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I’d like to first say that Stephan should know the title because he made it up.
I was asked to give this talk to do something about equivariant forms and elliptic
cohomology. That’s what I’ll try to do. This will be expositional. The main
reference here is Lurie’s Survey of elliptic cohomology. Let me start by giving a little
outline of global homotopy theory, and then some things that we’ll need to know
about derived algebraic geometry. Time permitting we’ll then get to equivariant
forms in elliptic cohomology.

Global homotopy theory is supposed to be equivariant homotopy theory for all
groups at the same time. Another way to think about it is that global homotopy
theory is the homotopy theory of stacks. One way to make this precise is, well,
“stacks” is extremely flexible. We’ll focus on topological stacks since we want to
talk about elliptic cohomology. Even with elliptic cohomology, you have smooth
stacks, not smooth stacks, I’ll fix an indexing category, which I’ll call Top, it could
be paracompact spaces or topological manifolds or smooth manifolds. I want it
small so you might have to choose a cardinality bound in some sense.

Top should be equipped with a Grothiendieck topology and a functor down to the
infinity category of spaces, S which is Gpd∞. We basically just need one condition,
which is that it takes covers to covers.

If {Uα} is a cover of X, set U = ∐Uα, then in S I need that X is equivalent to
the realization of the Cech nerve of the cover

∣U ⇇ U ×X U ←←← U ×X U ×X U⋯∣.

So let F ∶ Topop → (τ≤n)S ≅ Gpdn. Then F is a stack if F (X) = lim{F (U) ⇉
F (U ×X U)⋯}.

There’s a realization functor from stacks to S which commutes with homotopy
colimits and sends X to X in S. If F ← X0 ⇇ X1⋯ then ∣F ∣ = ∣X⋅∣. For example,
I could take F to be a G-space, which is a stack by thinking of it as a topological
groupoid, that gives a functor to groupoids, and then you stackify it. If X is a
point then F = BG, which is bold because it’s not the space BG, it’s the stack, and
then ∣F ∣ =X ×G EG =X//G, and so ∣BG∣ = BG.

We don’t want to apply this objectwise to our stacks, but we want to apply it
on the morphisms.

If E → F is a map to stacks, I have the mapping stack Map(E,F ), and I can
take the realization of the mapping stack to get what I’ll call the space of maps
map(E,F ).

If I take E = BH and F = BG, then you can easily compute that Map(E,F ) is a
stack version of Hom(H,G) with G acting. Then map(BH,BG) =Hom(H,G)//G.
I can make these smooth stacks if I choose and have these be maps between Lie
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groups. Now Orb is the category whose objects are compact Lie groups BG, and
maps mapOrb(BH,BG) = Hom(H,G)//G. You should think of these as points.
The definition here is, a map f ∶ E → F is a weak homotopy equivalence if

map(BG,E) ∼Ð→map(BG,F ) for all BG in Orb.
This gives a localization of the ∞-category of stacks equivalent to presheaves

on Orb, that is, Fun(Orbop,S). This fits in the general framework of Elmendorf’s
theorem, identifying G-spaces as presheaves on OrbG.

I think this is amenable to dealing with elliptic cohomology, which I will explain.
Within this orbit category I want to single out some subcategories.
So you also have a notion of a representable morphism of stacks. This roughly

corresponds to inducing an injection on stabilizer groups. I don’t want to be more
precise for time purposes.

Lemma 1.1. Stacks over BG (take G a point to get all stacks) are equivalent to
presheaves on Orb/BG.

Also, Spaces/BG, which are representable stacks over BG, is equivalent to presheaves

on representable orbits over BG. In fact, BH
fÐ→ BG is representable if and only if f

is an open embedding. So this is the same as presheaves on OrbG or just G-spaces.

We have Orbtori inside Orbab inside Orb, where you restrict your groups to being
tori or Abelian. If G is Abelian, then map(BH,BG) = hom(H,G) ×BG, because
an Abelian group acts trivially by conjugation.

I should have said that Hom(H,G)//G is always the same as ∐ρ∈[H,G]BZ(ρ)
but if G is Abelian you have this simplification.

So map(BT (m),BT (n)) ≅ hom(T (m), T (n))×BT (n) ≅ (hom(T (m),T)×BT)n,
so you can say Orbtori is an ∞-category with objects BT (n) where BT (n) ≅
BT (1))n.

What is this? Well, you can check that the homotopy category of this is theory
of Abelian groups. An Abelian group, as Charles was explaining, an Abelian group
object in an ∞-category C is exactly a product-preserving functor from T ab to C.
If C is presentable, then this is C⊗Ab. Here I’m thinking of the homotopy category
really, as an infinity category via the nerve.

You’re taking the homotopy category, well, maps from an m-torus to the n-torus
by Pontrjagin duality is the same as a map of their dual groups. [missed]. You can
show easily that to give a product preserving functor from the category of tori into
an ∞-category C is to give an Abelian group plus some extra structure. That extra
data is exactly what is called a preorientation in Lurie’s world.

From this point of view you can start to create global homotopy theories valued
in various ∞-categories from pre-oriented Abelian group objects.

Let me be precisely more precise about what this means. An Abelian group
object A in an ∞-category C with finite products equipped with a map of Abelian
group spaces BT → maps(∗,A) in Ab(S) which is equivalently the ∞-category
of simplicial Abelian groups. This is not the naive notion of what you might
expect, not an E∞ thing but something much more rigid than that. This is called
a preorientation. Using the fact that BT is K(Z,2), this is the same thing as an
element of π2map(∗,A).

This is the assertion that in simplicial Abelian groups, BT is the double delooping
of Z.
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If C has finite limits, then you can extend it to Orbab → C. Let me back up.
I said that a map from tori was an Abelian group object plus a preorientation. I
extend because we know the structure theory of compact Abelian Lie groups. They
are tori crossed with finite Abelian groups. So this functor, A(BT (n)) is n copies of
BT. I need to tell you the n-torsion in the circle, and you extend by taking fibers,
so you get the n-torsion of the circle by multiplying by n from BT to itself.

Later we’ll be able to extend to all orbits. The way you construct equivariant
versions of elliptic cohomology is by starting off with the Abelian ones.

Now I want to turn to the derived algebraic geometry part of the story. Lurie
classifies (pre)oriented derived elliptic curves, and those will give us equivariant
cohomology theories. I need to present some definitions, tell you what a preoriented
derived elliptic curve is in a somewhat rigorous way.

I want to consider étale sheaves on commutative S-algebras. For technical
reasons, I might want to assume connective S-algebras. So these are functors
CAlgS → S which satisfy an étale descent condition. I’ll just call this X , it’s an ∞-
topos but we don’t need to know what that means for the purposes of this lecture.
In other words F is an étale sheaf if for every étale cover A→ B, F (A) is the limit
of F (B)⇉ F (B ⊗A B)⋯.

Let me tell you what an étale cover is very quickly. Does anyone have any
questions at the moment?

There’s this strong notion of flatness, if A is a commutative S-algebra and M an
A-module, then M is (faithfully) flat over A if π0(M) is (faithfully) flat over π0(A)
and the other homotopy groups π∗(M) = π0(M) ⊗π0(A) π∗(A). A map A → B is
étale if B is flat over A and π0A→ π0B is étale. This map f is an étale cover if B
is faithfully flat over A.

If you’re given f which is faithfully flat, and form this [unintelligible]complex,
the one that appears in the limit above, there’s a map from A to the limit, and
using the notion of flatness and the Bousfield–Kan spectral sequence, you can see
that A is equivalent to this limit.

This means that representable functors are étale sheaves, even sheaves for the
flat (and even étale) homology. Then I should say a little bit about what a derived
scheme is.

Definition 1.1. A derived scheme X,OX is locally an E∞-ringed space which is
locally (specπ0A,OspecA). And OspecA is specπ0(A)[ 1f ] = A[

1
f
].

Definition 1.2. A derived Deligne–Muford stack is a locally E∞ ringed space (I
should really say topos) which is locally of the form specA.

The somewhat surprising, difficult theorem of Lurie, is that you can classify
elliptic curves. I have everything I need to tell you about that.

A derived elliptic curve C
pÐ→ S is a map of derived schemes such that p is flat,

C is an Abelian group object in, here X is all étale sheaves on commutative S-
algebras, C is an Abelian group object in S, and the map of underlying schemes
C → S is an elliptic curve. The underlying scheme of (X,OX), is (X,π0(OX)). So
for example if X is specA then X is π0(A).
Theorem 1.1. The functor F from connective commutative S-algebras to S which
assigns to A the ∞-groupoid of oriented derived elliptic curves over A is represented
by a derived Deligne–Mumford stack whose underlying stack isM1,1, genus 1 curves
with a single marked point.
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I should have given M a structure sheaf, and there is a Bott element locally
defined in π2(OM) such that, now I can invert this class β, and (M,OM[β−1])
representds oriented derived elliptic curves. The preorientation, if C is living over
specA, then I can realize it as happening in formal schemes, and the orientation
condition says that the formal completion along the identity is the same as this
derived formal schemee.

I don’t have time to explain this, but this is saying that when you have the
orientation, then A is an E∞ elliptic spectrum whose formal group law is the group
law of the underlying elliptic curve of the derived elliptic curve.

Now how do you extract elliptic cohomology? It’s easy to describe this now. The
recipe we sort of already know how it goes, we have the orbit BG where G is an
Abelian compact Lie group. Then the elliptic cohomology of C over S, an oriented
derived elliptic curve, Ell(BG) = Γ(CBG,OX ), the E∞-ring spectrum of functions
on this derived geometric object CBG. For example, what did we have? If we plug
in the point, we just get Γ(S), which, if, let’s say, how should I say this? At the
moment this is a functor from Abelian orbits to X/S , but then I can compose with
global sections to go down to E∞ ring spectra, which reverse the variance. So then
this can be extended before taking ops to presheaves on the various categories

(Orbab)ob

��

// X op
/S

Γ// E∞ ring spectra

(Pre(Orbab))ob

88 .

So Ell(∗) = Γ(S) = A if S = specA and if S = M then Ell(∗) is TMF. So
Ell(BT) = Γ(OC) and you can use a spectral sequence to see that Hp(C,πqOC)⇒
πq+p(Γ(OC)).

[some silly back and forth.]
I think I’ll stop here. If people are interested in how this works more generally

and how you can get genuine equivariant cohomology theories from it, I’m happy
to tell you about that either in another lecture or in person.


