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IN QUANTUM FIELD THEORY

GABRIEL C. DRUMMOND-COLE

1. September 29: Owen Gwilliam, Introduction to the BV formalism

I’ll start with an introduction to core ideas and then give one way of making that
precise. I’ll talk about the way that Kevin Costello organized it in his approach to
perturbative field theories.

Let’s talk about the motivating picture. Okay. So I guess the question you might
ask is what you want from a quantum field theory. You have F , a space of fields,
sections of some bundle on a manifold. What we actually work with is O(F), they
are functions on F , these are observables or measurements you might make. What
we really want is an expected value map

〈 〉O(F)→ R

This is a probabilistic thing and it’s what you really want to know. When you’re
working perturbatively, maybe you want to expand in ~ instead of working in R.

So a quick slogan, Batalin-Vilkovisky is a homological approach to making 〈 〉.
I want to explain what to do in a finite dimensional toy model where you already

know how integration works.
Let’s imagine I have a finite dimensional manifold. For me, it’ll always be a

vector space, V , and µ will be some probability measure on V . I’m going to be
very, I apologize about this, my functionsO(V ), they have an expected value map to
R. One way to think about that is I go to some class of top forms, f 7→ fµ→

∫
fµ.

So the expected value map factors through the top forms.
If I’m thinking homologically, maybe I want to understand the kernel of the map.

to R.

Question 1.1. Which functions have zero expectation value?

There is something we know is killed off. Anything that’s the boundary of a
top− 1-form is zero, we know

∫
V
dλ = 0.

X (V )
divµ //

µ∧

��

O(V )µ

·

��

〈 〉

##
R

Ωtop−1(V )
d
// Ωtop(V )

∫
V

;;

We know how to keep going on the bottom row and we get the de Rham complex.
If I do the upper row, I get the polyvector fields, with divµ instead of µ directly.
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Then you can write down properties that divµ has, so maybe if you can axiomatize
the top row maybe it will scale to infinite dimensions.

I’d like to write down some formulas that will show up in a lot of talks. If

µ = eSdvol, then divµ = ιdS + divLeb. This Lesbegue divergence is partial2

∂x∂ξ = ∆BV .

Some features to note, if you take the divergence of a wedge product, it satisfies
this funny formula

÷(a · b) = div(a) · b+ (−1)aa · div(b) + (−1)a{a, b}

and { , } is a degree one Poisson bracket on polyvector fields (in this case the
Schouten bracket).

This says that polyvector fields become a shifted Poisson algebra via { , }, and
arise from the “shifted symplectic vector space” V ⊕ V ∗[1].

One of the kinds of data I’m going to be looking for is a shifted Posison structure
on the observables. I can rewrite contraction with dS, up to a sign, ιdS = {S, }
and this lets me get rid of exterior differentiation.

The most important thing to note, perhaps, is if you lok at the divergence
operator, there’s a piece that you can try to handle separately. There’s a piece
depending on S and a piece that’s from the construction of the vector space. So if we
drop the Lesbegue divergence, we have X (V )→ O(V ) via {S, } with X 7→ X(S),
and the cokernel is functions on the critical points of S, the Jacobian quotient, and
these are the “observables for the classical field theory.” This suggests the following
idea, which is to change the differential to {S, }+~÷Leb. What does this do? At
~ = 0, I get a resolution of O(Crit S), which is the classical theory. At ~ = 1, I get
the quantum observables.

This idea of somehow, a version of deformation quantization, where you try to
find a way to add a differential weighted by ~ which lets you capture something
like polyvector fields with divergence.

You can get Wick’s lemma in the finite dimensional case with a Poisson distri-
bution, and you can do this in a way that gives you the combinatorics of Feynman
diagrams as well, so this has some power even in the toy model.

If I say µ = eS/~, then I get ιdS
~ +÷Leb and multiplying through by ~ I get what

I wrote before.
That was part one, the motivating idea for BV. Now I want to talk about how

to set that up for field theory. I’ll start with the classical version and deform from
classical to quantum.

I’ll give the definition that Kevin works with. I’ll start with a Z-graded vector
bundle, with total finite rank, let me say E =

⊕
nE

n, andthe space of fields will be
smooth sections, E = C∞(M,E). These are the “fields.” I had a shifted symplectic
vector space giving us the bracket. So E will be a shifted symplectic space from
the beginning. So I’ll have a vector bundle map 〈 , 〉 : E ⊗ E → DensM which
is fiberwise non-degenerate, cohomological degree one, and skew-symmetric in an
appropriate sense. I’ll use this to build a pairing on compactly supported sections
of E,

〈 , 〉Ec × Ec → R

via

(φ, ψ) 7→
∫
M

〈φ, ψ〉loc
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which makes Ec into a “shifted symplectic space.” This is the kinematics and now
I need to give you an action functional, so I’ll give you S as part of my data,

S ∈ O(E) := Ŝym(E∗) =
∏
Homcont(E⊗n,R)Sn . The action functional should

satisfy constraints. I’ll write S = S2 + S3 + · · · , where Sk ∈ Symk. So we should
have that

Sk(φ1, . . . φk) =
∑
j

∫
M

(Dj1φ1) · · · (Djkφk)µj

so this is Lagrangian density.
The goal is to have a chain complex (O(E), {S, }) (observables for the classical

theory). For {S, } to form a differential. I keep writing this bracket as if it makes
sense. There’s problems just taking the formulas for the Poisson bracket. If you use
those formulas it just doesn’t work. You end up trying to multiply distributions.
I don’t want to talk about that, but I claim that local functionals have a bracket
and say that {S, S} = 0. This is a giant caveat that you need to set up this theory.
The bracket is not defined on all of O(E). So this condition ensures that you have
a chain complex, where the shifted Poisson structure is not defined on the whole
space.

Let me put an example up here, the example of perturbative Chern-Simons. I’ll
start with an oriented three-manifold, and I’ll use the Lie algebra g = su(n). My
space of fields will be sections of a graded vector bundle, it’ll be Ωi ⊗ g in degree
i− 1. If I have two fields, I’ll define a pairing

〈α, β〉 = ±
∫
M

Tr(α ∧ β)

and an action functional which will have only S2 and S3. So it’ll be

S(α) =

∫
M

Tr(α ∧ dα) +
2

3

∫
M

Tr(α ∧ α ∧ α).

So here’s an example. There’s a natural dg Lie algebra associated with every such
field theory, there’s some moduli space and we’re describing a formal neighborhood
of this theory. So another thing to say is, what are the first order deformations or
symmetries of this theory. It’s really what you would expect, I hope.

There’s derivations, local ones, which preserve the symplectic pairing, that pre-
serve the bracket on E . This is the Lie algebra I’m interested in, SympDerloc, and
there’s a more succinct description. Since this has a symplectic structure sitting
around, I can send f ∈ Oloc(E) to {f, } and because everything is a vector space,
this is surjective and the kernel is the constants. That’s a different way of describ-
ing the symplectic derivations. Maybe the important thing, this map is a degree
+1 map. So what does this this thing Oloc/R describe? It encodes first order de-
formations of S as a classical BV theory, that’s H0, and H−1 encodes first order
symplectic automorphisms, local symmetries of the theory.

Why did I introduce this thing at all? That’s also where obstructions to quanti-
zations live? It’s really computable in a lot of cases, and you discover obstructions
and anomalies that are familiar, and this tells you some terms to add to your action
functional that are interesting.

I gave you a definition of a classical BV theory, there was no volume form in
sight, I had a differential on functions that behaves like an action functional from
physics. Now I want to do the quantum version. I want to take functions on E and
deform the differential. The pairing on E produces an operator ∆BV that is only
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defined on some sub-part of the functions on E . This was the Lesbegue divergence
earlier.

You need to find some way to get around that problem. It ends up making you
want to multiply distributions. It doesn’t work on local things even.

So what’s the trick? Mollify everything in sight. Smooth things out. The
definition will rely on a technical analytic choice. I’ll hone in on a particular class
of elliptic complexes. Recall the action functional had a quadratic bit, it’s like
S2(φ) = 〈φ,Qφ〉. I’ll require two things about Q to make mollification tractable.

One thing is that Q is an operator on E of degree one, it makes this a chain
complex, I want this to be an elliptic complex. If you want this on Lorentzian
spaces, you have to do something different. I’ll also require a degree −1 operator
Q∗ so that [Q,Q∗] is a generalized Laplacian. A generalized Laplacian, the principal
symbol should be a metric. For Chern-Simons theory, Q = d and Q∗ = d∗.

So what’s the point, I get this Laplacian D, and now what, given a parametrix
Φ (an inverse up to a smoothing operator), then I get an operator ∆Φ, which is ιΦ,
satisfying the formula from earlier,

∆Φ(a · b)−∆Φ(a) · b− (−1)aa∆Φ(b) + (−1)a{a, b}Φ.
Maybe this isn’t actually called a parametrix. I’m out of time, but Kevin will
continue next time. Thanks for listening.

2. Si Li, deformation quantization, renormalization, and index
theorem

This is qoint with Qin Li. This will be a case study of Costello’s renormalization
method.

Basically it’ll be a one dimensional example, the loop space, and we’ll look at
S 7→ (X,ω), the S will be a circle and (X,ω) will be a symplectic manifold.

In my first lecture, I’m going to build up a relation, an equivalence between this
deformation quantization and the perturbative renormalization, the perturbative
BV-quantization in this particular field theory.

This lets us use some geometric method, developed by Fedosov, which allows us
to compute the quantum corrections to all orders exactly.

This example is very nice, we can do the calculations for all loops using geometry.
That will be my first talk, and in this situation, the quantum observables in this
formalism, if you go back to the deformation quantization side, this is the star
product. This is a very nice picture.

The next talk will be a global version of this correspondence, where if you have
a trace map in the deformation quantization, this is the same thing as correlation
functions. In particular, by this correspondence, there are some symmetries of the
deformation quantization that allow us to get some equations for our correlation
functions. A rescaling symmetry of the equations for the correlation functions
gives a calculation of the partition function and on the other side, well, this is a
nice analysis method which gives you an algebraic index theorem.

Remark 2.1. When X = T ∗M , this is Gwilliam-Grady. This can be viewed as a
generalization of their theory.

Okay, so let me start with the deformation quantization in a very classical sense.
I work with a symplectic manifold. I have a Poisson structure on smooth functions.
In classical deformation quantization, I deform this to a star product on C∞(X)[[~]].
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The leading term is the product of functions and I have higher order corrections
with ~, with properties. For instance, the next term is given by the Poisson bracket,
lim~→0(f ∗ g − g ∗ f)/~ = {f, g}.

A basic example is a flat space, for example, R2n, with a symplectic form ω =
ωijdx

i ∧ dxj , with constant ωij .

We have a Moyal product (f ∗ g)(x) = e
~ωij ∂

∂yi
∂

∂zj |y=z=xf(y)g(z) Then the
Fedosov idea is to work as if we are in the flat situation in each fiber.

Precisely this formalization will be equivalent to the BV formalism in this picture.

We have the Weyl bundle, where the fiber is, well, the bundle is Ŝym(T ∗X)[[~]].
Let me specify some gradings, where the degree of T ∗X is 1 and the degree of ~ is
2. Then you get a fiberwise product on this Weyl bundle. This is a weight, not a
degree, really.

So we have a fiberwise product W ∗W 7→ W. For example, a local section σ can
always be written ∑

k,I

σk,Ixy
I~k

where xi is a local coordinate on X and yi is the same on the fiber.
This grading is preserved by this product, so this is a symmetry of this defor-

mation quantization. It’s precisely because of this grading, you can view this as a
supersymmetric localization.

So what I want to do is the following, well, to make these things work, Fedosov
introduced a very interesting method. Let ∇ be a symplectic connection on the
cotangent bundle, so it preserves the symplectic form and is torsion free. So it
induces a connection on W. You can always make some quantum connections to
make this flat. Let’s call ∧p ⊗W the W-valued p-forms. We want to correct ∇ to
a flat connection.

This is similar to what you want to do for BV quantization.

Theorem 2.1. (Fedosov)
Given any set of closed two-forms {wk}, there exists a unique element in the Weyl
bundle, I ∈ ∧1 ⊗W which is ∑

k≥1

I(k)

satisfying the following properties:

(1) the initial condition, I(1) = wijdx
idyj, I(2) = 0

(2) ∇I + 1
2~ [I, I] + R̃ = ω~.

(3) some guage-fixing condition.

So there’s a bunch of data involved. First, the bracket is the barkcet for the
fiberwise Moyal star product. The R̃ is a two-form, given by the curvature of the
symplectic connection, and in formulas it’s something like∑

ωijR
j
k`my

iykdx` ∧ dxm.

The final piece ω~ = ω+ω1~+ω2~2 ∈ ∧2. This is like solving the master equation
modulo a constant.

Once you have this equation, you can describe a quantum connection from I,
which is D = ∇ + 1

~ [I, ] which is a new connection on ∧∗ ⊗W and then D2 =
1
~ [ω~, ]. This is a flat connection on the Weyl-bundle.
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Theorem 2.2. (Fedosov) D-flat sections are in correspondence with C∞(X)[[t]]
via y = 0.

Then you have a natural star product on flat sections which induces a star
product on C∞[[t]].

Now let’s relate this to a one-dimensional Chern Simons type theory, looking at
S 7→ (X,ω). So our fields in this story will be basically smooth functions on S with
coefficients in a particular Lie algebra specified by the target. So this is

A∗(S)⊗ gX [1]

where the left factor is smooth forms on S and the right factor is ∧∗ ⊗ TX . The
leading bosonic component will describe an element in C∞(S)⊗ TX . This is some
sort of deformation near a constant map.

So basically the field describes a σ-model in a neighborhood of constant maps.
It’s a very particular low energy limit.

I’ll tell you the classical and quantum action functionals together.
Let I ∈ ∧p⊗W then I : Symk(E)→ A(S)⊗∧∗ where α1, . . . , αk → I(α1, . . . , αk)

which is by pairing with TX and T ∗X. This will give me a functional Ĩ which is
defined on fields by

Ĩ(α) =
∑ 1

k!

∫
N

I(α, . . . , α).

Now my action functional will be of this form. You can view this as a sheaf of
interactions on the circle. My action functional will be of the following form. You
have 1

2

∫
S
ω(α, dSα) + Ĩ(α) for Ĩ ∈ ∧1 ⊗W.

The I is the interaction part which has a genus expansion
∑

0 Ĩg~k. Then Ĩ0 will
be the classical interaction and the higher part will be the quantum corrections.

Now let me tell you the I that I choose. It will come from the Fedosov equation.
Here I need a notion of quantum master equation. You need some kind of picture
from quantization. To model some kind of path integral from this kind of data
perturbatively by Feynman diagrams, you have to do this in a clever way to avoid
the divergence and be compatible with gauge symmetry. First I need a BV operator
from dS . Let’s choose the standard flat metric on the circle and call d∗S the adjoint
of dS . Then let ∆S be the Laplacian. Call e−L∆S the heat kernel. This will become
singular as ~→ 0.

Define PLε , the propagator, as
∫ L
ε
d∗Se
−t∆Sdt. If we take the small ε and large L

limit, d∗S
1

∆S
models the “ 1

dS
behavior”

Given a gramp Γ, we get a map ωΓ(PLE , Ĩ).

You put the propagator on internal edges, Ĩ on the vertices and α on the external
edges.

Theorem 2.3.

lim
ε→0

ωΓ(PLε , Ĩ)

exists.

Let’s collect the data. Call this one Ĩ[L]. If you don’t know this, I refer you to

Kevin’s talk this afternooon. You take the sum over connected graphs of ωΓ(PLPε,Ĩ)
|Aut Γ| ,

and take the limit as ε→ 0. So you can rewrite this as

eÎ[L]/~ = lim e
~partialPLε e

Ĩ
~
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Now we say that Ĩ(L) satisifies the quantum master equation if Q + ~∆L +

{Ĩ , }L squares to zero.
[something about effectivity]
So for example

{Φ1,Φ2}L = ∆L(Φ1Φ2)−∆L(Φ1)Φ2 − (−1)|Φ1|Φ1∆L(Φ2)

Theorem 2.4. Ĩ(L) satisfies the quantum master equation if and only if ∇I +
1
2~ [I, I] + R̃ = ω.

So here our classical interaction Ĩ0 gives a curved Lie algebra on gX [1]. This is
in Costello and Grady-Gwilliam.

There’s a nice obstruction theory for the space of quantizations, and the nice
space of BV quantizations (modulo gauge equivalence) exactly is given by these
two-forms specified by the data {ωk}. I’ll come back to this one.

That’s the identification.
I have five more minutes, let me say just a few words. So somehow you can say

something about quantum observables, let me describe the local case. Next time
I’ll do a global thing. You can look at some kind of classical observables in my
field. In my case it’ll be some small open set U , and then the classical observables
on U , with Q + {Ĩ0, }, the cohomology gives you smooth functions. If you take

the quantum observables, using Q+ ~∆L + {Ĩ(L), } then the cohomology is D-flat
sections of W.

So now you get a factorization product on quantum observables, this is the same
thing as the Fedosov star product.

I hope I gave you some idea of what this looks like. Next time I’ll explain these
global observables. In the quantum L→∞ limit you’ll get correlations plus some
kind of index from analysis of the circle. Thanks very much.

3. Jae-Suk Park:QFT algebra and quantum correlations

I want to thank the organizers for this invitation, they were able to overcome
my fear of visiting Stony Brook.

The same old question is, “what is quantum field theory?” and “when are
two quantum field theories physically equivalent.” I’ll focus today on quantum
correlations. Whatever the path integral is, the data could be put into two parts,
something “transcendental” and something “algebraic.” The transcendental part I
don’t know, it’s some kind of integral that I don’t know how to define.

If I have an equivalence class of quantum observable, I can put 〈O〉, that’s
transcendental, but the two point, three point, correlations, those are algebraic and
determinable.

Let me give a stupid example. Let A = R[x] with the classical action S = x2

2 .

Here the partition function is
∫∞
−∞ e

−x2

2 dx = 〈1〉. Normally I’d normalize this and
get

〈p(x)〉 =

∫
p(x)e−

x2

2 dx/

∫
e−

x2

2 dx

It’s easy to evaluate this without doing any integrals. So if ρ = d
dx − x then

〈ρp(x)〉 = 0.
So it’s easy to figure out that x2k−1 ∼ 0 by ρ and x2k ∼ (2k − 1)!!1.
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When you learn to compute the path integral, your model is the Gaussian or
S2 or something. Let me give one more example, also maybe stupid. Let A be
a complex valued polynomials in y and x0, . . . , xn, and S = yG(x), where G is
homogeneous. I can imagine ρµ = ∂

∂zµ −
∂S
∂zµ for zµ = y, x.

Then the equivalence classes are the primitive parts of the middle dimensional
cohomology of XG, a hypersurface in CPn. Of course this is closely related to BV
quantization.

Then we, anyway, the BV setup is basically, we extend this algebra into, adding
antifields, R[x, η], where η is a degree −1 element squaring to zero and commuting
with x, so this is A−1⊕A0. Then starting with ρ you can define a differential, you

can say K = ρ ∂
∂η = ∂2

∂x∂η − x
∂
∂η .

Then we consider (A,K) → (R, 0), a cochain map to the ground field, so A0 =

R[x]→ x it’s just the integration
∫∞
−∞( )e

−x2

2 dx/
∫
e
−x2

2 dx then this is a cochain
map. This is how BV quantization works, roughly speaking. We can regard this as
a classical action, but the ρ is some kind of quantum symmetry. You can do exactly
the same thing and for c, this path integral, you can construct this for any middle
dimensional cycle. This turns out to be the period integral for the hypersurface.

Usually to compute periods, you consider deformations of this action functional
and decide how the expectation value changes as you deform it. You have some
version of the Gauss-Manin connection and that gives you a Picard-Fuchs equation
that you solve to evaluate the integral.

Most of the problem is that the measure is not really defined. How do you define
K? That’s really hard, I think Kevin will explain. [Laughter].

As a physicist, people used BV-quantization to ensure that things were indepen-
dent of gauge choice. But I think it’s much more. We can use it to figure out things
without doing any path integral.

So that’s the idea. But the other thing we know is that if X and Y are ob-
servables, and this is a map to the ground field A →?, and we know 〈X · Y 〉 =
〈X〉〈Y 〉+ ~ · · · . This is not an algebra homomorphism c, we never deal with alge-
bra homomorphisms. Secondly, if you take ~ = 0 then the correlations go away and
we’re dealing with algebra maps, then the morphism is evaluating some function.
If the ground field is k, then this is a k-point in the underlying space. Quantum
field theory seems to suggest that we change the definition of the point. Perhaps
we should should change geometry to a quantum correlated space. I don’t know
how to do that.

So I’d like to talk more about correlation. Let me start with classical correlation
and then move to quantum correlation. There’s a notion of algebraic probability
space. So A is a unital associative algebra (commutative today) with a k-linear
map to k which preserves the unit. An element of A is a random variable and ι is
the expectation map. Then they want to know a couple of types of things. I want
to know the distribution, ι(etx), so this is the expectation value of xn. They also
like the notion of independence.

They have for this purpose the notion of cumulants, there are ϕιn : SnA → k.
Instead of writing combinatorial formulas, let me write some examples:

ϕ1(X))− ι(X)

ϕ2(X,Y ) = ι(XY )− ι(X)ι(Y )
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So we say X,Y are independent if ϕιn(X + Y, . . . ,X + Y ) = ϕιn(X, . . . ,X) +
ϕ1
n(Y, . . . , Y ).
So let me define for γ =

∑
tixi, we can write ι(eγ) = eF where F =

∑
1
n! tα1 . . . tαnϕ

ι
n(xα1 . . . xαn).

So we should interpret this as an L∞ map. So look at A → k. Then say we
have a Lie algebra and representation, faithful, ρ : g → Endk(A) such that ιρ = 0.
This is something we can consider. I want this ρ to act on A as a linear differential
operator of finite order.

So in this case, what is the order of this differential operator? I can look at the
iterated commutation

[. . . [[ρ(g), LX1
], LX2

], . . . , ], LXn ]1A

which i’ll call `ρn(x1, . . . , xn). We say this is order k if `
ρ(g)
k+1 vanishes but `

ρ(g)
k does

not.
So this is a symmetry and I’ll extned the notion of probability space and I’ll

extend this to commutative homotopy probability space, which really involves some,
it’s a unital graded algebra A,K, 1A, and K2 = 0 and K2 = 0, and K1A = 0. Then
I consider a map c to the ground field (k, 0, 1), and let’s say this is a chain map,
and cK = 0 and c(1) = 1, defined up to homotopy. Using this symmetry, if
you have this original problem with a symmetry in (g, ρ), I’d like to replace A
with, consider a projection A/ρ(A). Then replace this with a graded piece of the
differential, I get A embedded in (A,K) as an algebra homomorphism and h is a
cochain quasiisomprhism such that this diagram commutes:

A

γ

��

φ{{

ι

!!
A/ρA ~

A,K
h

==
c

cc

Then I’d like to form a category of these guys, the objects are graded algebras with
unit and differential. This is an object. A morphism should be a unit preserving
cochain map. Then a morphism should have 1 goes to 1 and preserve the differential.
First of all, K does not need to be a derivation of the product. Another thing is
that f does not need to be an algebra homomorphism. So you get

AC //

��

A′C

��
AL // A′L

So we can do this for our example

AC //

��

(k, 1, 0)

AL]

;;
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We have no obstructions to going to the homology so this is

AC //

��

(k, 1, 0)

(H, 1H , 0)
φH // AL]

;;

This functor is a homotopy functor, which depends only on the L∞ homotopy type
of φH and φc.

So we write down κHn = (φc • φH)n The entire partition function is just

Z(t) =
∑

e
1
n!κ

H
n (γ,··· ,γ)

where γ =
∑
tiei.

We may say that φc is from ι, but a big problem is the homotopy type of ϕH .
That’ll be a problem in quantum field theory.

So now I want to go to the quantum correlaton. By the way, from the previous
example, it’s clear that c should not be an algebra homomorphism, but why should
K not be a derivation? Being zero moment doesn’t mean that X2 has a zero
moment. In quantum field theory, if my observables are classically independent,
then we expect that the map will be an algebra homomorphism and the differential
to a derivation in the classical limit.

For the quantum, the QFT-algebra, more precisely binary CQFT algebra, define
this in (A[[~]], 1A,K) where K =

∑
K(i)~i where K(n) : A → A of degree 0. We

should have K2 = 0 and K(1) = 0.
We can make `Km : Sn(A[~]) → A[~] and this is an L∞ structure but we also

want this to be divisible by ~n−1.
So the failure of being a derivation is divisible by ~, et cetera.
This is the CQFT algebra, a natural derivation of BV algebras. In many exam-

ples you get K0 + ~K(1) and that’s just BV.
So now what’s a morphism, we want the descendent L∞ map which is divisible

by Φfm to be divisible by ~n−1.
When we divide, this νn = 1

~n `
k
n.

Let me write down some important parts of this. We have B[[~]]e
−S[[~]]

~ , then we
have

f(B[[~]]e
−S[[~]]

~ ) = B′[[~]]B′[[~]]e−S
′[[~]]/~.

We’d like to determine the quantum correlations. I’d like to mention, in this re-
maining time, make one remark and suggestion, which is that, if you statr with a
QFT algebra, then the algebra I’ve defined is an L∞ algebra. This is only pick-
ing up some L∞ morphisms, the special ones which are giving special choices of
coordinates, related to the special coordinates in geometry. [missed some]

Another remark is about the quantum master equation. What is this? Of course,
K2 = 0 we solved, so what’s a quantum observable, it’s something annihilated by
K and x ∼ x′ if x′ = x + Kλ. This doesn’t mean that the two point functions of
these two are the same.

You’d rather solve this equation:

KetX/~ = 0.

We can’t solve this, we try to find some corrections, but anyway, we wantKe−
γ
k = 0.

This is parameterized by a parameter ring. This is the same as K(γ)+ 1
2ν2(γ, γ)+. . .
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Then an algebra homomorphism of parameter rings sends solutions to solutions.
It turns out that this L∞ algebra, because it’s coming from something deeper, well,
you can build then in a different way, the deformations are not just governed by
an L∞ algebra. Now you get more morphisms. So the same remark the, if you
reduce to the cohomology you get a map to the ground ring, but it doesn’t need
to be a homomorphism. One should develop a version of this, maybe we’ll even
do a quantum space, the points are quantum correlated. Of course, you can have
multiple arity version. By the way, the analysis, you can do this only for anomaly
free quantum field theory, whatever it means. Okay, sorry for this completely
disorganized talk.

4. Kevin Costello: the details no one else wanted to talk about

I’ll start with a continuation of Owen’s talk, say some things about the quantum
master equation, I haven’t been thinking about this for the past several years, so
this will be pedagogical. I won’t say that it’s homological integration in a lengthy

way. If M
f→ R, then O(T ∗[−1]M) = C∞(M) in degree 0, then C∞(M,TM)

in degree −1, and then C∞(M,∧2TM) in degree −2. Then dµ ∈ Ωtop(M) with
dµf = ef/~dµ and divergence with respect to dµf goes V ect(M) → C∞(M) and
is 1

~ ιdf + Divdµ. So this operation, ~Divdµf = ιdf + ~Divdµ gives a differential

on polyvector fields PV (M)[[~]] = O(T ∗[−1]M) and H0(PV (M)[[~]]) is functions
modulo divergence.

One more subtlety, you could have f ∈ O(T ∗[−1]M) as before you can consider
this bracketing with f plus ~Divµ, where you notice that {f, } = ιdf . So what
I wanted to get to was the quantum master equation, which is that ({f, } +
~Divdµ)2 = 0. This is necessary to make sense of this complex. My goal is to
explain how to do this in infinite dimension and what are the problems.

So Owen gave a definition of the classical BV field theory. I’ll give some examples.
Take a scalar field theory on a manifold X. Then in BV, the fields are smooth
functions on X in degree 0 and top forms on X in degree 1. This is, if X is
compact, then you can pair these, this is more or less T ∗[−1]C∞(X), this is the
kind of thing you might want to consider for integrals of smooth functions.

Owen explained what functions, this complex, let’s call it E , Owen explained
that O(E) =

∏
nHomcts(E

×n,R)Sn . For example, in degree zero, we might have,
well, let’s see. If I take ω ∈ Ωtop(X), I get F : E → R by F (φ, ψ) =

∫
φω. Here φ

is in degree 0 and ψ is in degree 1. This is a linear function of the φ field. More
generally, I could have some g, a smooth function, and define G(φ, ψ) as

∫
X
gψ.

These are basic linear functions on fields.
More generally, what kind of things can I pair with smooth functions? I can use

distributional coefficients and a distribution to pair with top forms. So g can be a
distribution. Let me give a slightly more general example.

If I have B ∈ Ωtop(X × X) then FB(φ, ψ) =
∫
X×X φ(x1)φ(x2)B(x1, x2). More

generally, B can be distributional.
An important ingredient in all of these things is the Poisson bracket on these

spaces of functions. Let’s try to compute some Poisson brackets explicitly and see
why it’s a bit of a tricky beast. What I’ll do is write down the Poisson kernel.

This will be some tensor, inside a completion of E ⊗E . This E is smooth sections
of a trivial bundle plus top forms, C∞(M,R ⊕ ∧topT ∗M [−1]) =: C∞(M,E). So
E⊗̂E = C∞(M2, E �E). If I have Ē (meaning distributional sections, very general
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singularities) I’ll write

Ē⊗̂Ē
, distributional sections of E�E on M2. Expanding the tensor using linear algebra
rules, I get Ē⊗̂Ē =

Ω̄0(M ×M) Ω̄n,0(M ×M)⊕ Ω̄0,n(M ×M) Ω̄n,n(M ×M)
0 1 2

where I’m using the subscript to say which factor of the product the forms come
from, the first or second factor of M ×M . Okay, so Π = δdiag ∈ (Ē⊗̂Ē)1.

Let’s compute some brackets. If I take some ω, then Fω(φ) =
∫
φω. Later on, if

I take g ∈ C∞(X) then Fg(ψ) =
∫
ψg. Then

{Fω, Fg} =

∫
X

ωg

Why is this? I just pair the tensors together. Note that ω and g could be distribu-
tions, they were defined perfectly well, but in that case, this Poisson bracket would
be ill-defined.

This is what Owen referred to earlier in his talk.
The next thing we might like to understand is the BV Laplacian. So as we

learned in Jae-Suk’s talk, I have my Poisson tensor, in some completion, if we have

a function F ∈ Ŝym
∗
E∗, in

∏
Hom(E×n,R)Sn , then ∆F is going to be contracting

F and Π. So let’s do a simple example to see what this looks like. Suppose I take
B ∈ Ωn,n,0(X3), then I get FB(φ, ψ) =

∫
X3 B(x1, x2, x3)φ(x1)φ(x2)ψ(x3). Then

(∆FB)(φ, ψ), I just put my Poisson kernel in two of these guys, this is∫
X×X

φ(x1)B(x1, x2, x3)

so now we see why there might be a problem.

Problem 4.1. This is very often ill-defined

We want a quantum master equation for a local functional S but ∆S will involve
multiplication of distributions. So if B is a delta function of a small diagonal, so
that the corresponding functional FB is local, this implies that ∆FB is ill defined.
It involves restricting this distribution and setting the variables to be the same.
But this involves multiplying distributions which is very bad.

Next I want to say how to solve this problem using homotopical things.
So first let’s assume our action functional can be written as some kind of kinetic

plus some kind of interaction term and that the kinetic term, for simplicity is the
usual term Skin(ϕ) =

∫
ϕ D︸︷︷︸

Laplacian

ϕ and S(ϕ) = Skin(ϕ) + I(ϕ). Then

Π = δdiag ∈ Ē⊗̂Ē

and we can consider a mollified version ΠL = (e−LD⊗1)Π ∈ E⊗̂E , hit this with the
heat kernel and smooth it, it’s no longer distributional. Now we let the Laplacian
of L and the Poisson bracket of L be the Poisson bracket and BV operator coming
from ΠL. Now it’s easy to see that then ∆L and { , }L are always well-defined
because the issues previously were multiplying distributions, now we have something
smooth, I can multiply anything with that and I have no problem.
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You might wonder why you’re allowed to do this. I can always change the Poisson
bracket by a homotopy. The desingularized guy is homotopic to the original one.
That is, ΠL is cochain homotopic to the original one Π, and what’s the cochain

homotopy? It’s the propagator
∫ L

0
Ktdt ∈ D(X×X) ∈ Ē⊗̂Ē of degree 0, integration

with the heat kernel.
Now I see my disorganization catching up to me, I forgot to tell you the differ-

ential, but Owen did. It’s a homotopy with respect to the differential C∞(X)
D→

Ωtop(X) on E coming from the quadratic term in the action.
So why is this a homotopy? I apply my differential to this, and P (0, L) is

the kernel for the operator of degree −1 from Ωtop → C∞(X) which sends ω 7→∫ L
0

e−tDωdt
dV olg

.

It is an exercise in integration by parts to check that this is the homotopy.
Before we wanted a local functional I which satisfies

QI +
1

2
{I, I}+ ~∆I = 0.

We’ve realized some of the terms are badly defined, so now we want a functional
I[L] which satisfies

QI[L] +
1

2
{I[L], I[L]}L + ~∆LI[L] = 0.

We haven’t gotten to the end of the story. Notice there’s a word here up top which
isn’t there below, which is “local.” Our kernels are all homotopic for different L.
The BV algebras are all homotopic so I should be able to translate solutions for the
scale L quantum master equation to any other scale. Then we’ll be able to think
of locality.

The homotopy given by ΠL ∼ ΠL′ is
∫ L′
L
Ktdt, which should imply that we can

transfer solutions to the quantum master equation for ΠL to those for ΠL′ .
There’s a very simple formula for it, and this formula is something you can

discover just by thinking about homological algebra. So if I[L] satisfies the ΠL

quantum master equation, we let W (P (L,L′), I[L]) be∑
γ,conn

1

|Aut Γ|
Γ

where I put I[L] on each vertex and put P on each edge. So then if the first one
satisfies it for ΠL, the second one does for ΠL′ . I’m sure homological people can see
easily why this is true. Then you apply your differential and the terms all cancel.

If you use the formula e~∂P (L,L′)eI[L]/~ it’s much cleaner, I thought this notation
would take too long to explain.

Instead of a solution I[L] for a single L, we want I[L] for all L > 0 related by the
equation W (P (L,L′), I[L]) = I[L′]. Why am I bothering with this if I can get one
from the other? But let’s think about what we were missing, we wanted an action
function that was local and satisfied the quantum master equation. Now locality
should be easy to guess, which is that as L tends to zero, this becomes more and
more local. So I[L] is approximately local as L → 0. You have to be careful, the
L→ 0 limit will not exist, but we can still say there is an asymptotic expantion, or
there’s exponentially fast decay near the diagonal, or instead of scaling, you use a
parametrix.



14 GABRIEL C. DRUMMOND-COLE

That’s nice, it’s a definition, but can you construct these? Let O`(E) be the local
functionals. It’s a cochain complex with differential Q + {Icl, }. Then term by
term in ~ there is an obstruction O ∈ H1(O`(E)) to quantizing to the next order
and if this obstruction is equal to zero, the set of quantizations to the next order is
a torsor for H0(O`(E)). So, what’s it saying? Given the classical action functional.
This will tell you whether you can quantize and if you have many choices, in nice
cases.

So next time I want to explain what this is good for and how you can use it
to recover the operator product and correlation functions. If you take Yang-Mills
theory on R4, there is a one parameter family of quantizations which are Iso(4)-
invariant and “compatible in a certain way” with scailing R4. The proof is that
computing the cohomology groups, H1 vanishes and H0 is one dimensional. In
physics people care about renormalization. Typically a scale invariant classical
theory doesn’t quantize to a scale invariant theory, but you want it to be true up
to a logarithmic term.

Let me stop there unless there are questions.

5. September 30: Vasily Dolgushev, Operads, homotopy algebras, and
all that jazz

Thank you very much, I’d like to thank the organizers for the opportunity to
give lectures. I’ll also thank my in-laws for taking care of my children while I am
here, and they will also watch the video.

The goal of these three lectures is to answer the question “what do homotopy
algebras form?” The lectures will be partially based on three papers. One is with
Chris Rogers, “On enhancement of. . . ” The second, also with Chris, is “A version
of the Goldman-Millson theorem. . . ” The third, with Alex Hoffnung and Chris
Rogers is “What do homotopy algebras form?”

The reason I put Chris in blue is because he’s looking for a tenure track job.
Erdös had this idea of the book, where mathematics was written in ideal form. I

feel like this material is from the book. These lectures, though, may be quite basic
and uninteresting to a specialist. If they are interesting, I do not imply that you
are not a specialist.

I will let k be a field of characteristic zero and I will often be talking about cochain
complexes of k-vector spaces, on which I will assume no boundedness condition.
By Hom I mean the inner hom in the category of cochain complexes. Hom and ⊗
will be over k. Then s and s−1 will be shift operators. If I have a cochain complex
or graded vector space, then (sV )· = sV ·−1. So think of s as a variable of degree 1.

Sometimes I will use |v| to mean the degree of v, provided it is homogeneous.
Then Sn will denote the symmetric group on n letters, the group of permutations.
If I have a vector space and Sn acts, then WSn will be the space of invariants and
WSn the quotient space of coinvariants. Let me apologize in advance, sometimes I
will lie, they will be technical lies, I’ll tell you, “I am lying here,” I hope I won’t
forget to tell you.

Let me start with an example. Let (A, ∂) be a cochain complex. I’ll form another
cochain complex

LA =
∏
n≥2

Hom((s−1A)⊗n, s−1A)
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I claim that this is naturally a differential graded Lie algebra. The differential
is inherited from A, and the bracket, let me not write a precise formula, but let
me write vaguely, I don’t change the order of arguments, but I insert the second
operator at some point, and then change the order:

[P,Q]G(a1, a2, . . .) =
∑
i

±P (a1, . . . , ai−1, Q(ai, . . .) . . .)− (−1)?(P ↔ Q)

Definition 5.1. An A∞ structure on a cochain complex (A, ∂) is a degree one
element in LA such that

∂m+
1

2
[m,m]G = 0.

If I unfold this definition, I have a collection of operations. m2 : A⊗A→ A will
have degree 0, then m3 : A⊗3 → A will be degree −1, and so on. These will satisfy
a complicated sequence of quadratic equations.

The first equation tells us that m2 is compatible with the differential. The second
equation tells us that m2 is almost associative. It’s associative up to homotopy.
Then m3 is the corresponding homotopy operator. Then every differential graded
associative algebra is an A∞ algebra with m3 = m4 = · · · = 0.

This is the first incidence when I’m lying a little bit. In this case I’m lying a
little bit, m2 is actually multiplication up to a sign.

Let me give an example of geometric origin. Let M be a compact manifold
without boundary. Consider exterior forms with the de Rham differential. This
is a great differential graded algebra, even (graded) commutative, so it’s an A∞
algebra. If we choose a metric on M , then we can talk about harmonic forms, let
me denote their graded vector space by H·(M). Now Hodge theory tells us that
the graded vector space of harmonic forms is isomorphic to the real cohomology of
M . But it gives us more than that.

So first of all, (H·(M), 0) is a subspace of (Ω·(M), d) (via i). Hodge theory also
gives us a projection operator p. Using Green’s function we can build a homotopy
χ : Ω·(M)→ Ω·−1(M) such that i ◦ p+ d ◦χ+χ ◦ d = idΩ·(M) and p ◦ i = idH·(M).

One problem with dealing with harmonic forms is if I multiply two harmonic
forms, usually it’s not a harmonic form. It seems that I’m losing the product here.
I can take the harmonic forms, multiply them, and project, so a1 • a2 = p(a1 · a2).
This is associative and commutative. So we have this algebra (H·(M), •) which is
nice but we lose information about M .

I want to tell you that this • is part of an A∞ structure.

Claim 5.1. Using p and χ one can construct an A∞ structure on H·(M) with the
zero differential such that m2 = •

So for n ≥ 3 I need to construct mn(a1, . . . , an) in H·(M). This is constructed
as a sum over planar rooted trees with n leaves as

∑
±mT (a1, . . . an)



16 GABRIEL C. DRUMMOND-COLE

So here is what I have to do for mT : I take my tree

a2 a3

•µ

χ

a4

a1 •µ

χ

•µ

p

and I put χ on each internal edge, µ on each trivalent vertex, the arguments on the
incoming leaves, and p on the root. Then I read downward. If you do this right,
you get an mn that makes an A∞ structure which remembers more information.

If you want examples, let me give references, Babenko-Taimanov or Fernadez-
Muñoz, “The geography of non-formal manifolds.”

If you change the metric, you get the same homotopy class of A∞ algebra.
So what I showed you is a baby example of a transfer theorem. Every homotopy

algebra should have a transfer theorem. I can mention another motivation. When
I read papers about Chern-Simons invariants, whatever it means, it seems that
constructing these is applying some kind of homotopy transfer theorem. In the
quantum sense it’s some version of homotopy transfer.

When you mention a name, there may be someone in the audience who will say
“I did it earlier and much better.”

So now I can actually start my lectures. I’ll need to talk about such things as
operads, cooperads, cobar construction, things like this.

Let me say

Definition 5.2. A collection is a collection {P (n)}n≥0 so that each P (n) carries
a left action of Sn.

The example, if V is a vector space, let EndV (n) be Hom(V ⊗n, V ). Clearly
Sn acts. But we can also compose and let’s see what we have. So we also have
a special element id in Hom(V, V ). Then to every labeled planar tree t we get a
composition.

2 4 1 3 5

• •

•
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So this gives a map µt : EndV (2) ⊗ EndV (2) ⊗ EndV (3) → EndV (5) by inserting
the maps on the vertices and composing.

This is an example of an operad.

Definition 5.3. An operad O is a collection {O(n)}n≥0 with e ∈ O(1) and every
labeled planar tree t gives µt : O(n1)⊗ · · ·O(nr)→ O(n) where n is the number of
leaves of t and ni is the number of edges terminating at the ith vertex.

This data should satisfy axioms. There are two types, one about compatibility
with the Sn action. There is also an associativity law which can be explained by
saying that it doesn’t matter what order we contract edges in. The special element
should play the role of the identity.

Okay. so EndV is called the endomorphism operad of V .
You may wonder about morphisms of operads, P and O. These are maps of

collections compatible with the structure, so P(n)
ϕn→ O(n) that are compatible

with multiplications which send the identity to the identity.

Definition 5.4. Given an operad O and a vector space V , we say that V is an
algebra over O if we have an operad morphism ϕ : O → EndV .

Many algebraic structures are algebras over operads, like associative algebras, Lie
algebras, and so on. If I consider {As(n)}n≥0 where I let As(0) = 0 and As(n) the
regular representation of Sn, k[Sn], then As is naturally an operad and As-algebras
are associative algebras without unit.

Here is another collection {Com(n)}n≥0. Then Com(n) is k with the trivial
Sn action (with Com(0) = 0). Then Com-algebras are commutative associative
algebras without unit.

There is also a Lie operad. What is Lie(n). Take the free Lie algebra on n
generators Lie(a1, . . . , an). Look inside this at Lie words satisfying the property
that every generator appears exactly once. For example, Lie(a1, a2, a3), then I
can’t use the word [a1, a2] or the word [[a1, a2], a2]. But [[a1, a2], a3] is allowed.
Take the span of such “admissible” Lie words and you get Lie(n).

I started a little late. Let me go on a little bit. The category of operads has
an initial object ∗, which is ∗(1) = k and ∗(n) = 0 otherwise. Then ∗ is initial in
operads. Since every operad has the identity element, this is initial.

Definition 5.5. We say an operad is augmented if we have a morphism O → ∗.

For the purposes of my lectures, I’ll assume my operads are reduced in the sense
that O(0) = 0 and O(1) = k. Then all such operads are augmented.

6. Kevin Costello, Part II

What I’m going to talk about is joint work with my esteemed collaborator Owen,
so I’d like to start with classical observables in a field theory and then I’ll talk about
quantizing.

Consider again the simple case of scalar field theory, where fields are ϕ in C∞(M),
and the action functional might be, for example, S(ϕ) =

∫
ϕ∆ϕ+ ϕ4 Consider an

open subset U ⊂ M . Then we want to define observables on U to be O(C∞(U)),
but where we divide by V (S), the ideal defined by applying a vector field V to S.
At the quantum level, we want something that looks like, this is too naive, but we
want O(C∞(U)) modulo the subspace which looks like Dive−S/~dLeb(V ). This is
the functional measure in the subscript.
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Let’s see how this works classically first.

Problem 6.1. If ϕ ∈ C∞(U), then S(ϕ) is not really defined because
∫
U
ϕ∆ϕ+ϕ4

might not converge.

We’ll have to modify our approach. But if I have α a compactly supported
function, then ∂S

∂α is a function on C∞(U). We learned this in high school, the
Euler-Lagrange equations. So why is that? If I take this function, and I look at
α∆ϕ and αϕ3, then this has compact support so the integral converges nicely.

Because S(ϕ) is not really a function we can’t apply a vector field to it. This
tells us, well, S is not a function but dS is a closed one-form on C∞(U) along the
leaves of the foliation given by C∞c (U) ⊂ C∞(U).

If we write V ectc(C
∞(U)) for the vectro fields along the foliation, then we do

have V ectc(C
∞(U))

∨dS
to O(C∞(U)) makes sense. So V ectc(C

∞(U)) looks like∏
Homcts(C

∞(Un), C∞c (U))Sn .
We can actually go a little bit further. Suppose instead of having a compactly

supported smooth function, this was a compactly supported distribution. Then
∂S
∂α (ϕ) makes sense for all ϕ ∈ C∞(U).

Again, if you replace one ϕ with an α everywhere, I get a compactly supported
distribution, which I can integrate. So there’s an extra continuity property, meaning
it’s well defined on some sort of bigger thing.

So if V ectc(C
∞(U)) =

∏
Hom(C∞(U)×n, Dc(U))Sn , this is a nonlinear map

from smooth functions to compactly supported distributions, these are vector fields
with compact support and singularities. Bar means distributional.

Okay, so with these more singular vector fields, the operation of contracting
with dS with these guys, ιdS : V ectc(C

∞(U)) → O(C∞(U)) makes sens and
H0(Obscl(U)) is the cokernel.

Let’s recall that in BV, we said our fields are E(U) is C∞(U) in degree 0 and
Ωn(U) in degree 1.

So consider functions on E(U). In degree 0, it will be O(C∞(U)). In degree −1
it will be O(C∞(U)× Ωn(U)) which are linear in Ωn(U). We can write this as∏
k≥0

Hom(C∞(U)×k×Ωn(U),R)Sk =
∏
k≥0

Hom(C∞(U)×k, Dc(U))Sk = V ectc(C
∞(U))

where Hom means multilinear maps.
So now what we find, in these functions on fields on U , with the differential

bracketing with the action functional, (O(E(U)), {S, }), this looks like

PV c(C
∞(U))→ V ectc(C

∞(U))
{S, }→ O(C∞(U))

If α is a compactly supported distribution in Dc(U) ⊂ V ectc(C
∞(U)), then as

an example of the simplest bracket, {S, α} = ∂S
∂α .

Now let’s imagine we live in a fantasy world and see what we’d expect and then
make it rigorous. Naively, at the quantum level we expect that quantum observables
should be functions on E(U) with the differential {S, }+ ~∆.

Last time we saw this doesn’t make much sense. But let’s for the moment proceed
in this naive way and see what structure we would find. Recall that divergence with
respect to eS/~dLeb is 1

~ ιdS+∆ soH0Obsq(U) = O(C∞(U))/divergence for functional measure.
So normally for a compact manifold you expect the functions to be one-dimensional.
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But for us, typically H0(Obsq(U)) is infinite dimensional unless U = M is a com-
pact manifold.

So the simplest thing we find is, we suppose that H0(Obsq(M)) is one dimen-
sional over ~ (this happens every time your theory is massive, for example), then
the map H0(Obsq(U))→ H0(Obsq(M)) is the functional integral. This is true up
to scale because they have the same kernel.

So what properties would we expect this to have. If U ⊂ W then we expect a
cochain map Obsq(U)→ Obsq(W ). We just view our function on one as a function
on the other.

As before, we expect Obsq(W ) to be commutative algebras but where the differ-
ential is not a derivation. So we have a map, if U, V ⊂ W are disjoint, we have a
map Obsq(U) × Obsq(V ) → Obsq(W ) which takes a pair of observables O1,O2 to
O1O2.

The key point is that we expect that this map is a cochain map. In the language
of Jae-suk’s talk, [unintelligible].

Let’s apply the differential to see,

({S, }+~∆)(f1f2) = {S, f1f2}+~∆(f1f2) = {S, f1}f2+f1{S, f2}+∆(f1)f2+f1∆(f2)+~{f1, f2}

So if f1 and f2 have disjoint support, then Π the kernel for { , } is δdiag. and
so disjoint support means that {f1, f2} = 0 so then the differential really is a
derivation.

It’s important to realize that the commutative product of observables is only
really defined if they are disjoint.

So we’ve sketched why Obsq should be a factorization algebra. For every U we
have a cochain complex Obsq(U) and for every inclusion U ⊂ W a cochain map
Obsq(U) → Obsq(W ). We also have for every disjoint union of U and V in W
we have a cochain map Obsq(U) × Obsq(V ) → Obsq(W ). This should have an
associativity property.

We were pretty sloppy, we ignored the issues, ∆ is badly behaved, things like
that, we have to make sense of all these things. What I want to sketch is how to
construct all of this rigorously, that is, Obsq(U) and the factorization structure we
expect.

Last time we defined a quantum field theory to be some functionals I[L] ∈
O(E(M)) which satisfy renormalization group flow and a quantum master equation
built from ΠL which is (e−L∆ ⊗ 1)Π where Π = δdiag.

Let’s define this for U = M first and then realize them for other things as
subspaces.

Obsq(M) = O(E(M))[[~]]

with differential d + ~∆L + {I[L], }L. Last time we noted that all of these dg
BV algebras are homotopic for different L. Last time we translated solutions of the
quantum master equation from one L to another, we’ll do something similar here.

If I have O ∈ O(E(M))[[~]], it’s closed, that’s true if nad only if I[L]+εO satisfies
the quantum master equation modulo ε2. The idea is that we’ll let O depend on L
so that when L is small it lives in a neighborhood of [unintelligible].

So an observable on M is a family O(E(M))[[~]] for all L > 0 related by the
equation W (P (L,L′), I[L] + εO[L]) = I[L′] + εO[L′] modulo ε2. Because this oper-
ation is invertible, then quantum observables on M is a vector space and RG flow
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intertwines the differentials d+ ~∆L + {I[L], }L. Say defining

QO[L] = dO[L] + ~∆LO[L] + {I[L],O[L]}L

makes Obsq(M) into a cochain complex.
We say that O is supported on U if O[L] is supported on U for L → 0 (maybe

to be precise this is something like exponential decay away from U).
The last thing we need is the factorization product map. If U and V are disjoint,

and OU and OV are observables, then at scale L, we say that OU · OV is defined
(OU · OV )[L] = OU [L]OV [L] as L → 0.The key point for this to be a cochain
map is that if L is very small, then (d+ ~∆L + {I[L], }L)(OU [L] · OV [L]) is the
derivation terms plus {OU [L],OV [L]}L where as L → 0, OU is supported on U ,
OV is supported on V , and { , } is supported near the diagonal.

I’m out of time so thank you very much.

7. Ryan Grady: Moduli/β-functions for BV theories

[Note: I did a particularly bad job taking notes for this talk. My apologies!]
I want to start with a sort of risky cartoon, hopefully not meant to be funny

but still a bit of a cartoon. Let’s pretend we have a reasonable notion of a space
of theories, and pretend there’s a flow on this space. Let me choose some units, so
let’s use the parameter `, which has units length which is the inverse of energy.

Let’s suppose that I have a point in that space, and consider a flow line through
here, okay, and so I might hope that as ` goes to zero, I go to some fixed point.
There’s no a priori reason to assume that this is the only thing flowing from such
a fixed point, and I could have a whole space of flow lines out of my fixed point.
What might I ask?

I could ask for a flow to a fixed point as `→ 0 and I could ask that the unstable
manifold is finite dimensional. The point is that if we are, if we know the fixed
points, to say which flow line I’m on, I only need to specify a finite number of
conditions. The idea of point one is to relate measurements at a nonzero value of
` and relate this to the high energy limit.

This is only a not-wonderful motivation, but I want to extract a couple of things
that are going on.

We have a flow here, which is (local) renormalization group flow. and we have
an infinitesimal generator, which I’ll call a β-function. That’s great if you’re fixated
on this cartoon, but what is the output?

Theorem 7.1. (Friedan, 80s); (G.-Li); (Nguyen 2014)
The two dimensional non-linear sigma model, maps from Σ to a Riemannian man-
ifold X has local RG flow given by Ricci flow on X modulo ~2.

So this is some way of saying you can have a clue of your geometry from baking
this cartoon precise.

So as before, let (E , S) be a space of fields and an action functional. The setup I
want is that the space of fields admits an action of the semigroup of positive reals.
So E has an action of R > 0. So here Rλ : E → E induces an action on O(E) 3 Φ.
So

(RλΦ)α = ΦRλ−1α.

We’ll say Φ has weight m if RλΦ = λmΦ.
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One important caveat we’ll ask here is that this classical action functional have
weight zero. It’s a good exercise to see what the weight of your favorite functional
is over your bowl of lucky charms tomorrow.

I’ve only talked about the classical theory here. I want to point out that there’s
a way to go from local action functionals to effective theories via RG-flow.

Theorem 7.2. (Costello)
Let me not be too precise, but for a suitable class of theories where S is a qua-
dratic part plus an interaction term Q + I, there exists a BV theory, with I[L] =
limε→0W (PLε , I + Ict(ε)).

Theorem two, let me say in words, there’s an obstruction theory for this being
quantizable.

Definition 7.1. Suppose that we have a collection {I[L]} of effective interactions
and we want to define a new operator on these action functionals, define local RG-
flow (RGλI)[L]. What is this? It’s RλI[λ−2L]. I set this up to also scale the length
scale. This is my local RG-flow.

You should check that if these guys satisfy the non-local RG-flow and the quan-
tum master equation, then under local RG flow these conditions will be preserved.

Proposition 7.1. If {I[L]} satisfies standard flow and the quantum master equa-
tion then so does the family {RGλI[L]

How do we pick off our beta function?

Definition 7.2. Define β[L] to be the limit as λ→ 1 of λ ∂
∂λ (RGλI)[L].

It’s not clear that this contains interesting information but I hope to convince
you that it does.

This has higher loop information. It’s indexed by the genus arising in RG flow.
[missed]

Now β[L] = β0 + ~β1[L] + ~2β2[L]. So modulo ~ there is nothing there. I’m
really only interseted the [missed].

I don’t want to discuss existence, but maybe I’ll work with one guy and ask that
the limit exists as L→ 0. I’ll define β1 as the limit of β1[L]. You can think of this
as following from this proposition

Proposition 7.2.

[β1] ∈ H0(Oloc|E , {S, })

This homology group is basically the tangent space.
Okay next we’d like a way to pick off this function in terms of our quantization.

Suppose that we’ve obtained our effective action by taking W (PLε , I−Ict(E)). This
is our BV theory. Let’s assume that our counter terms have the form Ictε .

So uh, in good situations, let’s assume that our counter terms look like

Ict(E) = I log +
1

ε
A+

1

ε2
B.

Then β1 = I log.
Let’s do this in an example, the example of the non-linear sigma model. It’s

convenient because Si introduced some notation yesterday. Let Σ be a curve (for
us E). I want to study the maps to X but that’s too hard.
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Yesterday Si intorduced this L∞ algebra. You could say that its what [missed]
looks like.

My space of fields is, it’ll have two bits, it’s the de Rham complex on Σ⊗gGgX [1].
I’ll add to that Ω2

Σ⊗ g[x]. Now I should tell you what the algebra is. There will be
a

S(α, γ) =

∫
Σ

`(eα)γ +

∫
Σ

h(eα, ∂zα , ∂z̄α)dzdz̄

where `(eα) =
∑
enα

⊗nn! with `n defining the L∞ algebra.
[Some discussion].
So I’ll rescale the target with the R>0 action on E . I should also take compact

support.
So this is our action, it induces an action on functionals. You should check, I’m

not going to do this, that S is invariant.
Hopefully if I put things in with the correct number of derivatives, everything

works out and it has to be invariant.
So let’s try to compute β1. What contributes to the logε business.
You need one-loop Feynman diagrams.
[Picture]
So what sort of diagrams can show up, I told you that the propagator goes on

internal edges [Missed some]. By polarizing with γ and α I figure out what needs
to be split, β1 = βg + βh.

Proposition 7.3. [β1] = [βh] ∈ H0(Qloc(E), {S, })

The point is then we need to compute what βg and βh look like.
I want to compute the βh term. The trick is to do it in terms of geodesic normal

coordinates. Let me just sort of, some of you will protest, let me finish by roughly
telling you the relevant Feynman diagrams. There’s a loop with many strands and
the involutive graph. The former is a multiple of the Ricci tensor and the latter is
zero in normal coordinates.

That’s where I’d like to stop.

8. Si Li, Part II

Last time we had (X,W,∇) where W was Ŝym(T ∗X)[[~]] and we were consid-
ering S → X with E = A∗(S)⊗ gX [1] where this gX [1] = ∧· ⊗ TX .

You have I ∈ ∧1⊗W which leads to Ĩ =
∑
k

1
k!

∫
S
I(α, . . . , α) We tried to look at

a Fedosov type problem, solving ∇I + 1
2~ [I, I] +R = W~. This leads to a quantum

master equation for Î[L]
Today we want to look at quantum observables as L→∞
Let me start with the global observables Obq(S). So O[L] is in there. This has a

differential Q+~∆L+{ĨL, }L where Q = ∇+dS . One nice thing about this global
thing is, that at L = ∞, the ∆L is contraction with the heat kernel so it becomes
purely harmonic. So then this is quasiisomorphic to something smaller and somehow
we can restrict our discussions to something smaller given by harmonic inputs. In
our example it’s the circle so it’s extremely simple, C[dθ]. In a similar way, O(E)
can be reduced to something smaller, functions on this data, O(H(S)⊗ gX [1]).

You somehow, well, let me say what this looks like. Let me introduce a bit of

terminology. Let Ω−∗W be the sheaf of de Rham of W . So this is
⊕
Ŝym(T ∗X) ⊗
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∧pT ∗X[p][[~]]. So this is the sheaf of de Rham. So functions on this harmonic piece
is the same thing as this kind of data valued in forms, O(H(S)⊗gX [1]) = ∧∗⊗Ω−∗W .

Let me start with an observable closed under the differential (satisfying the
quantum master equation) O[L]. Let me write this like, as L → ∞ we have (Q +

~∆∞ + R̃/~)O[∞]e−Ĩ[∞]/~.

Let [O[∞]eĨ/~] be the restriction to harmonic input in O(H(S)⊗ gX [1]). These
functions can be identified with ∧∗⊗Ω−∗W . My goal is to integrate these observables
on this side.

I want to ge a number in C[[~]] (probably with some negative powers in ~).
First, integrate over the fiber to get a map ∧∗ ⊗ Ω−∗W → ∧∗. The second one will
be integration over X which everyone knows.

How does this work? The toy model is like, let’s first work on fiberwise integra-
tion. Let’s look at this simple algebra A = C[[xi, ηi]] with degree of xi zero and ηi
one. We have a natural BV Laplacian

∑
∂
∂xi

∂
∂ηi

. We haveH∗(A,∆) = Cη1∧· · ·∧ηn.

If you get some information from Owen’s talk, we should replace integration with
taking H∗(∆). So

∫
f(x, η) = ∂

∂η1
· · · ∂

∂ηn
f |x=0.

We need to choose a good volume form. Let Rω−1 : ΩpW → Ωp−2
W be the contrac-

tion with ωij(x) ∂
∂yi ∧

∂
∂yj .

Definition 8.1. ∫
W

: ∧∗ ⊗ Ω−∗W → ∧
∗

is given by

α 7→ ~n

n!
Rnω−1α|y=0

This is compatible with the differential, where ∇+ ~∆∞ + R̃/~ 7→ d.

Now let O[L] ∈ H0(Obq(S)). Define the following function

〈O[L]〉 =

∫
X

∫
W

[O[∞]eĨ[∞]/~].

So this is ∫
X

e~Rω−1 [O[∞]eĨ[∞]/~]|y=0.

I need to say one more thing to connect this to the trace map.
I can do this for a bunch of local observables. If you have Ui disjoint, you get

the map described in Kevin’s talk from Obq(U1)⊗ · · · ⊗Obq(Un)→ Obq(S) where
O1 · · · On 7→ O1 ∗ · · · ∗ On. Then 〈O1 · · · On〉 = 〈O[L]〉.

Locally we have thatH∗(Obq(U)) ∼= C∞(X)[[~]] so Tr : C∞(M)→ ~−dim X/2C[[~]],
so Tr(f ∗ g) = Tr(g ∗ f). This is discussed in Owen and Kevin’s book.

This kind of trace map is unique up to rescaling, this is a theorem by Nest-
Tsygan. In particular, what we’re interested in is calculating partition functions,
so for instance what is the trace of 1. This will tell you something about the index
theorem.

Problem 8.1.

Tr(1) = 〈1〈
(the partition function)
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So basically we’ll use two symmetries, One is a cyclic symmetry on the circle,
let’s call this one θ, the coordinate on the circle. So ∂

∂θ and then ιθ, contraction

with ∂
∂θ which induces ι∗θ by duality O(E) → O(E), so this plays the role of the

cyclic differential in this story.
Now if you look at this basic fact, if you represent this one on our model of de

Rham on the Weyl algebra, this is nothing but the usual de Rham differential on
Ω−∗W , [ι∗θα] = dW [α]. Let me make it very precise. This goes

SympT ∗X ⊗ ∧qT ∗X → Symp−1(T ∗X)⊗ ∧q+1T ∗X

Last time we described one particular form

Ĩ(α) =
∑
k

1

k!

∫
S

I(α, . . . α).

This should have one one-form as input. I also have the following where all the
input should be zero forms:

Ī(α) =
∑
k

1

k!

∫
S

dθI(α, . . . , α).

Note that Ĩ = ι∗θ Ī so in particular ι∗θ Ĩ = 0. Note the

Fact 8.1. renormalization group flow and the quantum master equation is compat-
ible with ι∗θ.

Then ι∗θ Î[L] = 0.
The second symmetry, the rescaling symmetry, is the other. There is a natural

grading on W = ŜymT ∗(X)[[~]], say, give T ∗X degree 1 (call a variable yi) and ~
degree 2.

Fact 8.2. The Fedosov equation respects the W -grading.

So

∇I/~) +
1

2
[I/~, I/~] +R/~ = ω~/~.

Let E be the Euler vector field
∑
yi ∂
∂yi + 2~ ∂

∂~ . Then

∇βI +
1

~
[I, βI ] = 2~∂~(ω~/~)

Where βI = E(I/~) and the quantum observable is

β̂I [L]eÎ[L]/~ = lim
ε→0

e~P
L
ε (β̂Ie

Î/~)

Similarly,

β̄I [L]eÎ[∞]/~ := lim
ε→0

e~P
L
ε β̄Ie

Î[∞]/~.

The lemmas you need are

Lemma 8.1.

β̂I [L] = ι∗θβ̄I [L]

Lemma 8.2.

(Q+ ~∆L +R/~)(β̄I [L]eĨ[L]/~) = 2~∂~(ω~/~)eÎ[L]/~.
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[Sketch of proof, missed.] Anyway, let’s try to work with this information, let’s
get the partition function. To calculate this partition function in this example, it’s

〈1〉 =

∫
X

e~Rω−1 [eĨ[∞]/~]|y=0.

This is hard to do, but let’s see how it changes with ~. So consider 2~∂~ of the
integrand. This equals, basically, the same data

e~Rω−1 [β̃I [∞eĨ[∞]/~]|y=0

which is equal to

e~Rω−1dω[]

Well, first, let me say a little bit, basically, β̃I [L]eĨ[L]/~ − 2~∂~(ω~/~)eĨ[L]/~ which
is

Q+ ~∆L +R/~ + ι∗θ](β̄I [L]eÎ[L]/~)

So above it’s equal to

(2~∂~ω~/~)(e~Rω−1 [eĨ[∞]/~] + e~Rω−1 (∇+ ~∆∞ +R/~ + dω)(—)

So

Lemma 8.3.

2~∂~(e−ω~/~(e~Rω−1 [eĨ[∞]/~])

is exact.

So there are two parts, there’s the Â-genus and then higher correction terms.
This follows from Grady-Gwilliam. so

〈1〉 =

∫
X

eω~/~Â(X)

This is an algebraic index theorem (Fedosov, Nest-Tsygan). I think I’ll stop here.

9. October 1: Katarzyna Rejzner, BV algebras in perturbative
algebraic quantum field theory

Thank you so much and thanks for giving me a chance to talk. I find it really
inspiring to listen to all these talks and hear the connections between what Kevin
and Owen did and what I’m doing.

I want to give a flavor of the Lorentzian field theory. One hour is probably not
enough time to really explain it but I’ll make an attempt. So my talk, I’ll start with
some history, a very short introduction. This all is based on the ideas of Epstein-
Glaser, from 73, so quite old stuff. The modern approach to this dates back to the
90s, I should mention my collaborators and friends who basically came up with this
idea, K. Fredenhagen, R. Brunetti, and M. Dutsch. The idea that there are BV
algebras, what I’ll focus on, is 2011 work of mine with Fredenhagen.

Let me start with the basic setup to see how the objects I’m considering are
related to the rest of the workshop. So I start with a spacetime in Lorentzian
signature, a Lorentzian manifold. I’ll assume it’s four dimensional. We also im-
pose that it has a Cauchy surface and we call such manifolds globally hyperbolic.
This means that topologically our manifold M is just Σ × R. An example is
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Minkowski space-time, which is R4 with the metric which is the diagonal matrix
1
−1

−1
−1

.

Now the field configuration space E(M) is a space of sections of some vector

bundle over M , Γ(E
π→ M). I’ll focus on the very simple example of a scalar

field. Here E(M) is C∞(M,R), a scalar field. On the space of fields I want to
have observables. In order to have these I’ll first introduce functionals on E(M),
these are elements of C∞(E(M),R), so I require them to be smooth. It relates very
much to Owen’s talk because if I take a Taylor expansion, I will get elements of∏∞
n=0Homcont(E(M)⊗n,R).
Good. Now this is basically it about the objects of the theory. Now one needs

some restrictions on the functionals, one cannot do anything with such a big space.
So in particular we have

Definition 9.1. A local functional Floc is of the form

F (φ) =

∫
M

f(jk(φ))dµ

where jkx(φ) = (x, φ(x), ∂φ(x), . . .) up to order k.

I want products so I also take

Definition 9.2. Multilocal functionals F are finite sums of finite products of local
functionals.

Fact 9.1. The derivative of a multilocal functional is a compactly supported smooth
function, not a distribution.

There are a couple more definitions before we set off. We can be in a very nice
situation where the functional derivative is actually a smooth function. Then we
can define something like the support of a functional.

Definition 9.3. A support of F ∈ F is the closure of the union of all supports of
the derivatives of F :

∪φsupp(F (1)(φ))

Definition 9.4. A functional is regular if all its derivatives are smooth.

Are there any questions at this point before I move on? Let me show you how
the classical BV formalism arises here.

The first thing we need to define is an action. I’ll use a certain version of the
Lagrangian formalism. You can maybe already see a potential problem. If I take
a Lagrangian density and try to integrate it, it won’t make sense because it’s not
compact. To solve this, we introduce a spacetime cutoff for the functional. So we
switch on the interaction in some finite region and we just have to choose this region
large enough.

Definition 9.5. An action is a map S : D → Floc.

An example is

S0f(φ) =
1

2

∫
(−∇µφ∇µφ+m2φ2)fdµ.
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This is an action. With this I want to define some dynamics. I say the Euler
Lagrange derivative is some kind of limit of this action,

Definition 9.6. The Euler-Lagrange derivative is defined as

dS(φ) = lim
f→1

S(f)(1)(φ).

More concretely, 〈dS(φ), h〉 = 〈S(f)(1)(φ), h〉 where f = 1 on the support of h.
What is dS? As you might expect, it’s a section of the cotangent bundle to

E . I’m not really cheating. With quite natural definitions, you can introduce a
topology on E such that TE is E ×D, and in this case Γ(T ∗E) ∼= C∞(E ,D′). So dS
can be seen as a smooth function from the configuration space to D′. Now if you
want to go back to Kevin and Owen’s framework, you just have to look at Taylor
expansions of elements of such spaces.

Now I can finally define the equation of motion. When a talk has more definitions
than theorems it’s suspicious, but we do actually prove some things.

Definition 9.7. The equation of motion is the condition dS(φ) = 0. The space of
solutions is ES ⊂ E.

Now I want to understand multilocal functionals on this space of solutions. So
I’m interested in FS = F/F0 where F0 are functionals which vanish on ES . There
are some obvious candidates for such functionals. If I pair a vector field with the
one-form dS I get an element of F0. So if I take X ∈ Γ(TE), then 〈dS,X〉 vanishes
on ES . This is the pairing between one-forms and vector fields. I need to make sure
I obtain something in F .

Let me define V ∈ Γ(TE) which is the space of multilocal vector fields and
essentially V is derivations of F . In very lucky situations all of my F0 is of that
form. So let’s assume we’re there. So let δS = 〈dS, 〉, called ιdS in Owen’s talk,
and this, well, I have vector fields and I have V → F via δS . The image is F0.
I can extend this with exterior powers of V . From my assumption it follows that
FS = H0(∧V, δS).

Right, so why is it good? If I want to quantize the theory, I want to somehow
keep track of the equations of motion. Working with this quotient is messy, so
it’s easier to work with the elements of this differential graded algebra. Instead of
quantizing FS I’ll quantize this differential graded algebra.

So the first question is, what’s the kernel of δS in degree −1. I want to know
which elements map to 0 under δS . So these are vector fields such that 〈dS,X〉 = 0.
Obviously the image of δS are in this kernel. I’ll call such elements local symmetries
and if all the elements in the kernel are of the form δS() of something in ∧2V then
I’ll say they’re all symmetries. It remains a question if there is something from V
which is not trivial.

In the standard example, Yang-Mills theory or even easier, electrodynamics, I
have a Lie algebra on F and this induces me, well, in such a way that the action
is invariant under this, and in this case I have elements in V that are not in the
image but are in the kernel of δS .

I’ll maybe summarize, non-trivial H1(δS) means that there are non-trivial local
symmetries. Let me start with the trivial case where there are no symmetries and
this complex is already a resolution so the higher cohomology vanishes. For the
scalar field (∧V, δS) is a resolution meaning that Hk(∧V, δS) = 0 [for k > 0].
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So ∧V is the space of polyvector fields. I have the Schouten bracket {·, ·} and
finally arrive at a differential Gerstenhaber algebra, so (∧V, {·, ·}, δS) is a differential
Gerstenhaber algebra. Here the BV operator is the divergence of a vector field.

The problem is that if I try to define the divergence of a local vector field, I
realize this is not well-defined. The naive approach, pretending everything is finite
dimensional, I immediately run into trouble. But let me be optimistic and try to
get as far as I can, forgetting the functional analysis I love so much.

For now I will only consider well-behaving funcitonals, so only Freg because I
want to show you some algebraic data. You guys aren’t functional analysts, so I
won’t show you distributions. On this space I’ll introduce certain products. For
this I need some input from PDEs, dS0 as an operator, where

S0f(φ) =
1

2

∫
(−∇µφ∇µφ+m2φ2)fdµ.

So this has distinguished Green’s functions and bisolutions. I have the so-called
Feynman propagator DF which is some special symmetric Green’s function. We
also have the two-point function D+ (the bisolution, not symmetric) and both of
these objects are distributions on M2.

I need these to, now I want to do some deformation quantization. So I deform
the pointwise product in two ways. First I define a star product

(F ? G)φ =

∞∑
n=0

〈F (n)φ,D +⊗n G(n)φ〉~
n

n!

and the other thing is the time ordered product

(F ·T G)φ =

∞∑
n=0

〈F (n)φ,DF⊗nG(n)φ〉~
n

n!
.

Now define T = e
〈i~DF , δ

2

δφ2 〉; then

F ·T G = T (T −1F · T −1G).

SO now the S-matrix is S(V ) = e
iV
~
T =

∑
( i~V ) ·T · · · ·T ( i

~V ) . My problem is that

F ·T G is well defined only for F and G with disjoint support. So the problem
is to extend T and the time-ordered product to elements of Floc with overlapping
support. This is the Epstein-Glaser [Fire drill]

Let me not bother about minimization. In the classical theory I had δS0 . Now
I can try to see how the S-matrix is behaving with respect to this differential. My
idea is to extend from regular functionals to local functionals. One of the properties

I want to keep is that ∂S0e
iV
~
T = 0.

For V ∈ Freg I can do this by computation, rewrite the exponential as

e
iV
~
T ·T

(
1

2
{V + S0, V + S0}T − i~∆V

)
This is a bit of a surprise. Here ∆ is the BV Laplacian, a divergence operator on
regular vector fields. You recognize that this is the quantum master equation. I
don’t want to go through the computation which is messy. Our approach is that this
could be ill-defined extending to local functions, both the bracket and the product.
Instead of trying to make sense of the structures on the right hand side, instead I
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work on the left hand side, treating δS0
e
iV
~
T as the renormalization condition and

define the right hand side by using this form.
Now when I want to go to the renormalized theory, I’ll have to give you a

definition of T on local functionals, but this automatically gives meaning to the
right hand side.

Maybe to write one last formula, after the renormalization, I obtain Tr and a
quantum master equation of the form 1

2{S0 + V, S0 + V }Tr − i~∆V,Tr (V ). This is
still local, it plays essentially the same role as the original BV operator, but this one
is well-defined on local functionals, but it depends on the choice of Tr, the way we
renormalized our theory. This is to be expected because we have renormalization
freedom and the non-uniqueness is governed by the renormalization group.

I guess this is a good moment to stop and thanks for the extra time.

10. Mikhail Movshev

I do not take notes at slide talks.

11. Maxime Zabzine, Localization for 5D Yang-Mills theory

I’d like to thank the organizers. I’m the first physics speaker of this workshop
and will do things non-rigorously. It depends on your point of view. I assume
there are more math people than physicists. I will try to explain the main idea.
I hope that tomorrow Vasily will tell you the rest. First of all, let’s again, so far,
many people discussed perturbative quantum field theory. I’m preoccupied with
something else. I want to consider non-perturbative stuff.

What we are trying to mimic from the finite dimensional setting is the Atiyah-
Bott fixed point theorem. Imagine I have a U(1) action on M , so U(1) is realized
by V and I have an equivariant differential dV = d + ξıV . I’d like to use α with
dV α = 0 and α = αtop + · · ·+ ξ#α0.

I’d like to calculate
∫
M
α =

∫
M
αtop and that is

∑ α0(p)√
det Lp

where the sum is

over the fixed points. This is just the determinant of a differential operator even if
the left hand side is not defined. I’m not trying to prove Atiyah-Bott in an infinite
dimensional setting, then you want to understand the idea to know what operator
to use.

Let me sketch out how the proof goes. I have a coordinate x on my manifold
M and then let me introduce θµ, which transforms as dxµ, so basically I’m looking
at the shifted tangent bundle T [1]M . If I look at the functions C∞T [1]M , this is
Ω•M , so this is α(x, θ) =

∑
αµ1···µk(x)θµ1 · · · θµk .

So δxµ = θµ and δθµ = ξV µ(x).
Then δα is dV , the equivariant differential on forms on M .
So say that δα = 0. Then I would like to calculate

∫
dnxdnθα(x, θ). I’ll put here

etδV and call this thing Z[t].

Theorem 11.1.
dZ

dt
= 0↔ δ2V = 0

by Stokes’ theorem.

So if δ2V = 0 then Z[0] = limt→∞ Z[t].
The most convenient thing is to choose V = −θµgµν(x)V ν(x). Then δ2V = 0 if

and only if LV g = 0.
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So my leading terms are when V µ(x) = 0. The proof says, let me assume that
the fixed point is zero, I’ll have quadratic terms and higher terms. Now if I translate
by t, then higher terms will be cancelled by higher powers of 1

t . This is the proof
of Atiyah-Bott.

The next thing, I can do some nice toy models. For example, my goal is to try to
move to the infinite dimensional setting. Let me do a three dimensional example.
Let me consider S = k

4π

∫
M
Tr(AdA+ 2

3A
3). I’d like to calculate Z =

∫
A/G

eSDA.

So I can wrtie δA = Ψ. Then δΨ will go to some symmetries that I just have
to invent. Let me assume I have some vector field, so I have LVA + dAΦ, the
Lie derivative plus a gauge transformation. If I write Φ = iσ − iVA then δΨ =
iV F + idAσ and δσ = −iiV Ψ.

Now, in principle, I don’t have enough fields. Some fields are missing. My
fermions in three dimensions should have four components. So I should introduce
δχ = H and I introduce δH = LV χ− i[σ,Ψ].

If I’m doing this thing then SSCS = SCS(A− ikσ)− k
4π

∫
Trκ ∧Ψ ∧Ψ.

Then δSSCS = 0 if and only if iV κ = 1, iV (dκ) = 0, κ ∈ Ω1(M).
I need V so that δV looks like F ∧∗F +dAσ∧∗dAσ+ · · · and this term will look

like δ(Ψ ∧ ∗δΨ + χ ∧ ∗(F∧κκdκ −H)).

This will always work if V is a Killing field, δ2V = 0 and LV (g) = 0.
For M = S3, F = 0, dAσ = 0 we get A = 0 and σ a constant.
I have just one fixed point and look at the action.

ZS3 =

∫
dσe

ik
4π Tr σ3 (detΩ0RV + adσ)3/2√

det LV + adσ/
√
det LV + adσr

.

[Too physical in tone for me. I made it halfway through, that’s an improvement!]

12. Vasily Dolgushev, Part II

I promised I would give you a cooperad. So what’s that, it’s a collection {C(n)}
and instead of a multiplication it’s equipped with a comultiplication

∆t : C(n)→ C(n1)⊗ · · · ⊗ C(nr)

and a counit map C(1) → k. The easiest way to get cooperads is by dualizing
operads. Take an operad in vector spaces for which O(n) is finite dimensional for
every n. Then the dual is naturally a cooperad.

Now we can similarly define what a coalgebra over a cooperad is and many
types of coalgebra are coalgebras over a cooperad. For instance, if you define
coAs = As∗, then coAs-coalgebras are precisely coassociative coalgebras. If you
take coCom := Com∗, then coalgebras are precisely cocommutative coassociative
coalgebras. Similarly, coLie is obtained by dualizing Lie.

Remember we also had ∗ which was naturally an operad, it’s also a cooperad,
terminal in the category of cooperads. This allows us to define coaugmentation.
We say that a cooperad is coaugmented if we have a morphism of cooperads ∗ → C,
going from the terminal object to C. We still have the assumption that C(0) = 0
and C(1) = k (for simplicity during the lectures). Then the cooperad will naturally
be coaugmented. We will also need the cokernel of the coaugmentation coker(∗ →
C). This is just killing C(1). For example if I take the cooperad coCom and do
this, I get k starting in arity 2.

When I do this, I get a cooperad but without counit. It’s possible to define ∆t.
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So you can think of C0 as a non-unital cooperad. If I have an operad O or a
cooperad C and have a cochain complex V , then I’ll denote by O(V ) the free O-
algebra generated by V and by C(V ) the cofree C-coalgebra cogenerated by V . As
graded vector spaces, O(V ) =

⊕
(O(n)⊗ V ⊗n)Sn and C(V ) =

⊕
(C(n)⊗ V ⊗n)Sn .

I’d like to have free operads, so OP(P ) will be the free operad generated by P .
I’ll think of OP(P ) in arity n, represent these by labeled planar trees whose vertices
are labeled by elements of P of the appropriate arity.

7 4 1 5 2 3 6

v2 v3

v1

It’s a pleasure to make maps out of a free operad because maps from OP(P ) to O
are determined uniquely by their image on the generators.

Now I’d like to remind you of the cobar functor. It’s a functor from coaugmented
dg cooperads to dg operads. If you forget differentials, it is OP(sC0) (in the category
of graded vector spaces). Now I have to tell you about the differential.

Let me assume for simplicity that there is no differential on C. The interesting
part comes from comultiplication.

Let’s say I have 2 ≤ k ≤ n−1 and a k, n−k-shuffle σ, meaning σ(1) < · · · < σ(k)
and σ(k + 1) < · · · < σ(n). Then I make a tree tσ:

σ(1) σ(2) · · · · · · σ(k)

• σ(k + 1) · · · · · · σ(n)

•

Then the differential of sV is

−
n−1∑
k=2

∑
σ

(s⊗ s)∆tσV

and it’s an exercise to see that this squares to zero.
I’ll need Λ, the endomorphisms of s−1k and Λ−1, which is Endsk, so it’s one

dimensional with weird degrees and sign factors. The former has Λ(n) = sn−1 ⊗
sgnSn and Λ−1(n) = s1−n⊗sgnSn . Both of these are operads and cooperads. I can
tensor any operad with Λ and get another one. Similarly, I can tensor a cooperad
and get a cooperad.
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Theorem 12.1. The natural maps CobarΛ−1coAs → As, CobarΛ−1coLie →
Com, and Λ−1coCom → Lie are quasiisomorphisms of differential graded oper-
ads.

Here I’m thinking of the targets as operads with zero differential. It allows me to
say that these are free resolutions of the operads governing associative, commutative
associative, and Lie algebras. This allows me to say that A∞-algebras are governed
by Cobar(Λ−1coAs). Similarly, Com∞-algebras are governed by Cobar(Λ−1coLie)
and L∞-algebras are governed by Cobar(Λ−1coCom).

Let me recall a proposition about Cobar

Proposition 12.1. (Getzler-Jones; Ginzburg-Kapranov)
Let V be a cochain complex. Then Cobar(C)-algebra structures on V are in bijection
with degree one coderivations Q of C(V ) satisfying two conditions: restricted to V
I get zero and ∂Q+ 1

2 [Q,Q] = 0, the Maurer-Cartan equation.

Instead of proving this proposition, let me say why it should be true. What does
it mean? We have a morphism Cobar(C)→ EndV . If we forget about differentials
for a moment, we have an operad morphism OP(sC0) → EndV , which is a degree
zero map (sC0(n)⊗ V ⊗n)Sn → V or a degree one map (C0(n)⊗ V ⊗n)Sn → V . On
the other hand a coderivation is determined by its projection onto V :

Q : C(V ) ◦Q //

p

&&

C(V )

p

��
V

Then the differential condition gives me the Maurer-Cartan equation.
[argument with Bruno about pedagogy]
This proposition tells me that every Cobar(C)-algebra A gives me a dg C-

coalgebra (C(A), ∂ +Q), and this motivates the definition of ∞-morphism.

Definition 12.1. An ∞-morphism U from A to B is a homomorphism of C-
coalgebras which is compatible with these differentials.

Since U lands on a cofree coalgebra, it is uniquely determined by its projection
onto B:

C(A)
U→ C(B)

p→ B

and the linear term (p ◦ U)|A is a chain map. We say that an ∞-morphism U :
A→ B is an∞-quasi-isomorphism if the linear term is a quasiisomorphism of chain
complexes.

If you write down compatibilities with the differentials, you see that U1 is almost
compatible with the operad structure, it’s compatible up to homotopies from the
other terms.

Let me just say that with all these examples, it justifies the definition that given
a cooperad C we say that A is a homotopy algebra of type C if A is a cobar(C)-
algebra. For my lectures I will use this pedestrian idea of homotopy algebra, that
they are algebras over cobar of something.

This is also partially motivated by the homotopy transfer theorem.

Theorem 12.2. I’ll still have C and let A
ϕ→ B be a quasiisomorphism of cochain

complexes. Let B be a cobar(C) algebra. Then there exists a Cobar(C)-structure
on A and an ∞-morphism U : A→ B such that the linear term of U is ϕ.
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Then you can ask if this is unique and it’s unique up to homotopy.
Let me talk a little bit about shifted L∞ algebras.

Definition 12.2. A shifted L∞-algebra structure on a cochain complex L is a
Cobar(coCom)-structure.

Due to the facts I already explained to you, this is the same as a coderivation of
degree one S(L)→ S(L) satisfying the Maurer-Cartan equation.

Here I didn’t say that S(L) is the truncated symmetric algebra, viewed though
as a symmetric coalgebra. This is the same thing as a collection of maps, I have a
unary bracket {v} which is the differential. I have higher brackets {. . .}L⊗n → L
which are graded symmetric and satisfy the relation

n∑
k=1

∑
σ∈Shk,m−k

±{{vσ(1), . . . , vσ(k)}k, vσ(k+1), . . . , vσ(m)}m−k+1 = 0

The simplest example is s−1g for a Lie algebra g.
From now on I won’t use the word shifted.

Definition 12.3. I will say that an L∞-algebra L is filtered if it has a descending
filtration

L = F1L ⊃ F2L ⊃ · · ·
so that L = limL/FnL.

Let me assume that my multibrackets are compatible with the filtration, so that
{Fm1

L, . . . ,FmrL} ⊂ Fm1+···+mrL.
Now when I’m talking about ∞-morphisms of L∞-algebras, I’m talking about

coalgebra homomorphisms compatible with the differentials. All such maps are
determined by projections to the cogenerators. You may ask what I require with
respect to the filtration. Sometimes I want to require it to be strict like it is for the
brackets and sometimes only continuous with respect to the filtration.

I want to define a Maurer-Cartan element and I don’t want to worry about
convergence, that’s why I want to use this kind of filtration.

Definition 12.4. A Maurer-Cartan element of L is a degree zero (sorry about the
shift) element α such that

∂α+

∞∑
m=2

1

m!
{α, . . . , α}m = 0.

If I have a filtered L∞ algebra and a Maurer-Cartan element α, then I can form
another L∞ algebra Lα which has the same underlying wector space and

∂α(v) = ∂(α) +

∞∑
m=1

1

m!
{α, . . . , α, v}m+1

and

{v1, . . . , vm}αm =

∞∑
k=0

1

k!
{α, . . . , α, v1, . . . , vm}k+m

This is the L∞ algebra L twisted by α. So if I have a map U : L→ L̃ and a Maurer-
Cartan element α ∈ L, then U(α) is generally not a Maurer-Cartan element, but I
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can define

U∗(α) =

∞∑
m=1

1

m!
p ◦ U(αm)

and this is a Maurer-Cartan element.
Now let’s say I have a map U : L→ L̃ and α ∈ L. Can we modify U and get an

∞-morphism Lα → L̃U∗α. I say

p ◦ Uα(v1, . . . vm) =

∞∑
k=0

1

k!
p ◦ U(αkv1, . . . , vk).

Let’s continue tomorrow.

13. October 2: Vasily Dolgushev, Part III

For every filtered L∞ algebar L we have a functor L 7→MC(L) from L∞ algebras
to simplicial sets. Let me attribute this to Getzler and Hinich.

Now to talk about this, let me introduce the de Rham algebra of polynomial
forms on ∆n. This is Ω·n = k[t0, . . . , tn, dt0, . . . dtn] where this is graded commuta-
tive, with the degrees of ti zero and degrees of dti one, modulo the ideal generated
by t0 + · · ·+ tn − 1, dt0 + · · ·+ dtn. So this has a differential where d(ti) = dti and
d(dti) = 0. So for instance Ω·0 = k. Or Ω·1 = k[t, dt] with the differential sending t
to dt.

Now when I have a filtered L∞ algebra, then for every n I form another filtered
L∞ algebra by tensoring with Ωn. I need to use the completed tensor product,
since L has a filtration. Now we can define the simplicial set {MCn(L)} which is a
simplicial set, MCn(L) := MC(L⊗̂Ωn).

This upgrades the assignment of Maurer Cartan elements.
I should have told you that the collection of Ωn is a simplicial object in the

category of differential graded commutative algebras.
If you have an L∞ morphism F : L → L̃ then it is easy to construct F∗ :

MC∗(L)→MC∗(L̃), using the formula from last time α ∈ L 7→ F∗(α) =
∑
m≥1

1
m!p◦

F (αm). So we have a functor to simplicial sets.
Zero simplices are precisely Maurer-Cartan elements of L. What about one-

simplices? MC1(L) consists of expressions β = β0(t) + dtβ1(t) where β0(t) ∈
L0⊗̂k[t] and β1(t) ∈ L−1⊗̂k[t].

So the Maurer-Cartan equation implies two things: first β0(t) is Maurer-Cartan,
so

∂β0(t) +
1

2
{β0(t), β0(t)}+ · · · = 0

and

d

dt
β0(t) = ∂β1(t) +

∞∑
k=1

1

k!
{β0(t), . . . , β0(t), β1(t)} = ∂β0(t)β1(t)

So we say that α and α′ in MC(L) are connected by a one-cell if there is a β ∈
MC1(L) such that β0(0) = α and β0(1) = α′.

If Maxim is listening he will think that this is a very perverse way of thinking
about gauge-equivalent flat connections.

There are a couple of important theorems about this simplicial set.
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Theorem 13.1. (Getzler, Hinich, Chris Rogers1, D.) For every filtered L∞-algebra
L, the simplicial set MC∗(L) is a Kan complex, a fibrant object in the category of
simplicial sets.

This is nice because now we can think about MC∗(L) as an infinity groupoid. I
say DGH ∞-groupoid for Deligne-Getzler-Hinich.

If you have never heard about the Kan condition on simplicial sets, let me men-
tion a consequence. The relation α ∼ α′ is an equivalence relation. It wasn’t
obvious that this was an equivalence relation. This is because if I have two one
cells

α1

α0

α2

then there is a 2-cell spanning these so you have a one-cell between α0 and α2:

α1

α0

α2

Now let me give another theorem, a version of a Goldman-Millson theorem

Theorem 13.2. If F : L → L̃ is an ∞-quasiisomorphism of filtered L∞ alge-
bras compatible with filtrations in an honest way (strictly), then F∗ : MC∗(L) →
MC∗(L̃) is a weak equivalence of simplicial sets

This means that π0MC∗(L) is in bijection with π0MC∗(L̃) and all higher homo-
topy groups are isomorphic.

What I particularly like about the proof we wrote is that it is in some sense
constructive. Say you have F : L→ L̃ and you have β ∈MC(L̃), then you wonder
if there is α such that β  F∗(α) by a one-cell. We construct it iteratively step by
step on L/FnL.

So for example, let A be an associative k-algebra and ε a formal deformation
parameter. Then I can consider LA = C∗(A,A). Well, then I will adjoin ε and
consider LA = εC∗(A,A)[[ε]]. So then MC(LA) are formal associative deformations
of A and if α is connected to α′ by a one-cell, then, well, it’s if and only if the
corresponding formal deformations are equivalent.

To finally answer the question, what do homotopy algebras form, I need to
remind you that L∞ algebras form a symmetric monoidal category. If I have L and
L̃, then L× L̃ = L⊕ L̃. The bracket is defined in the most obvious way:

{v1 ⊕ ṽ1, . . . vn ⊕ ṽn} = {v1, . . . vn} ⊕ {ṽ1, . . . , ṽn}

1I’ll put a green color so he’ll have a green light for a job
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So if I have two L∞ morphisms F,G then I should be able to construct F ⊕ G.
To do this, note that S(L1 ⊕ L2) = S(L1) ⊗ S(L2). Extend using F (1) = 1 and
G(1) = 1.

I need an enhanced version of a morphism from L to L̃. Let me consider instead
of just an L∞ morphism, let’s consider pairs, a morphism in LieEnh

∞ is a pair (F, α)

where α is a Maurer-Cartan element of L̃ and F : L→ L̃α.
You may wonder how to compose. If I have L1, L2, and L3 and I have α and

β Maurer-Cartan elements in L2 and L3. Then I have an L∞ morphism F from

L1 → Lα2 and another G : L2 → Lβ3 . Then I can twist to get Lα2
Gα

 L
β+G∗(α)
3 .

Then the resulting pair is Gα ◦ F, β +G∗(α).

So G∗(α) is a Maurer-Cartan element in Lβ3 , so

∂βG∗(α) +

∞∑
m=2

1

m!
G∗(α), . . . G∗(α)}β = 0

and if you take this apart, it’s the Maurer-Cartan equation for the sum.
You can upgrade this to a symmetric monoidal category. This is based on the

observation that if you have α and α′ Maurer-Cartan elements in L and L′, then
α⊕ α′ is Maurer-Cartan in L⊕ L′.

Theorem 13.3. (Chris Rogers, D.) Every category enriched over LieEnh
∞ can be

integrated to a simplicial category (enriched over simplicial sets)

Somap(A,B) is a shifted L∞ algebra so we just takemap(A,B) toMC∗(map(A,B)).
So let me now fix a cooperad C, it can be dg. I’ll still assume that C(0) = 0 and

C(1) = k.

Theorem 13.4. (Alex Hoffman,Chris Rogers, D.)
The category of cobar(C)-algebras is enriched over LieEnh

∞ .

That’s not a nice way to say it.
Let me tell you about the mapping spaces. Say A and B are cobar(C) alegbras,

so QA is a coderivation on C(A) and QB is a coderivation on C(B), I’d like to define
a mapping space. The maps are Hom(C(A), B). What are the multibrackets? If
fi : C(A)→ B, then, well ∆m(X) = (C(M)⊗ C(A)⊗m)Sm and my bracket is

{f1, . . . , fn}(X) = QB((1⊗ f1 ⊗ · · · ⊗ fm)∆m(X)).

The composition is defined by a nice formula. So say I have A1, A2, and A3 three
cobar(C)-algebras, then I have to define a composition Ucomp, a map

S(map(A2, A3)⊕map(A1, A2))→ map(A1, A3).

Let me remind you that map(A2, A3) = Hom(C(A2), A3) and map(A1, A2) =
Hom(C(A1), A2). So I sholud be able to go from

S(Hom(C(A2), A3)⊕Hom(C(A1), A2))

to Hom(C(A1), A3). So if I have g ∈ Hom(C(A2), A3) and fi ∈ Hom(C(A1), A2),
with X ∈ C(A1), then I comultiply X with ∆n, and then I apply 1 ⊗ f1 ⊗ · · · fn,
and then I apply g to the result.

How is this related to the ∞-morphisms we discussed before? Well

Theorem 13.5. (Dotsenko, Poncin, S.M.-B.V.?)
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For each pair of ∞-algebras A and B, we have MC(Hom(C(A), B)) are in
bijection with ∞-morphisms.

Two ∞-morphisms are homotopy equivalent if and only if there is a one-cell
connecting them. After this definition I feel like there are no questions.

You can ask what happens if I apply Getzler-Hinich to the category of all of
these.

Theorem 13.6. (Alex Hoffman, Chris Rogers, D.) We have that π0 of the simpli-
cial category is the homotopy category of homotopy (Cobar(C))-algebras.

Any questions?
So if we look at the category of ∞-cooperads, then for every object of this cate-

gory, every zero-cell we have a simplicial category of the corresponding homotopy
algebras. It’s interesting to understand the corresponding categorical structure,
and that’s what Chris Rogers and Brian Paljug are working on. So you see Brian
is green here too because I want him to have a green light for a postdoc.

14. Claudia Scheimbauer, Factorization homology as a fully
extended TFT

So first of all, thank you for the invitation to talk here, it is a pleasure. Today
I’ll talk about the main results of my thesis, to say that Factorization homology is a
fully extended TFT. I’ll be using some of the tools we’ve heard so far, so hopefully
it won’t be too far off. This is joint work with my advisor Damien Calaque.

Let me remind you what a TFT is.

Definition 14.1. An n-dimensional TFT is a symmetric monoidal functor F from
Cobn → C

This means we take a disjoint union to some tensor product. What is Cobn?
The objects are (n− 1)-dimensional closed manifolds and morphisms M,N are n-
dimensional manifolds with boundary, which has two components, incoming iden-
tified with M and outgoing with N . We have to take diffeomorphism classes to
make composition work and then we have a category.

The first question mathematicians ask is are there examples, and the second
question is for a classification.

A classification for n = 1 is easy. We’re looking at one-dimensional manifolds
and we have classification theorems there. Usually, or most commonly, C is V ectk.
The classification tells us that C is determined by F (∗). This should be a finite
dimensional vector space and every such finite dimensional vector space gives us a
TFT . An object in C has finiteness conditions.

For n = 2 there is also a classification, but as soon as we start going up in dimen-
sion, you want a classification but you don’t have one for manifolds. These were
decomposition theorems for manifolds. We cut up our manifold into elementary
pieces. For n > 2 there is no real decomposition theorem. You might also want to
cut into smaller pieces, but you’ll need not just n − 1 dimensional guys but also
n− 2 and so on, getting smaller things as well.

Originally we only included data of (n − 1)-dimensional guys but it becomes
apparent that you will need higher codimension and now you need higher categories.

This was introduced by Freed and formalized in a more precise way by Baez-
Dolan, who made the cobordism hypothesis, that there should be a classification of
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these using higher category theory. But n-categories are not easy objects. Things
become difficult very fast. The big step, done by Lurie, was to introduce homotopy
into the game, use ∞, n-categories.

Let me give a definition first.

Definition 14.2. Let Bordfrn be an (∞−n)-category of bordisms. A fully extended
n-dimensional TFT is a symmetric monoidal functor F : Bordfrn → C of (∞, n)-
categories.

The framed could be other structures, you could get oriented, unoriented, what-
ever you want.

For this version you can write a classification theorem.

Theorem 14.1. (Lurie, cobordism hypothesis) ev : Fun⊗(Bordfrn , C) → C where
F 7→ F (∗). That is, Fun⊗(Bordfrn , C) → C factors through a category of “fully-
dualizable objects” Cfd, and this is an equivalence of ∞-groupoids.

So identify you target category and pick a fully dualizable object, that’s your
TFT. If you pick any bordism and want to know what your TFT assigns to it, you
want to know what it does, that’s maybe not easy.

So one might ask for examples without using the cobordism hypothesis. So the
goal is to write down a TFT and explicitly construct it without recourse to this
theorem.

So what do we have to do to construct such a thing. We need a bordism category,
a target, and then the functor and show that it’s symmetric monoidal.

I’ll start by talking about the target. As the target, we want to have something
which is a category of En-algebras. It’s an (∞, n)-“Morita”-category of En-algebras.

My objects are En-algebras. For n = 1 these are A∞ algebras, for n = 2 braided
categories are prominent examples. So I have En-algebras in a ground category S.

My morphisms are bimodules En-algebras, my 2-morphisms, to be bimodules
between bimodules, and so on. What we will want, we have a point goes to an
En-algebra. To a one-dimensional guy bimodules between the En-algebras, and
then a 2-morphism, here is the central picture.

For n = 1 we have algebra with bimodules. I say Morita because the homotopy
category will be the Morita category.

You can think of an E2 algebra as an E1 algebra in E1-algebras. The bimodule
between bimodules will be a bimodule in the second structure.

Okay, so so far this is rather mysterious, but this is where somehow for me, I
know operadic people will object, I should mention En is the little disk operad. A
very useful tool for modeling this target category is factorization algebras. Using
these you can get a very clean description of this target category.

Our ground category will be chain complexes. We’ve seen, explained by Kevin,
that factorization algebras are the structure that a field theory has, so it’s not
surprising that such things should appear.

Definition 14.3. Let X be a topological space. A factorization algebra with values
in S is a functor from open sets of X to S, and for every disjoint union of open
sets, I have maps F(U1)⊗F(Un)→ F(V ), where V contains the union, such that,
there are coherence conditions so that the composition of structure maps of little
guys into middle guys followed by structure maps from the middle guys into the big
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ones should be the same as the map straight from the little guys to the big guys:∏∏
F(Ui) //

&&

∏
F(Vi)

yy
F(W )

This is a prefactorization algebra, and the gluing condition that I won’t go into says
that the value on larger open sets can be recovered from the value on an open cover.

For example, let X = R and A an associative algebra. For an interval I assign
A and for a bigger interval I also assign A. If I include U and V into a bigger
interval, then I need F(U) ⊗ F(V ) → F(W ) and this is A ⊗ A → A and that’s
multiplication. By this definition you can extend this (I claim) to a factorization
algebra. This is an example of a type called locally constant. This means that if I
have an inclusion of U into V which is a weak equivalence then their values under
F are a weak equivalence. This is locally constant.

Conversely, I can start with a locally constant factorization algebra on R and
define A to be F(R) and now by reading the same diagram, I see that an open
interval sits inside R via a weak equivalence, so this means I have this A by local
constancy. By a homotopy transfer theorem, this induces an A∞ structure.

So what I’ve sketched for you is that (E1)-algebras and factorization algebras on
R1 are the same thing. Lurie showed that this is an equivalence of (∞, 1)-categories.
That holds replacing 1 with n, and I’ll just work with locally constant factorization
algebras.

Example 14.1. For A, B associative algebras and M an (A,B)-bimodule let me
take X = R and p ∈ R. On an open interval including p I put M , on an open
interval left of p I put A, and on an open interval to the right of M I put B. This
is not locally constant, but it’s very special, namely what’s called locally constant
with respect to the stratification

Like we did before, you can start with a structure which is locally constant
with respect to a stratification and read upwards to get a homotopy bimodule.
So homotopy bimodules are roughly in bijection with factorization algebras locally
constant with respect to this stratification. We also have these bimodules as pointed.

Now we have all the incredients to model this ∞, n-category for n = 1.
Let’s look at what we want to do for n = 1. If we look above we want objects

to be E1-algebras and morphisms bimodules. So how do we model these? We
chose the model of complete Segal spaces. For technical reasons, I will choose a
diffeomorphism between (0, 1) and R.

What does a complete Segal space look like? We start with a space of objects
(Alg1)0 which are algebras. These are locally constant factorization algebras on
R. I also need a space of 1-morphisms, which will be factorization algebras locally
constant with respect to the stratification.

Now I get source and target maps here. A one-morphism induces a locally
constant factorization algebra left of the point and another one right of the point.
So F|(0,p) is my source and F|(p,1) is my target.

A Segal space consists of more, we have a whole simplicial space of guys. What
will my kth guy be? I have factorization algebras locally constant with respect to
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this stratification

• • •

p1 p2 · · · pk

You compose, I have two maps from (Alg1)2 to (Alg1)1 by forgetting. I compose
by rescaling down an interval, and you take A,M,B,N,C to A,M ⊗B N,C.

This turns out to be a complete Segal space. You can come up with pictures for
the higher versions but because of a lack of time I won’t do that.

Remember that our goal was to come up with a functor from Bordfrn to Algn, a
factorization algebra on (0, 1)n. The tool is factorization homology, John Francis,
David Ayala, many other people. What we want to do here is, we start with a
manifold, an En-algebra, we take an n-manifold and I want to think of this as a
locally constant factorization algebra on Rn, I think of a patch where I’m gluing in
my En algebra. Then I will patch them together to give a factorization algebra on
M . The framing tells you how you can patch them together.

Formally, you have an En-algebra, I said this was locally constant, so it’s a
functor from Open(Rn) → S, so from this functor you can extract a functor from
Diskfrn → S. This is a topological category with objects disjoint unions of Rn
and morphisms framed embeddings. You can say an En-algebra is a functor out of
this. On the other hand, starting with a framed manifold, I can produce a functor
(Diskfrn )op to spaces, where tRn goes to Embfr(tRn,M).

I need one more (technical) condition, which is that S is “tensored over spaces.”
Then I can define factorization homology to be

∫
M
A, the coend of these two func-

tors M ⊗Diskfrn A.

The assignment U →
∫
U
A is a locally constant factorization algebra on M .

But my target was factorization algebras on (0, 1)n. This is where the bordism
category comes in. Let’s look at our source Bordn. Look at M, I0 ⊂ · · · ⊂ Ik
such that M is a closed one dimensinal submanifold of R∞ × (0, 1) such that the
projection π to (0, 1) is proper. Then that projection should also have only regular
values in ∪Ii. If I cut my (0, 1), I get a cobordism between the preimage of 0 and
the preimage of 1. I choose collars where I cut and this gives a bordism. This can
be made into a complete Segal space and without telling you much what this is,
the essential part is the map π. I have an embedded submanifold of R∞ × (0, 1)n

and a projection to (0, 1)n I can push forward along π the factorization algebra A,
π∗
∫
M
A will not have the nice properties I want, though.

For example, for A associative, looking at what happens over a point with a
projection from a circle, I get A ⊗ Aop when my preimage is two points and I
get A as a bimodule and over the other parts I get k. This isn’t locally constant
or anything, but I can do my rescaling thing to make it locally constant. In the
middle is where the actual thing is happening. So we pushforward again along ρ.
This really is a well-defined element in Algn, everything works well and this is the
functor.

I’m already over time, but in this example, we take the global sets k over the
ends and over the middle we get global sections of the factorization algebra, and
this is A⊗A⊗Aop Aop.
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15. Vasily Pestun, Supersymmetric localization and equivariant
cohomology of quantum field theories

I did not attend this talk.

16. Chris Elliott, Nonperturbative Descriptions for Twists of
Classical Field Theories

Thank you very much for inviting me to speak. This is based on joint work in
progress with Philsang Yoo.

I’m mostly going to concentrate on the perturbative, at least for the first half.
I’m going to talk first in a formal neighborhood. If you prefer I can write local and
global.

We want to understand twists of N = 4 theories, that’s our motivation.
For example, N = 4 super Yang-Mills in 4d admits a family of topological

twists, a CP1 family parameterized by (λQµ) and the germs of the solutions to the
equations of motion in (1 : 0) nad (0 : 1) twists near Σ× S1 form, say,

EOMA(Σ× S1) = T ∗(L BunG(Σ))dR

(holomorphic bundles, de Rham stack) and

EOMB(Σ× S1) = T ∗LocG(Σ× S1).

This is motivated by some work on geometric Langlands. This is a proof of concept,
a sanity check for some relationship there.

I’ll get much less technical and abstract now. Let me say some concrete things
about what I mean by a twist. The idea goes back to Witten in the eighties, where
he recovers Donaldson from n = 2 theories. You’re cooking up a nice fermionic
symmetry and looking at the Q-cohomology.

The kind of data that we’ll need. Let me say the data of a classical field theory.
This is the local or formal version, I’d say perturbative but I’ve been put off once
already.

A formal classical field theory on a manifold X is a sheaf of elliptic L∞ algebras
on X, with some technical condition that I won’t write, equipped with a pairing
E ⊗ E[3]→ DensX , nondegenerate, invariant, symmetric, and bilinear.

This is like the classical BV -complex. This is the complex, start with some Φ,
and then look at polyvector fields equipped with dΦ + ιdS .

Alternatively, you could consider the derived critical locus of S. I mean you
take the intersection in the cotangent bundle of Φ between the zero section and the
graph of dS in the derived sense.

Take the shifted tangent complex Tp[−1]dCrit(S).
The data we need to get a twist is a [unintelligible] supergroup.
Define a supergroup H = C× n

∏
C where the right C has weight 1

Definition 16.1. Twisting data for a (formal) classical field theory is an action
of H.

There’s an equivalence between super vector spaces with H-action and super
cochain-complexes.

If we have a SUSY action, we can get an H-action from the following two things:
an odd symmetry Q such that Q2 = Γ(Q,Q) = 0. A C× ⊂ GR, this preserves the
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bosonic piece. We find a C∗ inside there so that Q has weight one. This gives an
action.

[missed some]
So what does it mean to twist? I can describe a functor, this equivalence will go

from a super cochain complex E , we can consider F (E) (F is the functor to super
cochain comlexes) and then we can take the total complex with respect ot the two
complex cochain structures.

Definition 16.2. A twist EQ of E is the sheaf obtained by applying T ◦ t◦Ft◦E(U)
locally on X, at least.

Claim 16.1. This is still a clasical field theory.

Our first idea is just to take the ΠC invariants.
These exact symmetries act trivially. We can say what these invariants are in

general. Assuming Q acts linearly, this looks like

E ⊗ C[[t]],ε +tQ

Instead, we could try to just extract the fiber. This lives over the odd formal disk.
What we can do is restrict to the formal punctured disk and then take C∗-invariants.

There’s a very good reason to try to do this. One reason to do this, if we took
C∗-invariants without doing this restriction, what we’d get is we’d get elements of
E of the form φtk where φ has weight −k and the total thing is invariant. So in
particular we’d be throwing away everything of positive weight.

In particular, we find that anything q-exect [[unintelligible]].
I have time so let me do an example. The simplest example is something coming

from N = 1 gauge theory in four dimensions. This will be the theory that Kevin
discusses. There are no topological twists in this sense but there’s a holomorphic
twist. One could write down [missed]. We could look at N = 1 holomorphic Chern
Simons on the twistor space.

[example].
The classical BV complex for ASD Yang-Mills is obtained by pushing forward

the classical formula for holomorphic Chern Simons:

Ω0,∗(PT′; gP )∂̄]

What’s more,
There’s a supersymmetric version of this too. For the N = 1 theory, that version,

instead, work with CP3, well,

Ω0,∗(PT)′; ΠO(−1)⊕O)⊗ g⊕O ⊕ΠO(1)×KPT ⊗ gP

. [Missed some] The twisted complex is Ω0,∗(PT′;O(−1)[−1] → 0) ⊗ gP ⊕ (O →
O(1)[−1]) ⊗ k ⊗ gP ∼= ω0,∗(PT′;OZ(Q) ⊗ k ⊗ gP . [missed] We want to define the
twist of the derived critical locus given an H-action compatible with these tangent
complexes.

I should say exactly what objects I’m talking about. Let X and Y be derived
schemes. These should basically be functors from nonpositively graded commuta-
tive dgas to Set.

I don’t have a better name but then we can talk about preschemes.
Given a preschemed there is a classical truncation τ : cRing = toSet. In partic-

ular, if we start with a nice scheme, it’s a nice scheme.
[missed some]
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Assume X and Y had nice shifted tangent complexes T [−1]X sheaves of L∞
algebras.

Theorem 16.1. If there exist isomorphisms from the underlying classical spaces

fX : X → C ← Y : fY

where C is a scheme and there is a quasiisomorphism

f∗XT [−1]X

$$

// f∗Y T [−1]Y

zz
C

as sheaves of L∞ algebras, then X and Y are canonically isomorphic. Further, if
X and Y have an action of G such that everything is G-equivariant. Then this
descends to X/G→ Y/G.

[Comment about local to global]
It’s five minutes early but I think that’s what I wanted to say.

17. October 3: Qin Li, Perturbative Rozansky-Witten theory

Thank you, I want to thank the organizers for the invitation. I’ll basically talk
about perturbative Rozansky-Witten theory, this is joint with Kwokwai Chan and
Conan Leung.

So Rozansky-Witten theory is a sigma-model M3 → (X,ω) where this is a
holomorphic symplectic manifold. I’ll talk about the setup of the classical theory
and then quantize. This is a case study of Kevin’s formalism. Although this has
been studied by Rozansky-Witten, there are things that are not clear, a conjecture,
so on, so part of the motivation is to study quantization of this theory, so we can get
Rozansky-Witten invariants rigorously, and we can study structure of the quantum
observables.

Let me start from the theory setup. The space of fields is differential forms
A∗M ⊗gX [1]. Here gX is the L∞ algebra encoding the complex symplectic geometry
of X.

I can write my classical action, similar to the one-dimensional Chern-Simons
theory in Si’s talk, so S(α) =

∫
M
〈dMα, α〉ω + 〈e`(α), α〉ω.

Now let me write it more clearly, so∫
M

〈dMα, α〉+ 〈`0, α〉+
1

2!
〈`1(α), α〉+

1

3!
〈`2(α⊗2), α〉+ · · ·

So the physical Rozansky-Witten functional is S = L1 + L2, I’m ignoring the L1

part and the L2 part is

1√
k
εµν`(εIJχ

U
µ∇νχJ +

1

3
ωIJΩJkLMχ

I
µχ

k
µχ

`
pJ

M ).

These two actions, one is a reformulation of the other. We can see that this is
really Chern-Simons like, this is really AdAandA ∧ A ∧ A. It’s even more clear in
our model because you have the L∞ identity which is like a Jacobi identity.

Lemma 17.1. The action functional satisfies the classical master equation.
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We have a classical theory satisfying the classical master equation so we can talk
about quantization. This is a theory on a three dimensional spacetime. I’m using
some old technique to do this quantization stuff, the technique of compactification
of configuration spaces.

Let me tell you what I’m going to do. By definition a quantization of a classical
theory I is a family I[L] of interaction functionals parameterized by real numbers
satisfying

(1) renormalization group flow equations
(2) quantum master equation
(3) limL→0 I

(0)[L] = Icl

We can do the naive thing, try to take the limit

lim
ε→0

e
~∂PLε eIcl/~ =: eI[L]/~.

This has singularities, that is, limε→0 P
L
ε is only smooth on M ×M\∆.

Definition 17.1. M0(n) := {(m, . . .mn)|mi 6= mj} is the configuration space, and
there is a compactification of this, M [n] as a manifold with corners.

Let me give you an example of this, if you look at M [2], there is no corner but
only boundary, the interior is M ×M\∆. The boundary is isomorphic to the unit
sphere bundle of the tangent bundle.

The technical thing, after a lengthy calculation, you can show:

Proposition 17.1. There exists a smooth lifting P̃L0 ∈ A2(M [2]).

Now I will use this smooth lifting to define the quantization

eI[L]/~ = e
~∂
P̃L0 eIcl/~.

φ1 φ3

◦

P̃L0

e1

P̃L0

e2
◦

P̃L0

e3

P̃L0

e4
◦

φ2 φ4

So ∫
M [3]

∏
e

∗∏
(P̃L0 )φ1φ2φ3φ4 = W (PL0 , Icl)(φ1, φ2, φ3, φ4)

Theorem 17.1. {I[L]}L>0 satisfies the quantum master equation

QI[L] + {I[L], I[L]}L + ~∆LI[L] = 0.

Q is the de Rham differential on the inputs.

(1) dM P̃
L
0 = K̃L

(2) classical master eqution.
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So you’ll see this kind of graph where black edges are propagators and the red one
is the heat kernel.

◦ ◦ ◦

��

◦
K̃L

P̃L0

◦
P̃L0

P̃L0

◦

[Then somehow by a way that I didn’t understand this diagram leads to:]

◦
K̃L

◦
P̃L0

P̃L0

◦

So local classical observables. Let Hg ⊂M be an open subset, the classical observ-
ables are

(Ŝym(ε∨(Hg)), Q︸︷︷︸
=dM+ι1

+{Icl, }) ∼= (Ŝym(H∗cpt(Hg)⊗ gX [1]), ι1 + {Icl, })

What you can do is further see some quasiisomorphism and find something inter-
esting,

(A∗X ⊗OX Jethol
X (∧∗TX)⊗g, dDX )

and this is H∗(X,∧∗TX)⊗g so this is really cohomology on the target. It’s not really
canonical because the tensor g comes from a handlebody decomposition so you need
to choose H1 generators. The correlators are integration over these circles. The
point is, this is basic classical observable stuff. If you look at quantum observables,
there are no essential quantum corrections, so

Proposition 17.2.

H∗(Obsq(Hg)) ∼= H∗(X, (∧∗TX)⊗g)[[~]]

and this is the same as the Hilbert space in the conjectured [unintelligible] of the
Rozansky-Witten structure. That’s not a surprise, you are attaching handlebodies
to open manifolds to get closed things, and then the local quantum observables are
supposed to give us a hint of the field theory structure.

Now let’s talk about the global quantum field theory and partition function.

Ŝym(E)((~)), Q+ {I[∞], }+ ~∆∞) ∼= Ŝym(H)((~)), Q+ {I[∞], }+ ~∆∞)
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For every global quantum observable O, to compute the correlation functions of O
is to “take the coefficients of the top fermions.” Let me say a little more.

Obsq(M) ∼= A∗X ⊗ Jethol
X (
⊗
i

Ŝym
∗
(Hi ⊗ TX)∨)

I’m doing the symmetric tensor in the Z/2-graded case.
Now there is a canonical “top fermion,” the fermions are in odd degree, now

π∗R(ωn)1+b1(M), this is my canonical top fermion for this path integral stuff.
What we want to do to compute the correlation function or partition function

of our observables, the top fermion, I should put O · eI[∞]/~, that’s where you take
the coefficients of top fermions.

We find that this is exactly the same as,

Theorem 17.2. the partition function of our theory gives the Rozansky-Witten
invariant.

Okay, I’ll just stop.

18. Theo Johnson-Freyd, Poisson AKSZ theories

Thank you to the organizers, it’s been a wonderful week so far, I learned a lot
from all the talks. My goal will be to explain some version of the AKSZ construction
and it’s gonna be kind of a Poisson version. I emphasize Poisson because the usual
requires that everyone be symplectic. You might as well learn my version. AKSZ’s
paper is good, you should read it, but if you haven’t read it just pretend that I
came up with it.

I’ll tell that at the end, I want to start at a different part of the story. I want
to remind you of an algebraic structure. This plays a role in many examples. He
had a name—well, I will call it—so—I’m going to call it commutative homotopy
BV algebra. In the literature, often they say sub infinity, but I want subspace to
be something else, so I won’t do that.

Definition 18.1. A commutative homotopy BV-algebra is the following data. It’s
a graded commutative algebra (this always means Z-graded), it has a differential on
it ∆ : A→ A[[~]]. I’ll try to keep my talk without deciding whether I’m homological
or cohomological. It makes this into an E0-algebra, which is something that Claudia
talked about.

I know no examples but I have no objection to making A an algebra over R[[~]].
There’s one other condition, in normal BV it’s a second order operator. This relaxes
to the condition that if you look at ∆ modulo ~n, this is an nth order differential
operator.

I won’t remind you why Jae-Suk cares about these [something about] perturba-
tive oscillating integrals.

I should also give some references, many people have noticed this structure.
In mathematics, the earliest place I know of where this was written down was
Kravchenko 1998. In physics the earliest I know was Batalin-Bering-Dangaard
1996.

The classical limit, look at the principal symbols, I’m too close to the board to
spell principal, you can take ∆ mod ~n and take these data, this is what I think
Jae-Suk was calling the descendents are a shifted L∞ algebra on the commutative
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algebra A that acts by derivations. In fact, these are “commutative homotopy
P0-algebras.”

This is all well and good. These are like what you might want to find in the
perturbative classical limit of a quantum theory.

Now the question is how to find examples, interesting examples. These were per-
turbative in Planck’s constant, let me focus on examples that are also perturbative

in the geometric data as well. I’ll focus on A = Ŝym(V ) for V some graded vector
space.

How should you think about these? There’s also, I should emphasize, the point is
that you should think of Spec(A) as an infinitesimal manifold. So this is supposed to
be the algebra of functions on this infinitesimal manifold. All geometric structures
are described by their Taylor coefficients. Gabriel, I don’t even capitalize “taylor.”
Do you capitalize “narcissist?” I’ll assert, by geometric structures, I’ve chosen V ,
I’ve chosen a linear chart. I’m only going to think about examples of that type.

Let me reformulate, the data of a commutative homotopy BV algebra on Ŝym(V )
is, look at ∆3, the third term, this is a fourth order differential operator that
annihilates 1. I can write this as

∆3,(1)︸ ︷︷ ︸
“linear part”

+ ∆3,(2)︸ ︷︷ ︸
“pure second order”

+ ∆3,(3)︸ ︷︷ ︸
“pure third order”

+ · · ·

So This is V → A, V ⊗ V → A, and so on.

I can also expand these in terms of outputs, so I can write ∆3,(2) =
∑
n≥0 ∆

(n)
3,(2),

so ∆
(5)
3,(2) is a map V ⊗2 → V ⊗5 like this:

'' ww
∆3

ww ~~ ��   ''

I can index this data by β (some linear combination of these three numbers) which
have some number of inputs, some number of outputs, so on.

��

· · ·

�� ��
β

�� ����
· · ·

I should have asked all structures to vanish at the origin. It starts with a map

V → R so it starts with ∆
(1)
0,(1), if you work out ∆2 = 0, this is a linear differential

on V . Let me declare this to be the differential on V . Then the rest of this can be
written, so that
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[∂V , β], you sum over all graphs with the same number of inputs and outputs.

��

· · ·

��

��

· · ·

��

β1

�� ��

��
.. β2

�� ''· · · · · ·
So this sum should have β = β1 + β2 + b1 of the graph. In the classical limit, a
commutative homotopy P0 structure breaks up a corolla into tree-like compositions
with 0 on the vertices.

  

· · ·

~~ !!

· · ·

��

��

· · ·

��

∂ •

  ~~

=
∑

•

�� ��

&&· · · •

�� ((· · · · · ·
We’ve had these nice lectures from Dolgushev on operads and Koszul duality,

well operads are to rooted trees as properads are to connected directed-acyclic
graphs and dioperads to directed trees.

So if you know operads, this is a bar or cobar,

Theorem 18.1 (Drummond-Cole-Terilla-Tradler). Commutative homotopy BV

structures on Ŝym(V ) are in correspondence with cobar(coFrobenius) structures
on V . This is cobar in the category of properads.

Exactly the same proof says, I’ll do this in another color, that commutative ho-

motopy P0-structures on Ŝym(V ) are in correspondence with cobar(coFrob) struc-
tures on V in the category of dioperads.

I’m going to give some examples, I should say finite dimensional in a bunch of
places and I’ll leave it out.

Given a properad P with finiteness, I will say DP = cobar(P ∗), and ther’s a
canonical map DFrob → DP ⊗ P , this is a duality, and Frobenius is a unit for
tensor products.

If I have any two properads, I can tensor the representations together and you
can pull back along homomorphisms, and what this tells you is that if you can

give X a P -structure and Y a DP structure then Ŝym(X ⊗ Y ) is a commutative
homotopy BV algebra. If I take the dual in dioperads, it’s a commutative homotopy
P0 algebra. You might be able to do one and not the other in some case.
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So for my example, I want to say a commutative homotopy Pd structure is an
L∞ structure on A[1−d] acting by multiderivations, and the same exercise as before
says that, this combinatorics, says that when A is a completed symmetric algebra,
these are dual in the sense of dioperads to Frobd, so Pd = DdiFrobd, meaning
comultiplication is degree ±d. The example is homology of a d-dimensional compact
manifold. You could put involutive to make this work if you want to say properads.

This is supposed to be a field theory and I haven’t said field, so let me say
field. The example was going to say, to get these kind of structures, I could use a
Pd-structure on something and a Frobenius structure on—

I’d like interesting examples that are field-theoretic. We defined quantum and
now we’ll define field theory, which

Definition 18.2. Field theory has something to do with mapping spaces.

So mapping spaces are way too hard, so I’ll use the only one I understand, given
M and some target X, which will be an infinitesimal manifold, I don’t understand
smooth maps from M to X but I do understand locally constant maps M to X.
Then these might as well be Mapslc(M,R) ⊗ X, and the locally constant maps
M → R, and Mapslc(M,R) = Ω•dR(M). Many of you guys are better at analysis.
The PDE d is the only one I understand. To say I have a classical or quantum field
theory, I should give this mapping space one of these structures. I want to have
“classical” or “quantum” field theory with target X this is topological in M if X
has a P -structure for some P and Ω•dR has a DP -structure.

Well, let me be specific to the Pd structure. There’s a universal way to write
down resolutions in algebras. Generally, we have that DD(thing) is a cofibrant
resolution of thing. So this is true in properads or dioperads. So I know that, let
me work with compact manifolds, I know that H∗dR(M) is Frobd so I could ask,
is Ω∗(M) “homotopy Frobd.” There is a stupid way that it is, you could take the
structure and transfer it. The output doesn’t look physical. You should ask for
some restriction on this, you could ask that all structures, all maps, the operations
involved, are, you can’t make them strictly local, but you could make them local in
the sense that Kevin gave. Their support is near a diagonal. This means local in
the sense that supports can be made arbitrarily close to diagonals. You can make
that precise. Then I’ll tell you the answer, which is yes for dioperads (canonically).

Theorem 18.2 (J.-F.). The space of choices is contractible.

So this is Frobenius in the dioperad sense, you always get a P0 structure for X
if it’s homotopy Poisson.

I’ll tell you the answer for properads and then stop.

Theorem 18.3. For properads, the answer is yes when d = 0, when d = 1 the
answer is no. It’s just no. There is no chain level structure. There’s an obstruction
in genus 2. It’s the same obstruction in Merkulov’s work in a different guise. When
d > 2 it’s yes for the wrong reason. There’s a theoremification functor to apply,
there’s a lot of work to do that, I’m sure I can do that but. The space of such
structures, well, let me do d at least 2 and I want to do a non-compact manifold
Rd, framed manifolds, the space of such structures is homotopy equivalent to the
space of Ed-formality quasiisomorphisms. So it’s a complicated space that by hard
theorems is nonempty.
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19. Pavel Mnev, An example of a cellular topological quantum
field theory in BV-BFV formalism, with Segal-like gluing.

Thanks a lot, this is joint with Cattaneo and Reshetikhin, and Losev also influ-
enced these discussions. I’ll discuss this formalism, and the point of our discussions
is to put together two of our favorite toys, effective actions in BV formalism, this
somehow stems from the old idea of effective action by Wilson, we’ve seen some
examples in the talks of Kevin. The other toy is having field theories on manifolds
with boundaries, so when you’re gluing you’re composing operations.

So let me, I don’t want to dwell on the generalities of the formalism, I’ll give a
rough outline. The classical picture is as follows. The BV-BFV, the B and V in both
stand for Batalin and Vilkovisky. The F, the BFV is quite different. This involves
rings of reductions on coisotropic submanifolds. For manifolds with boundary, for
gauge theories, the general structure is like that, okay, let me summarize it for a
closed manifold. There I should have a space of fields F , a graded supermanifold,
an odd symplectic structure in degree −1, my BRST differential, Q ∈ X (F)+1 and
Q2 = 0. The action S is a function on F of degree 0 and it satisfies the structural
equation ιQω = δS, which implies {S, S}ω = 0. I want in the boundary case to do
something a little different. I will put F∂ , the “phase space” on the boundary, an
exact 2-form of degree 0, we have ω∂ = δα∂ , a degree +1 square zero operator Q∂ ,
and an odd action S∂ , so ιQ∂ω∂ = δS∂ .

Now on the bulk I get (F , ω,Q, S) and what I want is a restriction map to the
phase space which is pulling back fields to the boundary. The other relation is that
Q is projectible and projects to Q∂ . I want to deform the equation relating Q, ω,
and S by terms involving α. So ιQω = ∂S+π∗α∂ . There is this correction, it’s not
Hamiltonian at all. This means that LQω = π∗ω∂ and Q(S) = π∗(2S∂ − ιQ∂α∂).
A more symmetric way to write it is 1

2 ιQιQω = π∗S∂ .
[Theo: is this like a Lagrangian in the symplectic thing you get for the boundary?

In derived geometry?]
I cannot answer you in derived geometry, I can answer in Russian if you like.

[Laughter]
Let us go on. I don’t want to be precise here, I’ll give a very general outline, the

idea is that first you choose the datum of the geometric quantization of this phase
space. I want to pick a fibration over a manifold B. You can work more generally.
I want this polarization to be compatible with α∂ so that restricted to fibers this is
zero. This means functions on the sections of the [unintelligible] can be identified
with functions on B.

This space of states comes equipped with an odd operator Ŝ∂ . If things work
well for me, I can quantize it to square to zero. This is an operator on the space of
states of degree 1. The physical name is quantum [unintelligible] charge. Then my
space of states is a complex and the cohomology is the “reduced space of states.”

For the bulk I should get a vector in the space of states (partition function). To
M I associate a vector in this space which is a function on B. Then

ZM (b) =

∫
L⊂π−1{L}

The point is, I’m thinking of my space of fields as fibered over B. Then on the other
side, I want to choose a subspace, a Lagrangian corresponding gauge fixing. I want
ω restricted to the fibers, I’ll call this ωB , Lagrangian with respect to ωB . This is
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a choice, considerations which are theorems in finite dimensions and a principle for
infinite dimensional integrals imply it’s independent of choice.

[Missed] Generally it’s good to leave something from integration here. This might
sound unmotivated for you. We’ll split out some part of the fiber and leave it as a
parameter in the partition funciton. We want some bundle over B, call it Z with a
fiber F and the partition function should be a function on the total space.

I would like to say that ZM (b, ϕZM ) is
∫
L
e

1
~S where L is the fiber over (b, ϕ).

I wanted to say, where does this partition function take values? In the space of
states for the boundary. So Zm ∈ H∂⊗̂Fun(FZM ).

i~∆ZM +
i

~
Ŝ∂)Z =

.
[missed some]
For gluing, one step is Segal-like and the other has to do with zero modes.

Cut into two manifolds, then the idea is that first I construct, I cut along some
codimension one submanifold Σ. So first I take

∫
b
ZI(b, ϕ

I
ZM )ZII(b, ϕ

II
ZM ) and then

[for reasons that i missed] you integrate out the redundant zero mode, get from Z ′

to ZM .
This is the general—[Questions]
So I want to discuss a very simple gauge theory, the so-called Abelian BF theory,

there’s no way to go simpler. In the continuum setting, think of a manifold of
dimension n, you endow it with a flat bundle of rank m, the holonomy should
be orthogonal, but it works more generally with a SL±(m,R)-local system on M .
Okay, so the space of fields for this model contains two parts, essentially two copies
of Ω•(M,E)[1]⊕ Ω•(M,E∗)[n− 2].

The action S =
∫
M
〈B∧, dEA〉. So this, one of these, these, well, A and B are

F → Ω•(M,E) (degree 1) and F → Ω•(M,E) (degree n− 2).
Let me say something about the space of fields of a cellular model. I want a

manifold with boundary with a cellular decomposition X and a local system E.
What I want is C•(X,E)[1]⊕ C•(X∨, E∗)[n− 2].

For the dual to make sense at all, I need this to be a ball complex, what is the
dual decomposition? If M is closed, start with the cell composition of the circle as
a triangle. For every cell I denote e(X), I have a cell ∪(e)X∨, the dimension of a
cell in the dual is comlementary.

If you want to go to boundary, there are two candidates, and I’d like to resort
to pictures. Think of a cell decomposition of a disk, [pictures]

I have two duals, one I do the thing you’d expect and the other you eliminate
the boundary cells. Neither of these is an involution but they are inversese.

What I need is to go to the language of cobordisms. I color with in and out.
Then if I’m given a manifold with in boundary and out boundary, what does it
mean to go to the dual? It means that I take XV+ going in and XV− coming out.

I wrote the space of fields, the action is 〈B, dA〉X = 〈B,A〉Xin.
Now Q is the lifting of the coboundary operator on cchains to Fun(F) and the

boundary, the kinetic form is obvious, the point is that the intersection pairing is
degenerate, there are cells, well [missed]

Now F∂ = C∗(X∂)[1]⊕ C(X2)[n− 2]
What’s important here? [missed, I have to stop.]
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20. Bruno Vallette: Everything you always wanted to know about
the HTT but were afraid to ask

Bruno requested that I not take notes during this talk.


