 15.5 (Costa–Farber, 2015 (among others)). If p � n−
3
5 then the fun-

damental group π1(S) of a random simplicial 2-complex is torsion-free with high
probability.

This is a bit surprising, because you somehow know that any group can appear
so the fact that you don’t get torsion when p is low, that’s a bit surprising.

Theorem 15.6. If 0 < ε < 0.1 and n−
3
5 � p � n−

1
2−ε then π1(S) has nontrivial

elements of order 2.

They’ve pushed this farther but I don’t have this in my notes. You can say
a little more in the regime. As a kind of partial response to their initial set of
questions, suppose that p � n−

1
2−ε for a fixed ε > 0, then with high probability,

Y ∈ Y (n, p) has the following property: any subcomplex X contained in X ′ ⊂ Y
of an aspherical subcomplex X ′ is aspherical.

What happened? I let n→∞, all of these statements are with high probability,
and then any large number of these things have the property that subcomplexes of
aspherical complexes are aspherical.

How do we know this exists? Oh, I have the wrong things written down.

Theorem 15.7. Let p� n−
1
2−ε and S an arbitrary simplicial complex. Then with

high probability there exists a topological embedding S ⊂ Y in Y (n, p).

Let me give one more kind of result. Let X(n, p), well, let G(n, p) be an Erdös–
Rényi random graph. For a set of k + 1 vertices, if all the edges exist, then fill in
a k-simplex. The randomness still happens at the level of the edges, and I look at
all my collections of k + 1 points and if all of them are there you fill in a simplex.
For a long time we had theorems about real homology.

Theorem 15.8 (Kahle 2014). Fix m ≥ 1, denote, let, X ∈ X(n, p) and ω(1) is a

function that satisfies ω(1)
n → 0. Then if

p ≥
(m2 + 1) log n+ k

2 log log n− ω(1)

n
)

1
k+1

then Hm(X,R) = 0 with high probability.

So this is interesting, the phase changes happen at different times for different
m. So if I look at β1, I get a graph like this [picture], for the second homology I get
[picture], a little lower, and so forth. All of the results so far are for characteristic
zero homology.

I won’t exactly tell you how this works, but this already relies critically on
information about spectra of random graphs. This is also the only way to get
anything at all about homology with integral coefficients.

Theorem 15.9 (Hoffman, Kahle, Paquette). Let d ≥ 2 and Y ∈ Yd(n, p), I fill in

all the skeleta up to d−1 and then take d-simplices with probability p. If p ≥ 40d logn
n

then with high probability, the integral homology Hd−1(Y,Z) vanishes.

They conjecture that the phase transition happens at d logn
n . This has been

proved for d = 2 by  Lutzak–Peled in 2016.


