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1. July 2: Emily Riehl: The model-independent theory of
(∞,1)-categories I

I was a student at Cambridge 10 years ago and here is where I met my collab-
orator on this work. Everything I’m going to say is joint with Dominic Verity, a
Cambridge alum now at Macquarie. There are references listed for this, a Cliff’s
Notes version and a longer version, so today is chapter 2 of the book draft we’re
writing, “Elements of ∞-category theory”

This program is about higher structures in homotopy theory. What the higher
structures in homotopy theory usually assemble into is an (∞,1)-category. You
have objects and morphisms and then there are homotopies which are data, between
morphisms, and then between the higher morphisms and so on. So morphisms are
paths in some space and these have a kind of composition which is not strictly
defined, not strictly associative, not strictly unital. There’s some invertibility and
when you forget the higher stuff you drop to regular 1-category theory.

If you’re interested in working here then you want to have the familiar theorems
of 1-category theory, and the aim is to develop the theory of∞-categories, extending
1-categories. I’ve made a schematic definition, not a precise one. One uses a variety
of models to make this precise, developed over the past couple of decades by several
mathematicians, including ones in this room. The idea going back at least to Toën
but probably much further, is that the model shouldn’t matter, so things are model-
independent.

So one other thing I wanted to say is equally people who have not yet made the
acquaintance of ∞-categories and people with a background as well, because there
is a difference in attitude.

The difference, the main difference between our approach as opposed to previous
work (to which we are indebted) is that it is “synthetic” rather than “analytic.”
Joyal and Lurie are often made in quasi-categories, relative to the combinatorics of
simplicial sets. For example, you do induction on simplices. You don’t state things
in reference to a particular model in a synthetic approach, it’s axiomatic, and then
they will be true in any model.

Necessarily if we’re developing a synthetic approach it’s important that this work
specializes to the Joyal–Lurie theory of quasi-categories. Everybody agrees that the
definition Joyal gave for limit, that Lurie gave for adjunction, are correct, and rest
assured that if we specialize to quasi-categories, we recover those.

I’m not saying that the synthetic is better than analytic—there are more things
that you can prove in coordinates than without them, but they are complementary.

The third quality is that these are invariant under change of model. The hope
is that theorems proven for quasi-categories apply equally well under change of
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context. Toën has a result relating the homotopy theory of (∞,1)-categories, so
maybe we think that some of this is evident. But some people are redoing categorical
things for complete Segal spaces, and so we assume it’s not obvious that these things
work.

So if you have a diagram in one model and move it to another model and find a
limit, was there a limit in the original model?

Another point is that this is as simple as possible. We want, one day, to allow
undergraduates to learn this without twisting themselves into a knot. The axioms
will describe the (∞,2)-category where our models work, and this is a very strict
category. None of this is strictly necessary, but it makes the proofs shorter. You
should interpret anything I say in the strictest way possible.

Some models of (∞,1)-categories work better than others, and so our strictness
loses some of them. Let me start by talking about the plan for tomorrow. I’ll
introduce the axiomatic framework in which we work, an ∞-cosmos, which has
∞-categories as objects.

Today we won’t need the axioms of ∞-cosmos. We’ll instead develop some
of the theory of ∞-categories. Let me say, we’ll define, introduce, adjunctions
and equivalences between ∞-categories, two very fundamental notions, and also
limits and colimits inside an ∞-category. I’ll prove that these notions relate in
the expected way, I’ll, for example, prove that right adjoints preserve limits, one
of my favorite theorems in category theory. We’ll do this working in a strict 2-
category with objects ∞-categories, with morphisms ∞-functors, and 2-morphisms
the ∞-natural transformations.

Before I dive in, I wanted to say one word about the justification, I want to say a
word about where does this 2-category come from? People sometimes get skeptical
when we get into the weeds. The first hint that there would be a 2-category like
this is a theorem due to Joyal, Rezk, Bergner–Pellisier, also to Verity–Lurie

Theorem 1.1. There are Cartesian closed model categories whose fibrant objects
describe (∞,1)-categories: quasi-categories, Rezk spaces (complete Segal spaces),
Segal categories, and complicial sets, i.e., natural marked quasi-categories.

I want to say next time the following.

Corollary 1.1. For each of these models, each of these ∞-cosmoi K, there exists
a 2-category hK as described:

● the objects are ∞-categories,
● the morphisms are ∞-functors, and
● the ∞-natural transformations are (defined to be) the 2-cells that arise here.

So today an ∞-category and ∞-functor should be taken to be the objects and
morphisms in one of these four models.

Each of these things is simplicially enriched. The 0-simplices are the∞-functors,
and the homotopy classes of 1-cells are the ∞-natural transformations.

Now let me explain what I mean by a 2-category. We’ll have objects, which
are capital letters close to the beginning of the alphabet. The morphisms look like
A

fÐ→ B. I could say f
α⇒ g for 2-cells. Moreover, I should have said the 2-categories

have a terminal object 1 and are Cartesian closed in the 2-categorical sense.
First I’ll say I have products.
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Then if I have a functor A × B fÐ→ C, that transposes to B
fÐ→ CA and also

A
fÐ→ CB , but also there’s a 2-dimensional axiom, that if I have f

α⇒ g in the first
case I get the same 2-morphisms under transposition.

Let me explain what a 2-category looks like. I have an underlying 1-category.
The thing that is nice, the ∞-natural transformations, I’m saying that I can com-
pose these in a bunch of ways that are always well-defined. They compose vertically.

So if f
α⇒ g and g

β⇒ h then I get f
β⋅α⇒ h.

I also have horizontal composition, if f
α⇒ g and h

β⇒ k where the target objects

of f and g are the source objects of h and k, then I get hf
β∗α⇒ kg.

One special case is whiskering where one of these is an identity, so I get

X A ⇓ α B Ya

f

g

b = X ⇓ bαa Y

f

g

Then more generally, I can compose by pasting, and there is middle four interchange
which shows that whenever I draw a directed diagram with natural transformations
on each cell it will give a well-defined 2-cell by composition.

1.1. Adjunctions and equivalences.

Definition 1.1. An adjunction is comprised of
● ∞-categories A and B,
● ∞-functors A

uÐ→ B and B
fÐ→ A, and

● ∞ natural transformations idB
η⇒ uf and fu

ε⇒ idA,
So that the “triangle equalities are satisfied”, which is

ufu

u u

uεηu

fuf

f f

εffη

You can also draw these as pasting diagrams [pictures]
The upshot, the advantage of having a 2-categorical definition, is that all 2-

categorical theorems about adjunctions become theorems about ∞-categories. So
once we know that this is a good definition for ∞-categories, we get them for free.
And if you didn’t know them before you can prove them easily.

For example,

Proposition 1.1. (1) If f ⊣ u and f ′ ⊣ u then f ≅ f ′.
(2) If f ⊣ u and f ≅ f ′ then f ′ ⊣ u.

Proof. For the first case, if we write down the pasting diagram (ε′f) ⋅ (f ′η) this is
an inverse isomorphism to (εf ′) ⋅ (fη′).

For the second statement, you define η′ as (uα) ⋅ η and define ε′ as ε ⋅ (f ′u). �

Here are some other examples.

Proposition 1.2. Adjunctions compose, so that if f ⊣ u and f ′ ⊣ u′ and these are
horizontally composable, then ff ′ ⊣ u′u.



4 GABRIEL C. DRUMMOND-COLE

The proof is an exercise, where you build the unit and counit by hand from the
unit and counit of the given adjunctions.

Proposition 1.3. Given f ⊣ u an adjunction between A and B, then f∗ ⊣ u∗
between AX and BX ad u∗ ⊣ f∗ (note the reversal) between CA and CB.

The proof is that 2-functors preserve adjunctions, and the 2-functor in question
is (−)X from hK to hK.

Let me put equivalences in this story.

Definition 1.2. An equivalence consists of
● ∞-categories A and B,
● ∞-functors A

fÐ→ B and B
gÐ→ A, and

● ∞ natural isomorphisms idA
α⇒ gf and fg

β⇒ fg

Then the proposition is that any equivalence can be promoted to an adjoint
equivalence so that f ⊣ g and g ⊣ f .

The proof is an exercise and I should be more precise, you can keep everything
except for one of the two natural transformations.

1.2. Limits and colimits. How do we look inside an ∞-category, since it’s one
of four different things. This is a description of Bill Lawvere

Definition 1.3. An element of an ∞-category A is a functor 1
aÐ→ A. A generalized

element is X
aÐ→ A.

The philosophy of generalized elements is what makes this thing a higher dimen-
sional definition. The 1-cells in the generalized case keep track of higher homotopy.

Definition 1.4. A terminal element in an ∞-category A is a right adjoint to the
unique functor from A to the terminal object 1. The data is 1

tÐ→ A.

I need to give a unit and a counit. But the counit is no data, and then the unit
is a map from idA to t! and it should satisfy that ηt = idt.

What’s nice about this definition is that it’s easy to prove a number of theorems.
Let me list one of them.

Proposition 1.4. ● Right adjoints (and equivalences) preserve terminal el-
ements.

● If A ≅ B are equivalent ∞-categories then A has a terminal element if and
only if B does. When you change models and change back then you might
come back in an equivalent ∞-category.

Proof. If I have ! ⊣ t andf ⊣ u horizontally composable, then ! ⊣ ut by horizontal
composition. For equivalences this is true because we can upgrade the equivalence
to an adjoint equivalence. The second result now follows. �

Definition 1.5. I’ll let AJ be the ∞-category of diagrams of shape J in A. Recall
that 1

dÐ→ AJ corresponds to J
dÐ→ A.

Definition 1.6. We say that ∞-category A has limits of shape J if the diagonal
constant diagram A→ AJ has a right adjoint lim.
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Let me say, the counit here, this might be unfamiliar, the counit gives a natural
transformation so that given a diagram d, the counit εd is the limit cone which is
a map from the limit to the diagram d.

This is not sufficiently general because sometimes you don’t have all of these
limits.

Proposition 1.5. A 2-cell ε from fu to idA is the counit of an adjunction if and
only if it is an absolute right lifting diagram.

This means that given any ∞-natural transformation of the following form

X B

A A

b

a ⇓ χ f

there is a unique cell τ which goes in the upper cell here with ε in the lower cell
which is equal to χ

X B

A A

b

a fu

Lemma 1.1. ● If ρ is an absolute right lifting diagram, then ρc is for any
morphism c.

● A vertical composition with the same source object is an absolute right lifting
if and only if the first 2-cell is.

Absolute refers to this first stability under restriction.

Definition 1.7. A diagram J
dÐ→ A has a limit if and only if there exists an absolute

right lifting

A

1 AJ

∆`

d

with 2-cell λ

Then the theorem which luckily will take no time is that

Theorem 1.2. Right adjoints preserve limits, so

A B

1 AJ BJ

∆

u

∆`

d uJ

is an absolute right lifting diagram

Proof. If I take the desired absolute right lifting diagram, then I can vertically
compose this with the whiskered counit, and then use the second statement of the
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lemma. But by 2-naturality of ∆, the counit can slide through the diagonal,

B

A BJ

1 AJ AJ

∆u

∆ fJ`

d

uJ

=

B

A A

1 AJ AJ

fu

∆`

d

(with λ and ε in the appropriate cells) �

2. Thomas Nikolaus, Higher Categories and algebraic K-theory I

I’ll use infinity categories, and we’ll learn in Emily’s lectures what ∞-categories
are and how to use them.

So let’s start easily and talk about K0 as a group completion. So R will be a
ring, with unit, not necessarily commutative. Then ProjR is the category of finitely
generated projective R-modules. By π0(ProjR) I’ll mean isomorphism classes of
objects in there. Since there’s a symmetric monoidal structure ⊕ on ProjR, I
can take two projective modules and take their direct sum, this is a symmetric
monoidal category. Then π0(ProjR) is a commutative monoid. With that in mind,
one defines K0(R) to be the group completion of this monoid (π0 ProjR)gp, the
group completion which formally adds inverses.

The basic examples of this invariant that probably everyone has seen, if R is a
PID, then π0 ProjR is N so K0(R) is Z. You could also ask what is π0 ProjR[x0,...,xn]
is, and by Quillen–Suslin this is also N so K0 is Z.

Another example is C[C2], then any projective representation is a sum of trivial
and sign representations. Then K0(C[C2]) is Z ⊕ Z. You get a similar statement
for the group ring of any finite group.

So one thing we could have noted is that this only used the symmetric monoidal
structure of the category of finitely generate projective modules.

Definition 2.1. So let C be a symmetric monoidal ∞-category. Then π0(C) is a
commutative monoid and K0(C) is the group completion (π0C)gp

Let’s take examples. If C is the category of finite sets, then this is symmetric
monoidal with disjoint union. This is the coproduct of finite sets. So what is K0 of
that, what are isomorphism classes of finite sets? This is natural numbers, so K0

is again the integers.
Another example is given as follows. If R is a connective ring spectrum, and I

said I’d assume everything about homotopy theory, so just think of rings if you’re
not familiar with them. This is somehow one of the points of higher category theory,
to work with ring spectra like rings. A module M over R is called projective if M
is a summand in Rn for some finite n. I’m not allowing any shifts here. Then you
get a category of projective R-modules just as you did for rings. Then K0(R) is
K0(ProjR). This thing is a 1-category which is the thing I started with if I started
there. I’ll implicitly consider 1-categories as ∞-categories.

Then it turns out that this is isomorphic to K0(Projπ0R), so I’m saying this
is K0(π0R). Why is this? Because, you can, this is a priori an ∞ category, and
you can take the homotopy category Ho(ProjR), and this is equivalent to Projπ0R.
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It’s obvious how if you start with a projective module in Projπ0R how you can lift.
That’s not a proof but an indication.

In general, of course, we have that K0 of any category will just depend on K0 of
the homotopy category. We take iso classes of objects and group complete.

Why is this relevant? A lot of people in the audience will have answers. One
of the motivations is that Waldhausen considered Waldhausen A-theory. Wall con-
sidered some finiteness obstructions that were eventually K-theoretic. So what’s
A-theory? If X is a pointed connected space, then there is a ring spectrum which I
denote as S[ΩX], so ΩX is a based loop space, this is a group object in the∞-sense
in the category of spaces. You can work with simplicial sets and write down a strict
model if you want, this is Σ∞

+ ΩX, this is written S[ΩX] because this is exactly
analagous to the group ring. So then I define A0(X) as K0(S[ΩX]).

So what is π0 of this ring spectrum? For a suspension spectrum it’s the group
ring, so this is K0(Z[π1X]).

This is group completion or additive K-theory. If we’re talking about a non-affine
scheme, we have to do a different thing, which will be covered in the third lecture.

Are there any questions about K0?
While this is very classical, this was already discussed by Grothiendieck and oth-

ers, it was a little tricky to define higher K-groups as a group completion. That’s
actually where ∞-categories really help. I’ll start with a symmetric monoidal ∞-
category. So the first thing was to pass to isomorphism classes; the right general-
ization is to pass to the space of objects

(C,⊕)↝ C≅

which is an ∞-monoid in the category of spaces, and I’ll group complete that. That
will be the definition.

Let me introduce some of the terms I’ll use to talk about that. I’ll use Segal’s
definition.

Definition 2.2. An ∞-monoid is a functor from finite pointed sets into spaces

M ∶ Fin∗ → S,

so the composite is not equal but there is a 2-cell witnessing it, and so on. You can
model this strictly but I don’t want to—I want to impose the condition

M(⟨n⟩) (ρi)i≥1ÐÐÐÐ→∏
n

M⟨1⟩

are equivalences.

Here ⟨n⟩ = {0, . . . , n} and ρi ∶ ⟨n⟩1⟨ is 1 if n is i and 0 otherwise.
I’ll take commutative monoids, Mon∞ to be the full category of functors from

Fin∗ to S on ∞-monoids.
What are examples? One abuse I’m going to do, if I have a functor, I’ll identify

it with the underlying object which is M⟨1⟩.
If A is an ordinary commutative monoid, then this, you can take S a set to

AS/A{∗}, a discrete space.
IfM is an ∞-monoid, then the homotopy groups π∗M are commutative monoids,

but by an Eckmann–Hilton argument, they are groups for ∗ ≥ 1. They already have
one group structure, and then the two structures coincide. So there’s precisely one
homotopy group which is not a group, which is π0.
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An ∞-group is an ∞-monoid such that π0M is a group. We have a full subcat-
egory Grp

∞
of Mon∞ . Now what we need to know to finish our definitios is what

K-theory is. That’s the following theorem. Morally we’ve just made precise what
it means to be a homotopy coherent monoid. The main theorem is that the inclu-
sion from ∞-groups into ∞-monoids admits a left adjoint called group completion.
For every M an ∞-monoid, there is an initial morphism M → Mgp with target a
group. This is the way one would say group completion in the ordinary land. You
can exactly say the same in the category of spaces. Historically this would be in
quotation marks and then people would provide models, like the loop space of the
bar construction. I’d never write a construction in ordinary land. To prove the
theorem, you don’t need to give any models, this comes from Bousfield localization
of model categories, you can prove this exists without constructing it explicitly.

Then the point is to get as much out of K-theory as I can without any models.
Let me also add that there is an equivalence of ∞-categories between Gp∞ and
the infinity category of connective spectra. This is delooping, an ∞-loop machine,
pioneered by Boardman and Vogt among others.

Good, so what now? Informally, this means you can do things you do in ordinary
algebra in this language. People who know classic homotopy theory will not learn
anything new from this.

I’ll repeat the definition of K-theory now.

Definition 2.3. (1) So K(C) is now the spectrum associated with (C≅)gp. If
I ever need the underlying space I’ll say Ω∞K(C).

(2) K(R) will be K(ProjR), as before
(3) K∗(C) is defined as π0(KC) and similarly K∗(R) is defined as π∗(KR).
So now we have two definitions of K0.

Lemma 2.1. (1) The two definitions of K0 agree.
(2) The K group Kn+1(R) depends only on the n truncation: Kn+1(R) ≅

Kn+1(τ≤nR).
(3) K(C ×D) ≅KC ⊕KD.
So for the first one, I gave you two definitions, one about the group completion

of the isomorphism classes, very concrete, and that agrees with the more abstract
definition.

Proof. For the first case, we claim that for an ∞-monoid, then π0(Mgp) is the same
as π0(M)gp. This immediately implies the first one, one is how I defined one and
the other the other. So how do we show this? We have a square to show commutes.

Mon∞ Gp∞

CMon(Set) CGp(Set)

( )gp

π0 π0

( )gp

But Emily told us how to do this, these are all left adjoints so we can pass to the
adjoint diagram, and it’s obvious that the adjoint diagram commutes, therefore
this dagram commutes. This is a little sloppy, we should say that the canonical
equivalence of the right adjoints gives a canonical equivalence of the left adjoints.

For the second thing, the same argument shows that the group completion of
τ≤nM is equivalent to the truncation of the group completion τ≤n(Mgp). Then the
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statement in question follows from, start with ProjR, truncate the whole category,
so
tau≤n+1 ProjR is the same as Projτ≤nR

. You might not get the details but I am
trying to show you that anyway this is very formal. �

Let me not give a proof of the final property, which is that the product and
the coproduct coincide. This is entirely formal, then, from knowing that group
completion is a left adjoint.

Why would I care? This you can use to make some simple observations. If you
make A(X), then you can define the Waldhausen A-theory spectrum K(S[ΩX]) so
A1(X) is just K1(Z[π1(X)]). I won’t give an account of A-theory here, but this is
how it compares to classical invariants in algebraic topology and it was enlightening
for me back in the day.

So what can we say about K(C[C2]) now? As a category it splits into a product,
this is K((ProjC 1)× (ProjC ×σ)) so this is K(C)⊕K(C). This is virtually useless
unless we can say something about K(C) which I’ll do next time.

So I’ll finish with an example of an ∞-monoid for every space X. So you can
make a free commutative monoid on any set. So for every space X, you can do
something similar, there is a free ∞-monoid on X, with underlying space given as
follows. The existence can be deduced formally, but the thing I’ll say now is still
formal but one level less formal than the other formal thing.

Free∞(X) ≅ ∐
n≥0

(X×n)hΣn .

Again I’m not going to justify this. One way to prove this is to compare this to the
category of algebras over an operad and write down what this gives.

Next time I’ll give you tools to identify these spectra. We can identify a certain
spectrum, this is the Barrat–Priddy–Quillen theorem.

Theorem 2.1. The K-theory spectrum of finite pointed sets is the sphere spectrum,
so K∗(Fin∗) = π∗(S).

So what’s the proof?

Proof. So we started with Fin and throw away non-invertible morphisms, but what
is this as a space? This is

Fin≅ ≅ ∐
n≥0

BΣn

which is just Free∞(pt). It’s not hard once you have the free formula, you can give
a map from the free one easily and then you can check whether it’s an equivalence
on underlying spaces. So this is the same as mapping out of a point. But then
the associated spectrum is the free spectrum on a point, which is the sphere. Thus
the mapping space MapSp(K(Fin),X) with X a (connective) spectrum is given
by Ω∞X. I compute the mapping space in spectra using infinity groups. The
underlying space of the E∞-group of X is the infinite loops of X. But the same is
true for the sphere, so K(Fin) is equivalent to S. You get a map one way for free
and then check its equivalence on underlying things. �

So I shifted the non-triviality of the theorem into building the machine. Once
you assume you know everything about ∞-categories, you get these statements
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formally. Next time I’ll give you tools to help you learn something about the K-
theory groups, like if you input a ring. The crucial ideas are due to Quillen, and
the idea is to get a handle on the homology of the K-theory spectrum.

3. Tobias Dyckerhoff: Higher Segal spaces I

I’d like to give some introduction in a series of two talks. I’ll provide an in-
troduction, these are certain higher categorical structures. There is a notion of a
d-Segal space, there are in fact two versions. In the first lecture I’ll discuss d ≤ 2
and tomorrow I’ll discuss d > 2. Since there are various people in the audience who
contributed to this, I’ll focus on some of these things so that you can have some
discussions with those people. So Thomas already mentioned Segal spaces, they
will appear in a different way here.

A Segal space is a simplicial spaceX. satisfying this condition, for every n ≥ 1, the
n-simplices Xn mapping to the iterated fiber product X1×X0X1×X0 ⋯×X0X1, and
I’ll thinki of this as the maximal edge path in the n-simplex, this map is obtained
by restricting along this maximal edge path, and these agree over X0 because the
edges are attached along the vertices.

You can either take this fiber product in the ∞-category of spaces, or take
homotopy fiber products, or take a Reedy fibrant replacement of the diagram, and
the condition is that this map Xn to the iterated fiber product is a homotopy
equivalence.

In Thomas’ lecture, this enhanced to finite pointed sets and the 0-simplices were
contractible. In this case I lose the additional symmetry from permuting the finite
sets, and this actually produces a model for an associative monoid. This provides
an explicit combinatorial model for [unintelligible], and this is where this first arose.
I’d rather move in a slightly different path.

Rezk used this to give a model for an (∞,1)-category. One basic such example,
take C to be a small category, then I can associate to it its nerve, which is a discrete
example of a Segal space. In fact it’s easy to see that all discrete Segal spaces
arise as nerves of small categories (and functors among them). Then the Segal
condition was an isomorphism, and by allowing it to be a homotopy equivalence
I get something associative only up to homotopy, but these are coherent by the
higher conditions.

So now I’m supposed to think of this as having a coherently associative compo-
sition law. Vice versa, if I’m given such a Segal space X., I can extract from it a
categorical structure, where ob C is the 0-simplices. Then the morphisms between
x and y form a topological space, which is {x} ×X0 X1 ×X0 {y}. Then the question
is how to compose morphisms.

Given a morphism x
fÐ→ y and a morphism y

gÐ→ z, I can treat {(f, g)} as a point
in the space {x}×X0

X1×X0X1×X0 {z} and from the Segal condition it follows that
the map from {x} ×X0 X2 ×X0 {z} is an equivalence, and so I can pick anything in
the (contractible) fiber as a composition:

F {x} ×X0 X2 ×X0 {z}

{(f, g)} {x} ×X0 X1 ×X0 X1 ×X0 {z}.
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And if I look in X3 I see that this is associative up to a certain homotopy, which is
coherent up to higher homotopies, and we extract an (∞,1)-category.

And there’s some fudging where we should have some so-called completeness
condition, and then complete Segal spaces are a model for (∞,1)-categories that
arose in Emily’s talk. Clark Barwick gave a higher model in this flavor using multi-
simplicial objects for (∞, n)-categories, which is not what we’re doing.

I’m going to come straight to the point. I wanted to clear up this misconception—
this is not what we’re trying to do.

What, then, is a 2-Segal space?
A 2-Segal space is a simplicial space X. such that for every n ≥ 2, and every tri-

angulation of a convex plane polygon—what I mean by that is the following. Label
the vertices of your polygon linearly, compatible with the blackboard orientation.
I mean a triangulation only involving the vertices on the boundary. Choose any
one that you like, and I want to think of this as the 2-dimensional analog of the
maximal edge path. So I’ll select these triangles, giving a 2-dimensional membrane
instead of a 1-dimensional path. I get a map from Xn to a homotopy limit, over all
the simplices appearing in this triangulation. Call the triangulation T , and then
this is

Xn → holim∆k⊂T Xk

and the condition is that the map is a homotopy equivalence.
We came up with this definition which was from studying an example. This was

in work with Kapranov, but was studied in a different context by Galvez-Corrillo–
Kock–Tonks. This is a justification that this is a natural thing to study.

Let me, before trying to understand what this is supposed to be, let me give the
first example of such a thing.

Any Segal space is a 2-Segal space. Let me give a sketchy proof. I start with any
triangulation of a pentagon, and I’m supposed to think of this in ∆4, and I think
of a map from X4 to (in this case, [picture]) X2 ×X1 X2 ×X1 X2. So I’ll apply the
ordinary Segal condition, and by the 1-Segal condition, this is X2×X0X2, removing
the maximal edge, and eventually I get to the maximal edge path, and then the
whole inclusion into the 4-simplex is supposed to be an equivalence. Then this
works by 2-out-of-3 and this generalizes if you are a little more systematic. So this
is some weakening of a Segal space in some sense.

You go back to the composition for Segal spaces, and in my pullback something
goes wrong. You have no equivalence from {x} ×X0 X2 ×X0 {z} to {x} ×X0 X1 ×X0

X1 ×X0 z so you don’t know whether you have a unique composition, it could be
empty, it could have higher homotopy, et cetera.

But if I look at the two possible ways to triangulate a square, I get two different
maps from X3 into X2×X1 X2, and these are weak equivalences. There is still some
sort of associativity. Even though there is not a unique composition, even though
it’s multivalued, it’s associative in this multivalued sense.

As in Segal, you get the notion of an associative monoid, here you get a multi-
valued monoid, which is associative if I investigate all these different choices.

Now you may wonder what this is good for. What this is good for, in nature
there are many 2-Segal spaces that match this model and I’d like to give you one
such example next. Curiously, just as the original definition appears in K-theory
about group completion, and this also appears in algebraic K-theory as the S.
construction of Waldhausen.
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Let A be an Abelian category, then the Waldhausen S. construction of A is the
simplicial space as follows. I have a single {0}-object, and then you get a classifying
space for 1-simplices, and I’ll write it in a redundant way, the groupoid of diagrams
of the form

0 A

0

and the 2-simplices are of the form

0 A B

0 A′

0

where the squares are biCartesian. and for three it’s

0 A B C

0 A′ B′

0 A′′

0.

So Waldhausen says that K(A) is Ω∣S.(A)∣ if you are working somewhere were
exact sequences don’t split. Here I want to mod out by relations coming from short
exact sequences as well.

So then the point is that this S. construction is precisely a 2-Segal space. There
is actually this algebraic construction as a monoid. There is an intrinsic algebraic
interpretation, captured by this notion of a 2-Segal space.

We gave the same definition and the same theorems totally independently, so
this GC–K–T and also D–K.

Theorem 3.1. The S.-construction is a 2-Segal space.

Let me give you the sketch of a proof for why this is true.

Proof. The lowest condition is that, say, I have two 2-simplices in the S. construc-
tion glued together along a face in this way:

1 2

0 3
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and this is supposed to give me a 3-simplex. So this is by filling with the cokernel:

0 A B C

0 A′ B′

0 A′′

0.

Then by the third isomorphism condition, the three cokernels I can take fit in
an exact sequence and the bottom square is coCartesian. �

This can also be done for exact categories, and even for a set-theoretic context,
with a proto-exact structure (exact without linearity) and also for stable infinity
categories and relative S.-constructions, where you do this and get a hybridization
of the nerve of B with S.(A) where we do this on f ∶ A → B. It doesn’t work
for Waldhausen categories because there you only have cofibrations and not the
duality. You need the condition where in a square, if one parallel pair is monic
and the other parallel pair epic, then the square is a pushout if and only if it’s a
pullback.

So are there other examples? There are some Hochschild-style examples, but I
want to present a theorem by several people in the audience.

Theorem 3.2. (Bergner–Osorno–Ozoncva–Rovelli–Schiembauer)
There is an equivalence of categories between unital 2-Segal sets and augmented
stable double categories (the maximal possible thing where you can take the S. con-
struction).

This is a category object in the category of categories. Stability is designed so
that this game works, so that you can complete spans.

We’ll see a version of this statement for d ≥ 2 in the next lecture as well. What
are these 2-Segal spaces?

Theorem 3.3. (Walde) There is an equivalence of ∞-categories between unital
2-Segal spaces and invertible planar ∞-operads.

I should say what unital means. If an edge in a 2-simplex is degenerate, it’s the
same as a 1-simplex, i.e., X0 ×X1 X2 ≅X1 and likewise on the other side.

Maybe I’d like to give a sketch of the proof, which is actually very slick.

Proof. Exhibit the simplex actegory ∆ as an ∞-categorical localization of the cat-
egory Ω of planar rooted trees Ω (Moerdijk–Weiss, later Cisinski–Moerdijk). You
take a tree, collapse to a corolla, and count your outputs. If you localize along
a certain class of collapse maps, then the localization gives you precisely the sim-
plex category. What you learn is that, if you look at simplicial spaces Ω

πÐ→ ∆,
then simplicial spaces realize as pullback as invertible dendroidal spaces. Inside
the simplicial spaces the unital 2-Segal spaces, then these precisely correspond to
complete Segal condition in the language of trees, and so you get the statement of
the result. �
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You can now unravel in this language what it means to have a multivalued
composition law. This is one way of making this precise in existing ∞-categorical
terms.

We’ve produced many examples. We know how to rigorously think of them as
multivalued composition laws. Now the question is, what can we do with this?
What are applications of this notion of a 2-Segal space. I’d just like to survey a
few contexts in which you can apply this theory.

The first application, and this was the originally conceived context in which
we wanted to study these 2-Segal spaces, is the notion in representation theory of
Hall algebras, these come from any Abelian category satisfying certain finiteness
conditions. You take an isomorphism class of object and try to multiply it by
another, and you want to say this is [X] when [X] appears in an extension of A
by B or the other way around. So in one version

[A] ⋅ [B] = ∑
[X]

#(A↪X ↠ B)
# Aut(A) ⋅# Aut(B)[X]

but fro this to make sense these had better be finite sets so usually this is over finite
fields. Then we noticed that somehow what you do here, this construction factors
through the S. construction, where this is, remember you had this correspondence

X1 ×X0 X1 ←X2 →X1

and you do this by some sort of pull push construction. Then you deduce the
associativity of the formula by the kind of Segal condition.

So we wanted something for 2-periodic categories and this construction doesn’t
work. So 2-Segal spaces were the next best thing to giving associativity without
finiteness.

Other audience members have given, Penney gave a categorified Green’s the-
orem. Wald, in his Master’s thesis gave Hall monoidal categories. Yong gave a
[unintelligible] S.-construction, and Pogutte gave equivariant motivic Hall algebras
which came up in this kind of investigation.

There are applications to topological field theories, where you try to understand
2-periodic derived categories, where you don’t just look at a simplicial object but
a structured 2-Segal object, then these, we’ve constructed a 2-dimensional open
topological field theory valued in correspondences, and this is supposed to be an
equivalence, this should appear soon in Stern. The various structures encode struc-
tures beyond the simplex category, so e.g., if you lift to the cyclic category you get
an oriented field theory. If you’re less ambitious and give the paracyclic category,
you get a framed theory, and so forth. So you get a dictionary relating reductions
of structure group to the crossed simplicial categories. You expect a cobordism
hypothesis in each of these contexts.

So one striking application, if you do this to a stable ∞-category, you get a
framed TFT which associates to a framed punctured surface an ∞-category, which
is what is called (a topological version of) the Fukaya category. Kontsevich said
that in this context there should be a combinatorial way to construct such a thing.
So for example people have been using this framework to show versions of mirror
symmetry using this formalism. This is maybe a survey of what there is to say
about 2-Segal spaces. In the next lecture I’ll talk a little about what to do in
higher dimension and how these are supposed to fit together.
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4. John Francis: Factorization homology I

Thank you very much for the introduction and the invitation to speak here. It’s
a pleasure to be about to talk to you about this stuff. I’ll speak about factorization
homology, as suggested by my title. I’ll talk about what it is and what it’s supposed
to be. It’s supposed to be the answer the question of how to study multiplicative
invarianst by local-to-global methods, i.e., some sort of sheaf theory. I refer to how
this invariant behaves on disjoint unions.

One of the big ideas of 20th century mathematics is how to study additive
invariants with sheaf theory. We’d say Z(X∐Y ) = Z(X) + Z(Y ) (if these were
numbers) or Z(X)⊕Z(Y ) if this is valued in, say, chain complexes or spectra. So
then the meta-theorem you’d like to achieve is that

Z(X) = ∫
X

classX

or maybe that Z(X) is a homology with coefficients in Z(∗).
Some examples of this are Gauss–Binet or Hirzebruch signature theorem. Like-

wise the Atiyah–Singer index theorem fits into this, the Dirac operator doesn’t look
local at all, but it’s integrating the Â-genus. Whether this can be represented by
homology, you need to check not just additivity but excision.

Now we want to thing that Z(X∐Y ) is Z(X)Z(Y ) or Z(X) ⊗ Z(Y ) in chain
complexes (or smash product in spectra).

So here’s an idea, it’s not, they didn’t put it quite this way, but it’s embedded
in the work of Beilinson and Drinfeld, but it’s to use Ran space, the space of finite
non-empty subsets. For additive invariants you can use sheaves valued in the space
itself. A sheaf on a disjoint union will never have this multiplicative property.
Instead, construct some auxiliary space that has this multiplicativity built into it.

Definition 4.1. The configuration space Confi(X) is the space of ordered i-tuples,
Confi(X) = {(x1, . . . , xi)∣xj ≠ xk, j ≠ k} ⊂Xi

given the subsace topology of the Cartesian product. There’s an action of the
symmetric group on this and the quotient is the unordered configuration space.

Definition 4.2. For X connected, the Ran space Ran(X) is the disjoint union of
unordered configuration spaces

∪i≥1 Confi(X)Σi

starting at i = 1

So the most natural topology would be the disjoint union but I want the strata
to come together as points collide.

There are natural maps Xi → Ran(X) which take an i-tuple to the image in X.
If they are all in the same point in X, this would go to just the configurations of 1
point.

We have the naturally defined maps such that these maps get the strongest or
finest topology, the fewest convergent sequences such that these mapsXi → Ran(X)
are continuous for all i.

That describes the topology on Ran(X). Where this arose, this was originally
called the infinite symmetric product and was studied by Borsuk and Ulam, and
Bott corrected a mistake of Borsuk studying the Ran space of the circle. But none
of them had Beilinson and Drinfeld’s insight.
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The continued definition, the Ran space for X general will require you to have
one point in each connected component.

Let’s note that this has the property that Ran(X∐Y ) ≅ Ran(X)×Ran(Y ). It’s
behaving like an exponential space, taking ∐ which is like + to × which is like ⋅. So
sheaf theory on the Ran space might be useful for studying multiplicative things.

So what’s the recipe for factorization homology? All of this will be what we call
the α-version. Everything I say is joint with David Ayala. I sometimes forget to
say that because I think everyone knows it. Some parts are joint with Hiro Lee
Tanaka and Nick Rozenblyum as well.

So this has two inputs. One is X and is geometric, of dimension n for the rest of
today. The other is algebraic and is A. It depends at the very least on n and maybe
also on X. Once we have the inputs we can do a construction. This construction
produces FA, a sheaf or maybe a cosheaf, or something like that, on Ran(X). Then
we get factorization homology.

So the factorization homology of X with coefficients in A, will be written with
an integral sign (it’s some categorical integration)

∫
X
A =H∗(Ran(X),FA).

So that’s the recipe. For the rest of today I’ll follow this recipe in some interesting
examples where the dimension varies, the geometric structure, and the algebraic
structure varies and see what we get.

For advertising purposes, let me tell you some advantages.
(1) You can take something you already know and see what you get out of this

machinery.
● You get “⊗-excision”
● The Ran space is filtered by cardinality and you get a filtration on your
homology and associated spectral sequence. Filtrations and spectral
sequences are powerful.

● There is a duality to factorization homology, which dualizes both
Poincaré duality form manifolds and Koszul duality for algebras.

(2) If you had something you wanted to understand but didn’t know how to
define it, this may tells you that you have a definition and that it’s well-
definition.

[Does this have an adjoint?]
No. At the level of numbers you can exponentiate or take logs. Exponentiation

lifts but logarithms don’t. If there was a categorical logarithm you could just take
it and then study the additive invariants. If it existed I think this wouldn’t be an
interesting direction to study.

[If you exponentiate an additive invariant?]
That’s the easy direction but it’s not so compelling to tell someone with the

Atiyah–Singer index theorem “that’s great, we can do the multiplicative version,
you just need to [unintelligible] infinitely many times.”

Okay, let’s look at dimension one. Then X is a 1-manifold and A is an associative
algebra. Then FA is a cosheaf on Ran(X), for specifity let’s say Ran(R). It’s good
to think in terms of the stalk. The stalk at an unordered i-tuple is A⊗i. Then on
each configuration layer you get a constant cosheaf. This will be constructible with
respect to that filtration. When you change from a generic fiber to a special fiber,
what happens, what’s the specialization map?
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So if ∆1 ftÐ→ Ran(R), whre ∗ goes to (xt, yt), then you’ll need a map A⊗2 → A,
and this comes from the multiplication.

This used a choice of framing or orientation so you know what to multiply.
Then the factorization homology of R with coefficients in A is A, and for the

circle it’s Hochschild homology,

∫
R
A = A ∫

S1
A =HH∗(A).

So that was dimension one. What about complex dimension 1. Here I’ll be even
more brief. This was Beilinson and Drinfeld’s original motivation. In the early 90s,
they wanted to do conformal field theory in a geometric rather than an algebraic
way. Here X is a curve over C, let’s say smooth, and A is a vertex or chiral or
factorization algebra, these are the sorts of algebraic input which are allowed.

Now one can define this object ∫X A, called by Beilinson–Drinfeld the chiral
homology. This was a new object, not considered previously, but related in the
sense that H0 of ∫X A were the “conformal blocks”, a.k.a. the correlation functions
of the CFT associated to A. Given a surface you get a vector space and operators
and this calculates the vector space at the zero dimensional level, but then you have
the higher homology and that was new.

Now let’s do this over a finite field. Let X be a curve over a finite field. So lek A
be C∗(BG), where G is an algebraic group, semi-simple, simply connected (at least
for the purposes of the theorem I’m about to state). Then there’s a construction
in real dimension 1.

Theorem 4.1 (Gaitsgory–Lurie). In this case ∫X A is C∗(BunGX).

One can perform weighted counts of this using the advantages I mentioned. This
used the entire factorization homology package of techniques, using a lot of the work
of Beilinson and Drinfeld.

All right, so real dimension n. There will be a bunch of examples here.
● One source of examples come from n-fold loop spaces.
● Another source of examples come from Lie algebras, or rather certain types
of enveloping algebras of Lie algebras.

● Another source of examples come from commutative algebras.
● Another source of examples come from shifted Poisson (n-Poisson) algebras.
● All of these are related to one another, and let me give one more, observ-
ables, TQFT

All of these will be for X an n-manifold, and let’s suppose X is framed, so TX ≅
Rn ×X. This is restrictive but let’s just assume it, we might have a reason.

So one example, for B pointed, let A = ΩnB or C∗ΩnB. The claim is that for
such a thing we can construct a cosheaf on the Ran space. So consider the category
Diskn with objects disjoint unions of Rn and morphisms open embeddings. Then
there’s a functor Diskn → Spaces

C∗Ð→ Ch of compactly supported maps to B, that
is, Mapc(−,B). That is, maps from U to B so that there is some compact X in U
outside of which the function is constant at the base point.

I can restrict to π0-surjections, which is equivalent to the exit path category of
Ran(X) (this is Ayala–Francis–Tanaka). So then using Lurie’s theorem on con-
structible sheaves, this gives a functor, let me just say, a cosheaf on Ran(X) with
stalks C∗(ΩnB)⊗i.
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I just described how this gives a cosheaf on the Ran space of X. If I wanted
to stop in spaces and not apply chains, that’s also okay, then I use the Cartesian
product instead.

So what’s factorization homology. There’s a theorem called non-Abelian Poincaré
duality due separately to Salvatore, Segal, and Lurie. This says

∫
X

ΩnB ≅ Mapc(X,B)

if B is n-connective. This is compatible with taking chains.
All right, Lie algebras, here there’s a thing UEn(g) called the En-enveloping

algebra of a Lie algebra, generalizing the usual enveloping algebra for n = 1. These
are n-disk algebras, and you use a similar procedure. The calculation here, in
characteristic zero, this is

∫
X
UEn(g) ≅ CLie

∗ (Ω∗
c(X,g)).

For commutative algebras, then you get the tensor X ⊠A (ring spectra being ten-
sored over spaces) and this is homotopy invariant.

For Poisson algebras, there is no good answer. So you can characterize this using
something like quantization. This is not sufficiently studied so far, if anyone is so
inclined.

Let me say, the commutative example is homotopy invariant and the Lie example
is proper homotopy invariant, and this is not an accident, it’s an artifact of the
duality between commutative and Lie, an example of the duality I mentioned.

By the way, no one has taken me up on my offer, which is still open.
[What about in the commutative case]
The commutative case is Spanier–Whitehead dual to the a Lie case, one of them

is Sym with a shift of some cohomology and the other is Sym with no shift of a
homology.

So TQFT, I don’t mean in the sense of Atiyah’s axioms, but rather what a
physicist means when he or she says a quantum field theory, which has various
pieces of structure. You have observables obsF(Rn) and you try to take expectation.
These can be extended by zero so form a covariant functor on open sets. So this
forms a cosheaf on Ran(X) where the stalks are A⊗i over a configuration of i
distinct points.

This needs to be processed, but a good reference is this great book of Costello–
Gwilliam. Whatever we’re doing, there is a map which takes local observables and
glues them together to get global observables,

∫
X
A→ ObsF(X).

We just constructed the left hand side with some machinery. You can ask whteher
it’s an equivalence, and it’s an equivalence (morally) for F perturbative, if you
deformed an En-type structure to get something quantum, in that case, starting
with a Poisson with

[What does morally mean?]
I can’t tell you what ‘morally means’. I guess I mean it isn’t true. [laughter]

That’s not supposed to be a statement about the world. [more laughter]
A sigma-model with affine target, then I can erase ‘morally’.
The most interesting results were in dimension 1 over finite fields or even for

dimension 1 for C. You could ask for higher dimensions over C. I wrote something
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with Dennis Gaitsgory about this but it’s kind of the wrong thing. Describing the
homology of the mapping spaces it was important to have n-connectivity and here
we have the importance of the perturbativity.

You may ask whether it’s possible to do this without these restrictions, and
that’s what the β-version is about. The basic idea is to replace the Ran space with
the moduli space of stratifications of X. That’s what I’ll continue with tomorrow.

5. Sarah Yeakel: Isovariant homotopy theory

Thank you for the invitation. Can you hear me? I’ll talk about isovariant
homotopy theory, I decided to interpret the ttle of the conference sort of broadly.
This is higher structure in a different way. No ∞-categories. This is work in
progress with Malkiewich, Merling, and Ponto. It’s very in-progress, I’m not sure
what names to put with what theorems for the instance. First let me tell you what
isovariance is.

Let G be a finite group. Then X and Y are spaces with continuous G-action.
A map f ∶ X → Y is equivariant if it preserves the G-action, that is, if g ⋅ f(x) =
f(g(x)). Then Gx ⊂ Gf(x). If you have a free element, that means it’s stabilized
by the trivial element, it can be mapped anywhere in Y . A map is isovariant if it
is equivariant and Gx = Gf(x). So fixed points go to fixed points, free points go to
free points, and at every level in between the isotropy groups are preserved.

An example, if we map the point with a trivial action to the disk with a flip
action, I can go anywhere on the fixed line, this is equivariant and isovariant. But
the map back is not isovariant.

Any equivariant injective map is isovariant but there are interesting maps that
are isovariant but not injective.

Why bother? If you start with a continuous map between a space and itself, then
you can ask, when can f be homotoped to a fixed-point free map? This is related
to the Reidemeister trace, if this vanishes then you can do it, and vice versa.

You could throw in G-actions, which has to do with Nielson numbers, this has
also been studied. So you can ask instead, when can f be isotoped to a fixed point
free map? That’s a homotopy through homeomorphisms. There is not a complete
obstruction. The idea is that isovariant homotopy theory may help with this. So
fn ∶ Xn → Xn is isovariant with respect to the Σn action and modifying f by
isotopy is modifying n by isovariant homotopy.

There are a couple of papers by Klein–Williams (Homotopical intersection theory
I and II), who look at a variant of the fixed point picture, saying if we have a map

M
fÐ→ N , if we have a map between manifolds and a submanifold Q ⊂ N , we can

ask when can f be homotoped off Q? We’re asking for a lift up to homotopy

N ∖Q

M N
f

So we can ask instead about the fixed point problem, of homotoping off the diagonal

M ×M ∖∆

M M ×M.
1×f
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So in the second paper they asked about this with G-actions, and they recovered
the Nielson numbers. So what if we do this isovariantly, do we get our complete
obstruction?

So I want to talk about the homotopy theory. So first I want to talk about what
isovariant weak equivalences are. I should give a little bit of an argument here,
we tried to do this isovariantly and they got out of hand. Maybe if we get model
structures on G-spaces with isovariant maps, these sorts of things will just pop out.

I’ll focus on cyclic groups G = Cp. An isovariant map f ∶ X → Y induces a map
fG ∶ XG → Y G and also f c (all the notation is a free-for-all) on the free points
X ∖XG → Y ∖ Y G. This restricts to something I’ll call fN , where you subtract off
the fixed points fN ∶ NXG ∖XG → NY G ∖ Y G. I’ll denote NX as NXG ∖XG

Then a G-space is a pushout here. So

NX X ∖XG

XG X.

and we want to keep track of all of this. So let γ be a path in X with γ(0) in the
fixed points and γ(0,1] outside of the fixed points. Call this a “base path”. The
nth neighborhood homotopy group of X at γ is

πNn (X,γ) = {Sn × I →X ∣ ∗ ×I γÐ→X,Sn × {0}↦XG, Sn × (0,1]↦X ∖XG}

up to isovariant homotopy relative to γ.
Let’s take the disk with 180 degree rotation. So I have γ starting at my fixed

point. One entire end of the cylinder will be my point. This one contracts to γ
but this one doesn’t [pictures]. So you can see that πN1 (D,γ) ≅ Z in this case. We
call this neighborhood homotopy because it’s telling you about what happens in a
deleted neighborhood.

An isovariant weak equivalence is an isovariant map with fG and f c weak equiv-
alences and f induces isomorphisms on all neighborhood homotopy groups.

So for example, if I take my 180 degree rotation on the disk, the inclusion of the
point into the disk is not an isovariant weak equivalence. There is no neighborhood
homotopy group. These do deserve the name weak equivalence, because they satisfy
2 out of 3 and are closed under retracts. An isovariant homotopy equivalence is
also an isovariant weak equivalence.

I want to give two model structures here. The cofibrantly generated model
structure for equivariant G-spaces, we have cells G/H ×Dn and the attaching maps
are along G/H × Sn−1. You can think of this G/H as keeping track of what fixed
points you land in. If you wanted to build a G-CW-complex that is the disk with
a flip, you glue 2 fixed 0-cells, and one fixed 1-cell and one free 1-cell onto it and 1
free 2-cell. We can’t build this space isovariantly. If we want the attaching maps
to be isovariant, then the boundary is landing in the fixed points, but the cell itself
is free. The two-cell, the map is landing in both fixed and free things.

This leads us to the first of the two model structures, which is the elementary
model structure. Let I ′ be the space which is G × I/G × {0}, with G × 0 fixed and
G × I free. This is an elementary cell. The extra cell that we need so that the
attaching maps are isovariant—
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Theorem 5.1. There is a cofibrantly generated model structure on G−Topisvt with
weak equivalences the isovariant weak equivalences and generating cofibrations the
equivariant cells and these new ones Sn−1 × I ′ →Dn × I ′.

Then the generating cofibrations are just what you’d want them to be, what they
were for equivariant, and then the extra elementary cells Dn × I ′ × 0→Dn × I ′ × I.

If I want to build the disk, I need the 2-fixed 0-cells, two free 0-cells, I want to
glue in my 2-cell, it will look like D1 × I ′, I’ll glue it in along [pictures].

The conjecture is that this generalizes for all finite groups. For example, if we
were to take a cyclic group of order p2, then we have three types of points, and
3 elementary 1-cells, and 1 elementary 2-cell. We can label them by subgroup
inclusions so you have Ie<p and Ip<p

2

and Ie<p
2

. You get a two-cell where one
corner is fixed by p2 and the rest of an edge containing it by p and then the rest by
e.

A drawback of this model structure, notice we didn’t get to glue in this 1-cell for
free, so we won’t be able to build things like the disk with rotation. Some manifolds
are not cofibrant.

Conjecture 5.1 (Malkiewich (laughter)). There is a cofibrantly generated model
structure with the same weak equivalences and the generating cofibrations {G/H ×
Sn−1 → G/H ×Dn}, and we’d be able to construct this [picture] if we had boundary
data, the boundary is Sn−1 × I ′ ∪∂∂I ′ ×Dn →Dn × I ′. The boundary here [picture]
is the entire figure eight. In this structure manifolds are cofibrant. The generating
acyclic cofibrations are pushout products of cofibrations with 0 → I. So now you
do get that.

A pro is that this gives you more things and manifolds are cofibrant but the cons
are that this isn’t fully proved and is a little harder.

There’s an isovariant homotopical intersection theory. So we have M → N and
we want to lift to N ∖Q→ N up to homotopy.

So that’s the same thing as a section of the pullback. If I look at a fibration
E → B, when is there a section, and they come up with an obstruction to a section.
We can look at the unreduced suspension SBE, where we glue E × I to B on the
ends, and if S+ and S− are homotopic over B, then that is the obstruction. Let me
state this more carefully.

If a section exists, B → E, then S+ and S− are homotopic over B. If S+ and S−
are homotopic over B and some connectivity and dimension requirements, then a
section exists.

Thy attribute this to [unintelligible]. In the second paper they do this equivari-
antly. To see this, one direction is easy, and the other direction a little harder. So
for equivariant, you need some further connectivity and dimension requirements.
What we’ve shown is the same thing isovariantly, except we have to throw in some
more conditions, we need e.g., that the neighborhood for E mapping down to the
fixed points is a Hurewicz fibration, then an isovariant section exists.

Theorem 5.2. If S+ and S− are isovariantly homotopic over B plus extra condi-
tions, then an isovariant section exists.

This can then be converted, when will these conditions pull back? You need to
throw in a bunch of other conditions. Then what happens when we look at the
graph question, looking at M →M ×M , can it lift away from the diagonal. We’re
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not guaranteed that this is the identity on the first coordinate, and so we need to
project and see that we have a lift in the projected diagram. This is a little messy
because it’s not an isovariant map.

6. July 3: Emily Riehl: The model-independent theory of
(∞,1)-categories II

[missed the first couple of minutes]
Before defining infinity cosmos, I want to motivate a little bit by talking about

a theorem I mentioned yesterday

Theorem 6.1 (Joyal, Rezk, Bergner/Pellisier, Verity/Lurie, Joyal–Tierney). Right
Quillen equivelences of Cartesian closed model categories whose fibrant objects are
(∞,1)-categories.

The left adjoint in each of these cases preserves products.
As a corollary, each model category is enriched over simplicial sets (with the

quasi-category model structure) and the right adjoints are simplicial.
I’d interpret an equivalence of homotopy theories as an equivalence of (∞,1)-

categories. A model category can be promoted up to equivalence to a simplicial
model category (a different enrichment, over the model category whose fibrants are
Kan complexes). This is a categorification more familiar in homotopy theory, we’re
enriched over a model of (∞,1)-categories, not over a model of ∞-groupoids. So
this is an equivalence of (∞,2)-categories, not just of (∞,1)-categories.

I realize that is a bit confusing, any questions?
We’re not going to use model categories in any way. It’s familiar to some people

and it gives some motivation for what I’m about to do.
The idea is that an infinity-cosmos axiomatizes the fibrant objects together with

the fibrations between them and the weak equivalences between them in a category
like this, a model category enriched as such over the model structure on quasi-
categories.

We’ve thought about these axioms in two different forms. They’re a bit simpler
if we assume that the fibrant objects are also cofibrant. It makes everything just
a little bit easier. The axioms are properties that are obviously true in examples
like that. Many but not all of our examples come from situations like this (more
on this later). One more important remark: we recast ∞-category and ∞-functor
as technical terms to mean the objects and morphisms in an ∞-cosmos. It’s going
to be similar to the common usage in the literature, if you mean quasi-category
or complete Segal space or (∞, n)-category or (∞,∞)-categories, those are all ∞-
categories.

Definition 6.1. So, an ∞-cosmos is a category K (whose objects are ∞-categories
and morphisms are ∞-functors) along with a specified class of maps called isofi-
brations and depicted ↠.

There are three axioms.
enrichment: The category should be enriched over simplicial sets with the

homs all quasi-categories, I’ll write Fun(A,B) for the quasicategory of maps
from A to B.

limits: The category K should have terminal objects, products, pullbacks of
isofibrations, limits of towers of isofibrations, and simplicial cotensors. All
of the universal properties are enriched strictly over simplicial sets (I’ll spell
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this out for the cotensor). If I have ∞-categories A and X and a simplicial
set U , then I get an ∞-category AU in K so that there is an isomorphism
Fun(X,AU) ≅ Fun(X,A)U . I do mean isomorphism, not something weaker.
Part of the philosophy is working as strictly as possible to simplify proofs.

isofibrations: They have the closure properties you expect and maybe some
you didn’t. They contain all isomorphisms, all terminal morphisms, are
closed under composition, stable under pullback or forming the limit of a
tower of isofibrations, and something called Leibniz cotensors, so if I have
a monomorphism U ↪ V of simplicial sets and an isofibration E ↠ B
then there is a map EV → EU ×BU BV and that should be an isofibration.
Finally, for all X and any isofibration E ↠ B, the postcomposition map
Fun(X,E)→ Fun(X,B) is an isofibration in quasicategories.

What ∞-cosmology is, is more a philosophy and less a definition. If you need
more axioms you should add them and if you don’t need them all, then you should
get rid of some.

Definition 6.2. A map in an ∞-cosmos K is an equivalence
∼Ð→ if and only if

when I look at the postcomposition Fun(X,A) → Fun(X,B) I get an equivalence
of quasi-categories. So equivalences are defined representably in quasi-categories.
It’s a trivial fibration

∼↠ if it’s an equivalence and an isofibration.

So the underlying 1-category is a category of fibrant objects in the sense of
Brown. All of these can be proven from the axioms I’ve put here. One of these
lemmas says that if I have a functor A

fÐ→ B of ∞-categories, I can factor it as
an equivalence A

∼Ð→ Pf which is a section of an trivial fibration, followed by an
isofibration Pf ↠ B. So these are not homotopically meaningful. They play a
couple of roles, one is that they can let us replace a homotopy commutative diagram
with a strictly commutative diagram.

Let me give some examples. QCat is an ∞-cosmos, so these are quasi-categories,
simplicial sets so that inner horns have fillers. The isofibrations are an inner horn
lifting condition along with an isofibration lifting condition

Λ[unintelligible][[unintelligible]] E 1 E

∆[[unintelligible]] B I B

The equivalences are the maps A
fÐ→ B such that there exists a map B

gÐ→ A along
with some homotopy condition involving maps A→ AI and B → BI.

Other examples include complete Segal spaces, Segal categories, 1-complicial
[unintelligible], the n-versions of these, complicial sets, categories, slices K/B and
KB (In particular K∗).

Now how did I get to the 2-category I worked in last time? I should review the
homotopy category of a quasi-category.

Proposition 6.1. The nerve has a left adjoint.

I agree with Thomas that We should just identify a strict 1-category with its
image in quasi-categories. This adjoint is ho and hoA will have its objects the
vertices of A and morphisms the 1-simplices up to homotopy.
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So f is equivalent to g if there is a 2-simplex filling

b

a b

f

g

Now ho preserves products and by applying ho to morphism sets I get an adjunction
between Cat-enriched categories and QCat-enriched categories, where I take K to
hK. So
Definition 6.3. The homotopy 2-category of an ∞-cosmos K has the same objects
and hom categories hFun(A,B) ∶= ho(Fun(A,B)).

So the objects are the ∞-categories, the objects of K, the morphisms are the ∞-
functors in Fun(A,B). The ∞-natural transformations are one-cells in Fun(A,B)
up to homotopy.

This is like the 2-category version of the homotopy category of a model category.
I want to prove something easy and then something harder about the homotopy

2-category. In the first talk we were talking about things that are Cartesian closed,
so I want to talk about where that comes from.

Definition 6.4. An∞-cosmos K is Cartesian closed if Fun(A×B,C) ≅ Fun(A,CB)
and (−)A ∶ K → K preserves isofibrations

The models I gave for (∞,1)-categories are all Cartesian closed (not all the other
examples are).

Proposition 6.2. If K is Cartesian-closed, then so is hK.
Proof. To be Cartesian closed means Fun(A × B,C) ≅ Fun(A,CB). To have
products means Fun(X,∏Ai) ≅ ∏Fun(X,Ai). To have a terminal object means
Fun(X,1) ≅ 1 = ∆[0].

So if I have this then hFun(A×X,C) ≅ hFun(A,CB) and similarly in the other
case. So this homotopy 2-category sometimes reflects things. �

So now we have two notions of equivalence, equivalences of ∞-categories and
equivalences in the 2-category.

Theorem 6.2. For A
fÐ→ B in K the following are equivalent and characterize

equivalences.
representable: for all X, Fun(X,A) ∼Ð→ Fun(X,B) in quasi-categories
2-categorical: there exists B

gÐ→ and natural isomorphisms idA
αÐ→ gf and

fg
βÐ→ idB in K

homotopy equivalence: There exist B
gÐ→ A and a map

A

A AI

A

gf

α

and similarly for β.
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Proof. To show that representability gives 2-categorical equivalence, take

hFun(B,A)→ hFun(B,B)

taking g to fg and likewise hFun(A,A) → hFun(A,B) taking gf to fgf . By full
faithfulness [unintelligible].

The second implying the third uses a result of Joyal, that every isomorphism
in the homotopy category of a quasi-category is homotopy coherent, so αlifts to
I αÐ→ Fun(A,A) and similarly for β.

The final equivalence is the easiest, since Fun(X,−) preserves simplical cotensors.
�

[Is one implies two the Yoneda lemma?]
Everything is the Yoneda lemma, so yeah.

Proposition 6.3. This is what justifies the name isofibration, if I have an isofi-
bration E

p↠ B then y is an isofibration in hK.

This means that if I have β a 2-cell filling

X E

B

e

b
P

then there is a lift of b through p and of β to a 2-cell X → E which whiskers along
p to β. The proof is an exercise.

So

Definition 6.5. Any∞-category A has an∞-category of arrows A2 with a generic
arrow A2 with two isofibrations (domain and codomain) to A with a natural trans-
formation K. Specifically the identity of A2 trasposes to something in Fun(X,A)2
which is K, and its class is in hK.

In the homotopy two-category, there are some subtleties.

Proposition 6.4. (1) for any α a natural transformation from X to A there

is a map X
⌈α⌉ÐÐ→ A2 which whiskers with the generic arrow to yield α.

(2) Any two such are fibered isomorphic, there is an isomorphism γ between
⌈α⌉ and ⌈α⌉′ with domain and codomain the identity.

(3) Any fibered two-cell is an isomorphism. If I have a map γ connecting two
representatives of the same 2-cell, so that the domain and codomain of γ
are the identity, then γ is an isomorphism.

Since I’m expecting this to be somewhat unexpected, I want to say something
about why it’s true.

Proof. For any quasi-category, the functor ho(Q2) → (hoQ)2 is smothering : it’s
surjective on objects, full, and reflects isomorphisms, so its fibers are connected
groupoids. If we apply this to Q = Fun(X,A) we get the proposition. �

This will come back next time, but
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Definition 6.6. Given C
fÐ→ A

g←Ð B in K then the comma ∞-category HomA(f, g)
is the pullback

HomA(f, g) A2

(C ×B) A ×A

φ

(cod,dom)

g×f

In the homotopy two-category I get a natural transformation

HomA(f, g)

C ⇐ φ B

A

cod

dom

g

f

So the last thing I’ll say:

Proposition 6.5. In hK, a natural transformation χ ∶ fb⇒ gc for b ∶ X → B and
c ∶X → C is the whiskering of φ with a map ⌈χ⌉ ∶X → HomA(f, g) with second and
third properties as before.

[missed the last part]

7. Thomas Nikolaus: Higher Categories and algebraic K-theory II

Thank you. Last time I talked about how for C a symmetric monoidal∞-category
you associate K(C) a spectrum associated, (C≅)gp, and we saw that K(Fin) ≅ S the
sphere spectrum. But this is formal. We want to do rings. It’s too hard to compute
the homotopy, but can we compute the homology of the underlying space? Can we
compute H∗(Ω∞KC). More generally ifM is an ∞-monoid, we want to understand
the homology of the group completion.

There are a bunch of obvious observations, that H∗(M) and H∗(Mgp) are rings
and this is a map of graded commutative rings.

We can consider π0M ⊂H0(M), which is sent to units. So the statement is that
this is sent to units because it goes to π0 of the group completion, so we get a map
from the localization with respect to π0 to H∗(Mgp).

Theorem 7.1 (Segal–McDuff). The induced map H∗(M)[π0M
−1] → H∗(Mgp) is

an isomorphism of graded rings.

Proof. Let me prove this, or at least sketch a proof. The map M →Mgp is initial
among maps with target an ∞-group. We observe that it is also initial among maps
(of ∞-monoids) which send π0M to units. A priori that’s a different statement. It
is easy to check that it’s indeed true. Now taking homology is a left adjoint functor,
HZ[−] is a functor from Mon∞ to ∞-algebras over HZ, this is take the suspension
and smash with HZ. So this is a spectrum with homotopy this homology ring.
The right adjoint is Ω∞. It then follows formally that the map from HZ[M] to
HZ[Mgp] is initial under maps of ring spectra that invert π0M , because I map out
of that, it’s the same as mapping into Ω∞. Now we know how to localize elements
in a ring spectrum. The localization has this homology that I said. �
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I’m inputting something that lets you localize elements in a ring spectrum. They
do something unstable, and this is a stable version.

Let me remark, there was no reason to use the integers. The second remark is
that we could have worked with local coefficients, the third is that a similar thing
is true if you have only an 1 monoid and you have a [unintelligible] condition. Are
there any questions about that group completion theorem?

Let me start with an easy example? I have an ∞-category I call VectTop
C , which

is the ∞-category associated with the topologically enriched category of finite di-
mensional C-vector spaces and isomorphisms. The homomorphisms are GLn. Then
K⊺(C) I can define to be K(VectTop

C ). I’m really turning on the topology. So this is
(as a topological space) the disjoint union of BU(n). I’d say that this is a definition
of connective K-theory, ku. Maybe this is not what you’d teach in a course.

The claim is that the underlying loop space Ω∞K⊺(C) is BU × Z. I claim that
the canonical map BU × Z which I’ll write ∐BU → Ω∞KTopC, I do this category
Ω∞K⊺C, and there’s a point corresponding to the one dimensional vector space C
and there’s a map, this is taking a sum with C, and so you include BU(n) into
BU(n+ 1) in the standard way. So ignore what I said, this was supposed to be for
the lower row.

Ω∞KTopC Ω∞KTopC ⋯

VectTop
C VectTop

C ⋯

⊕C ⊕C

⊕C ⊕C

Passing to colimits we obtain a map BU × Z → Ω∞K⊺C. The homology of the
top space is the homology of the lower space localized at the horizontal map. But
π1BU = 0 and Ω∞K⊺C is simple, so this is an equivalence, a homology equivalence
between simple spaces.

So this is an application of group completion.
Let me make a little remark. In general there are maps K0R × BGL∞(R) →

Ω∞K(R) which is a homology isomorphism. This is not natural (this is important)
but anyway, in fact, this is an acyclic map, so an iso with respect to all local
coefficient systems pulled back from the codomain. My favorite definition of acyclic
is an epimorphism in the ∞-category of spaces.

You can prove this with the stronger version of the group completion or by the
universal property.

I want to relate that to Quillen’s original definition of K-theory. In fact, it’s a
plus construction. That is, it is initial among all maps whose target is hypoAbelian
(i.e., all fundamental groups (every basepoint) have no non-trivial perfect sub-
groups). In other words, it’s killing all perfect subgroups. There’s an ∞-category
of spaces, and a full subcategory of hypoAbelian spaces and the plus construction
is adjoint to that.

It’s a fun exercise to connect this to other definitions.
In order to show that a map K(R) → K(R′) induced from a map of rings is

a p-adic equivalence it thus suffices to prove that the map K0R → K0R
′ is an

isomorphism and the map BGL∞R → BGL∞R
′ is an Fp-homology isomorphism.

At the end of the day if you want to show that K-theory spectra are equivalent
you are going to do this thing to reduce to a group homology computation.

So here’s a theorem that Suslin proved with this exact method. I mean, in
some sense it’s a little embarrassing, now I’m using Quillen’s definition to prove
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theorems after introducing a fancy definition. From an abstract point of view it’s
much cleaner for me.

Theorem 7.2. The map KC to KTopC = ku induced by Proj≅C → Vect⊺C is a p-adic
equivalence for all p.

This is, I think, an amazing result. The right thing is topological K-theory and
the thing on the left is algebraic and disregards any topology. What Suslin does is
shows that BGL∞ of the complex numbers without topology to the version with
topology is a Fp homology isomorphism.

These sorts of statement seem to be true more generally and I’m not sure why.
In turn KiC for i > 0 are divisible groups and the torsion is Q/Z in odd degree.

In other words, there’s a Q/Z and a huge Q-vector space. So C× as a discrete group
is the units and then you have a big [unintelligible].

This is the root of the computations we can do.
Let’s now come to K-theory of something like SP . I’m using the following

theorem of Gabber, also a group homology argument.

Theorem 7.3. Assume that (R, I) is a Henselian pair of commutative rings. Let
me not say exactly what that means, but e.g., I ⊂ R is a nilpotent ideal or R is I
complete.

Then the map K(R) → K(R/I) is an `-adic equivalence for ` a prime that is
invertible in R.

I won’t indicate how to prove this. Let me make a remark. The condition
that ` has to be invertible, that’s a weakness. There’s a version where ` is not
necessarily invertible in R then the fiber of this map K(R)→K(R/I), `-completed,
is equivalent to the fiber of the map TCR → TC(R/I) (again completed).

This is due to Clauson, Mathew, Morrow, and this is cool, the failure of this
theorem to be true is measured by TC.

So how does Gabber help us produce maps or understand the K-theory spec-
trum?

Say you want to understand K(Fp)∧` . Then we can take the p-adic numbers,
and you get a map K(Fp)∧` ← K(Zp)∧` but this Zp embeds into Cp. This Cp is
abstractly isomorphic to C, but this isomorphism is far from being nice. This is
fractal, this inclusion into C. So we hav a map from K(Fp)∧` into ku∧` . You can
do the same thing K(F̄p) → Ku∧` . Suslin proved that this is an equivalence. You
end up comparing some ring with its fraction field and for this you want to use the
localization theorem of Quillen. It’s not easy to state in terms of group completion
K-theory.

I think it’s an amazing fact. It’s surprising that there is a map at all. Here’s a
highly structured version of this.

You can then observe, and this is what Quillen does, that K(Fp)∧` , you get au-
tomatically a map to the fixed point of the Frobenius on ku∧` . It’s not clear what
Frobenius is supposed to be but it turns out to be the same as the pth Adams
operation. It’s important that we complete at `. It doesn’t exist integrally. Ba-
sically the Adams operation isn’t a map of spectra. Maybe I should have taken
the connected cover of the right thing. Here’s an exercise. Compute K(Fp) ratio-
nally. Once you’ve done that, and you have taken all the `-completion, you know
everything except the p-torsion (but there’s no p -torsion).
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So we make statements about torsion and have to go through Witt vectors and
Gabber’s theorem and stuff like that, that’s hard and it would be better not to do
it.

Now I gave you maps of spectra which came from maps of rings, and I intended
this to mean equivalences of spectra. These are ring spectra so these are maps of
ring spectra.

Let me say a few words about ring structures on K-theory. Even though Quillen
and everyone were happy with what they did with K-theory, there are some issues
with the ring structures.

First let me say what happens on π0. I have an additive and a multiplicative
structure ⊗R ∶ ProjR ×ProjR → ProjR, this is a “semi-ring category.” As a result
you get that π0 ProjR is a semi-ring, which implies that K0R is a commutative
ring. A good way to say this is that the functor which is group completion, from
commutative monoids to commutative groups is a symmetric monoidal functor. In
fact there’s a tensor product of commutative monoids. This corespresents bilinear
maps. The inclusion is not monoidal. But group completion is. By explicit models
it’s easy to verify. I’ll state the exact same result for ∞-monoids. In order to
prove the analog, I’m going to say, you can’t do the same argument with a formal
difference. If you have found ways of getting around that Elmendorf–Mandell, May,
[unintelligible], Rognes, found ways of doing this but [unintelligible].

Here’s an abstract theorem I proved with Gepner and [unintelligible].

Theorem 7.4. For every presentable Cartesian closed ∞-category D, there is a
unique closed symmetric monoidal structure on the ∞ category, so what I can do
is take Mon∞(D), and similarly, Gp

∞
(D) and also Sp(D), spectrum objects in D,

and the claim is that these have unique symmetric monoidal structures such that
the free ∞ monoid, free ∞-group, and free spectrum, admit symmetric monoidal
structures.

Moreover, the map from D is symmetric monoidal but internal group completion
in D and the map to spectrum objects in D admit essentially unique symmetric
monoidal structures.

So the tensor product I talked about before makes sense in absurd generality.
The case of spectra is due, I should say, to Jacob Lurie. The first is the universal
[unintelligible] category on D, the second is the universal additive category on D,
and the spectra are the universal stable category on D.

Last time we chatted about Barratt–Priddy–Quillen requiring some equivalence
from the ∞-groups to spectra, and that’s true in topoi but not more generally.

Okay, so examples. The first example is tensor product on commutative monoids
or groups, these admit unique symmetric monoidal structures such that the functor,
the free functor is symmetric monoidal, but since sets is generated under colimits
from the point, I can say such that N (respectively Z) is the units.

Of course now I get a similar statement for CMon∞ and CGrp
∞

and spectra
which have unique ⊗-structures with unit Fin≅, respectively, Ω∞S, respectively S.
Moreover the group completion and the [unintelligible] are symmetric monoidal.
Moreover, Sym Mon Cat∞ admits a symmetric monoidal structure such that com-
mutative algebras are semi-ring categories.

There used to be mistakes in the literature because people expected 1-categorical
statements, but there are coherence issues and the actual thing is 2-categorical.
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One consequence, the K theory functor from symmetric monoidal categories into
spectra inherits a canonical lax symmetric monoidal structure, so it sends rings to
rings. We first go from symmetric monoidal categories to ∞-monoids, which is only
lax symmetric monoidal. Then we group complete et cetera.

I told you that ProjR is a semi-ring ∞ category, and we need to complement this
with the statement that for any R, we have (ProjR,⊕,⊗) is a semi-ring∞-category,
i.e., [unintelligible].

If (C,⊗) is symmetric monoidal ∞-category which has coproducts and ⊗ dis-
tributes over it than (C,∐,⊗) is a semi-ring ∞-category.

Maybe I should say, it’s probably over-optimistic to attribute this to us. On
functors from Fin∗ to anything there is an obvious structure, Day convolution, and
so people probably did that before. For me, it’s the main contribution, that this is
unique, you can’t go wrong, whatever you write down is right.

Sorry for going over time.

8. Tobias Dyckerhoff: Higher Segal spaces II

[I did not attend this talk]

9. John Francis: Factorization homology II

[I did not attend this talk]

10. Andrew Blumberg: Thirteen ways of looking at an equivariant
stable category

Okay, so I want to thank the organizers for inviting me to think and for putting
up with the title. I want to talk about various viewpoints about how to think about
equivariant stable homotopy theory and its additive and multiplicative structure
and how they interact.

This is sort of expository, I thought it would fit in nicely with this workshop, but
in order to be precise about what I’m saying, I think you have to take that stuff
seriously, and things I’ll talk about are coming from, the ability to talk about, say,
the universal property of stabilization

Boardman’s definition of the stable category looks very modern. He formally
stabilizes finite CW complexes and then complete with filtered colimits. This was
motivated by a lot of things, but he was excoriated by Adams, and we moved to
a situation, “you know it when you see it,” given by Lewis–May spectra and more
modern versions, say, orthogonal G-spectra, say, Mandell–May.

You take some category of spectra with G action and do things to invert ΣV and
ΩV for V a finite-dimensional G-representation.

From this, you prove various structural properties of this category. What kind
of things do you prove? You prove, say, that weak equivalences are detected, e.g.,
by ( )H where H varies over subgroups of G. These are also detected by geometric
fixed points ΦH( ). You also has [unintelligible] which tells you that for G finite,
G/H is self-dual. You also have the tom Dieck splitting, [unintelligible].

One other thing to say about this perspective, another sort of theorem is that
the homotopy groups form Mackey functors. In particular, you relate π0S to the
Burnside category, some sort of category of spans. One of the things that has
happened fairly recently is to turn these things around to ask, what does it mean
to think about the equivariant homotopy theory defined by this.
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So for instance, we say that weak-equivalences are detected by categorical fixed
points. This gives rise to a model of SpG in terms of spectral Mackey functors.
You think of these as spectral presheaves on a spectral Burnside category, where
G/H goes to the H-categorical fixed point and you keep track of the transfer in the
Burnside categories.

This is tricky to get right but people have, and this is due to GUillou–May and
exploited spectacularly in work of Barwick, DOtto, Glasman, Nardin, and Shah.

There’s another thing you can do which is to consider what happens when you
look at the fact that weak equivalences are detected by ΦH( ). This, you know,
this is characterizing the equivariant stable category in terms of a diagram [un-
intelligible]. So now we look at the geometric fixed points and assemble those
into something. I learned about this from John Greenlees, and I think there were
parts written down by [unintelligible]–Kriz and Nikolaus–Schulze and Glasman and
Ayala–Mazel-Gee–Rozenblyum.

So for [unintelligible], part of the Tate diagram looks like this, this is a homotopy
pullback square involving the homotopy fixed points, the Tate fixed points, the
geometric fixed points, and the categorical fixed points.

XG ΦGX

XhCp XtCp.

So now I want to pause and point out two things about this. Two other things to
say about these, as far as I know, the spectral Mackey functors, we don’t really
know what to do for G a compact Lie group. The Burnside category for finite
groups is intrinsically algebraic. In the compact Lie case that’s not true additively.
tom Dieck tells us what the Burnside category is, but it’s [unintelligible].

In this one, I believe the version, it’s not a big deal formally to set this up for
a compact Lie group, diagrams are hard. And you can do [unintelligible] but the
multiplicative structure is not so easy.

So I’ll try and tell a finite story and then come back and say what we can say
about the compact Lie case at the end.

So one other thing that will recur is that if you think about Γ-spaces and how
Segal analyzed them, you prolong to a functor on finite CW -complexes, like excisive
functors. What are these in the equivariant context? You can think about excisive
functors as a model for G-spectra, and you get something like that the stable
category on G is something like functors F from finite G-CW-complexes to G-
spaces that are excisive in the sense that

(1) they take pushouts to pullbacks, and
(2) F (G + ∧HX) zÐ→MapH(G+, F (X)).

This is saying that coinduction and induction are the same. A sort of nicer way
of saying this is that it’s saying, sort of, something like, you know, that, we want
⋁T X → ∏T x to be an equivalence. This is the sort of thing you get from basic
properties of the stable category.

What I now want to do is, this is context and history, I want to say now that
one thing that you want to extract from this, the G-stable category is determined
essentially by choices of transfers. Somewhere here I wrote that G/H is self-dual
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and this self-duality arises as transfer. So whatcan we do here? And what is the
multiplicative version.

At the beginning of the talk I plugged in U a universe. Gaunce Lewis proved
that G/H is dualizable if and only if it embeds in the universe.

So one of the other ingredients that I want to touch on is stuff that came out
of the Hill–Hopkins–Ravenel Kervaire invariant work. The stuff in the appendix in
particular: the construction of a multiplicative norm NG

H from SpH to SpG. What
do we know about this? We know that NG

H(S−V ) is supposed to be SIndG
H V . This

is supposed to be lax symmetric monoidal and is supposed to have a diagonal map

ΦHX
zÐ→ ΦGNG

Hx

which is an equivalence when X is suitably cofibrant. When [unintelligible] this is
the p-fold smash product with the action set up in the way so that this can be true.

So you have this norm which is important for studying rings, is, well, one more
thing that’s true, we have a symmetric monoidal product and the norm gives a
functor, and there’s an adjoint.

[skipped some]
The conclusion to draw from this is that the norm construction parameterizes

multiplication on commutative equivariant rings.
I now want to give an overview of work I started with Mike Hill from this point

of view, using operads.

Definition 10.1. An N∞ operad is an operad O in G-spaces such that
(1) O(0) ≅ ∗
(2) O(n) has a free Σn action, and
(3) O(n) is a universal space for some family of subgroups of G×Σn, including

{H} × 1.

A universal space has contractible fixed points for things in the family and empty
fixed points for things outside the family.

There are two evident examples. One is the equivariant linear isometries operad
on a complete universe, in fact on any universe. The other example is (any) G-
trivial E∞ operad. In accordance with usual conventions we’ll call these “genuine”
and ”naive.”

A reason to care about this other than sort of bloody-mindedness, maybe a
reason to care, anyway the reason that we care, is an example due to McClure who
points out that Tate takes genuine E∞ to naive. So doing things that you want
to do changes the multiplicative structure. This is the first example of things that
happened in Hill–Hopkins about equivariant localizations.

Okay, so there’s now, one thing to say, a subgroup in this family, an observation,
is that an element of such a family that I’ll denote Fn(O) arises as the graph of a
homomorphism H → Σn. This is an H-set structure on the set {1, . . . , n}. So these
are controlled by families of H-sets, and that’s the perspective we want to take.

So the thing to say is that the collection, the homotopy category of N∞-operads
is equivalent to the poset of indexing systems, where an indexing system is, you
know, is a coefficient system of subcategories, a functor out of the orbit category
where G/H goes to some subcategory of H-sets which satisfy, they’re closed under
passage to subobjects, self-induction, so that if H/K is in F(H) and T ∈ F (K) then
H ×K T is in F (H), finite coproducts, and contains trivial sets. This equivalence is
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done by Rbin and separately [unintelligible] and Gutierrez–White. These conditions
look arbitrary, but if you look at the consequences for how things interact if things
are G-operads. If I asked you on Wednesday during the excursion to do this, you
could do that.

So this is saying you have multiplicative transfer for every admissible H. So
I’ve been talking about, what about the additive structure? An O-algebra in SpG
means use a complete additive universe, an O-algebra in SpG you have norm maps
controlled by the associated indexing system of admissible sets. You’d expect,
for instance, this must be equivalent to your [unintelligible] Burnside category, so
additively, you expect that gl1 should take you from O-algebras in G-spectra to
“O-spectra” or whatever that is and [unintelligible] [unintelligible].

So it’s worth looking at what these look like in the context of spectra, and so one
thing you’d like to do, you might want a construction of a category of O-spectra
or an O-stable category over TopG, and this is interesting in part because N∞
operads don’t necessarily correspond to universes. I don’t know how to say which
representations to invert. That leads to pursuit of other kinds of models.

What do we want out of the category of O-spectra? It has [unintelligible] isomor-
phisms parameterized by the indexing system. One thing you can do (this is work
in some degree in progress with Dotto and Hill) is take the category of grouplike
O-algebras in TopG (this is supposed to be the connective part) and look at the
usual spectra in TopG[O]. There’s ways in which this is an unattractive model for
reasons that are probably evident, but it leads to an O-indexed version of the tom
Dieck splitting. So you have the G-fixed points of what amounts to a suspension
spectrum, split up.

(Σ∞X+)G ≅ ⋁
G/H∈O

Σ∞
+ [unintelligible].

There is a model in terms of excisive functors. This is tricky to set up but at the
end of the day you get a new model with nicer properties [unintelligible].

Once you set this up there are natural questions to ask so for instance with
Basterra, Hill, Lawson, and Mandell, we’re working on proving analogues of the
characterization using augmented rings in this equivariant setting. There’s eventual
hope that this will help us with [unintelligible].

The last thing I want to do before this ends is talk about compact Lie groups
(infinite ones). Everything so far is G-finite. What about ∞?

We know things will be complicated. You don’t have a Burnside category. So
what do you do? Before you wanted an equivalence

F (G+ ∧H x)→MapsH(G+, F (X))
and [unintelligible] is the thing that’s trivial when G is finite but not here. So that
makes it harder. So I do want to say one example. In work with [unintelligible],
Hill, Lawson, and Mandell, we show that THH(R) = NS1

e R. This was also written
up in Stolz, [unintelligible]–[unintelligible]–Stolz, if R is a Cn ring, then we have
another kind of norm, and this is just a cyclic bar construction, where now the
action, (q)↦ R∧g + 1, is the cyclic permutation with a twist.

We notice a couple of things that I want to highlight and then I’ll stop.
We needed R to be a ring. But we only understand homotopy type at finite

subgroups of S1. So the thing I’ll state and then conclude is that this should remind
you of factorization homology, and indeed I want to describe a proposal, which is
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work in progress with Mike Mandell, where we define NG
H(R) as an equivariant

factorization homology construction, where R is supposed to have an action of the
little V -disks operad. We want to try to understand what’s going on with this finite
subgroup condition.

We now have ten minutes to get to Lauren’s talk so maybe I’ll stop.

11. July 4: Emily Riehl: The model-independent theory of
(∞,1)-categories III

Thanks very much. I thought I’d start with orientation. When I use the word
∞-category, I’ve redefined this as a technical term to mean an object in an ∞-
cosmos, which is also a technical term, it’s an axiomatic framework in which to
study ∞-categories. I don’t think of this as circular. The community has an idea
of what ∞-category should mean, and so we’ve extracted and axiomatized this and
we use ∞-category to mean something where these phenomena occur.

We started this course off on Monday studying adjunctions and limits and col-
imits in an ∞-category using 2-categorical techniques. We used this 2-category
with objects∞-categories, with morphisms∞-functors, and 2-cells these∞-natural
transformations.

Today we’ll prove the representable universal properties and give a version of an
adjunction which is a fibered equivalence between hom spaces. We’ll also find limits
or colimits, I can describe that equivalence by saying it provides a right represen-
tation for the ∞-category of cones on diagrams over which we’re taking the limit.
These (adjunctions, limits) are both instances of the comma ∞-category. We’re
developing the formal category theory, we’re extending this formal category theory
to these higher homotopy categories. This is a pretty conservative extension. Any
one-category with limits is an ∞-cosmos but there are no non-trivial natural trans-
formation. A two-category with certain limits is as well, and our work specializes
to that. Also I will, using similar techniques, give an internal characterization of
Cartesian fibrations.

I’m not going to review the definition of an ∞-cosmos, because all we need is
the comma ∞-category. The input to constructing a comma is three ∞ categories
and a pair of functors with common codomain C

gÐ→ A
f←Ð B. It’s a pullback

HomA(f, g) A2

C ×B A ×A

cod,dom

g×f

This is in K. If I look at this in the homotopy 2-category hK, then I get

HomA(f, g)

C ⇐ φ B

A

dom

cod

g

f
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and so now the proposition which is a weak universal property in the 2-category,
a bijection between natural transformation as on the left and and maps over B and
C as on the right below.

X

C ⇐ χ B

A

dom

cod

g

f

⇐⇒

X

C B

HomA(f, g)

⌈χ⌉

b
c

cod

dom

up to isomorphisms over the identities, any two are equivalent up to something
that projects to the identity under domain or codomain. This goes right to left via
whiskering with φ.

This determines HomA(f, g) in K/C ×B up to equivalence.
This is the bit of formal category theory that most of you haven’t seen before.

So let me pause for a minute.
Some commas of note, if f and g are elements x and y from 1 to A then

HomA(x, y) is the internal mapping space. If I have a functor B
fÐ→ A then I

can make a cospan with the identity on the left or the right, so I get two choices

HomA(f,A) HomA(A,f)

A B B A

⇐ φ ⇐ φ

f

f

and these are called the left and right representations.
Finally, HomA = HomA(A,A) is A2 and this is the generic arrow I introduced

last time.

Proposition 11.1. B
fÐ→ A is left adjoint to A

uÐ→ B if and only if HomA(f,A) is
equivalent to HomB(B,u) over A ×B.

Proof. Let’s argue in the left to right direction, this is the classical direction. I have
an adjunction, and these functors will compute the transposition of arrows.

If I start with one of my, we’ll argue universally. The universal arrow φ in the
comma cone, if I compose one the counit of the adjunction, I get something that
factors through the comma cone for the left representation of f . So there’s an
essentially unique up to isomorphism map representing the composite on the left.

HomB(B,u)

A B

A

⇐ φ

⇐ ε

=

HomB(B,u)

HomA(f,A)

A B

⇐ φ

f

and I can do a similar thing in the other direction, and I just need to see that these
are inverse to one another. You do a formal argument where you replace first one
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and then the other with the equality we were given defining these, and then you get
something with a unit stacked on a counit which cancels by the triangle identity

HomB(B,u)

A B

A B

⇐ φ
u

f

⇐ ε

⇐ η

u

�

So I want to give three successively stronger theorems here about these.

Theorem 11.1. (1)

B

C A

f

⇓ ρ
r

g

is an absolute right lifting diagram if and only if

HomB(B, r) HomA(f, g)

C ×B

⌈ρ○f(−)⌉

is an equivalence.
(2) if you don’t know the lift,

B

C A

f

g

admits an absolute right lifting C
rÐ→ B if and only if

HomB(B, r) ≅ HomA(f, g)

over C ×B
(3) Finally, the same diagram admits an absolute right lifting if and only if there

exists a right adjoint right inverse t to codomain projection HomA(f, g) →
C, and then r is dom t, in other words, “if and only if HomA(f, g) admits
a terminal element over C”.

Before proving this, let me roecall that ε from fu → idA is a counit of an ad-
junction if and only if it’s an absolute right lifting diagram. Then we have:
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Corollary 11.1. (1) ε is a counit if and only if

HomB(B,u) HomA(f,A)

A ×B

⌈ε○f(−)

is an equivalence.
(2) f ⊣ u if and only if HomB(B,u) ≅A×B HomA(f,A)
(3) f ∶ B → A admits a right adjoint if and only if there exists a right ad-

joint right inverse to codomain projection HomA(f,A)→ A , if and only if
HomA(f,A) has a terminal element over A (the universal property of the
counit is that for all elements a in A, εa is terminal in HomA(f, a))

I want to do the same thing for limits. Recall that a limit cone is an absolute
right lifting diagram

A

1 AJ

∆

⇓ λ
`

d

and here J is either an ∞-category in a Cartesian closed ∞-cosmos or a simplicial
set such as Λ2[2], the pullback diagram.

I’ll call HomAJ (∆, d) the ∞-category of cones over d The justification is that
this is is the object whose elements are exactly those.

Corollary 11.2. (1) The pair (`, λ) is a limit cone if and only if

HomA(A, `)
⌈λ○∆(−)⌉ÐÐÐÐÐ→ HomAJ (∆, d)

is an equivalence over A.
(2) If I don’t know the cone, but I have a conjecture about the element, then `

is the limit of 1
dÐ→ AJ if and only if HomA(A, `) ≅A HomAJ (∆, d).

(3) When do I have a limit at all, 1
dÐ→ AJ has a limit if and only if HomAJ (∆, d)

has a terminal element. The universal property of the limit cone is that it’s
the terminal object in the ∞-category of cones.

The rest of the time, I want to talk about Cartesian fibrations which are kind of
hard to talk about in a short talk. Consider

Eb E

1 B

eb

p

b

So when p is a Cartesian fibration then arrows in B act contravariantly on the
fibers. If p is a cartesian fibration, then I can lift any 2-cell whose codomain is

already lifted along p. So I cal lift a
f⇒ b to χf ∶ ea ⇒ eb and there will be some

extra functoriality here as well.
So this is the idea, let me give the definition. There’s a choice between a 2-

categorical and an internal definition in the ∞-cosmos. The 2-categorical definition
is a little more familiar.
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This is not just an interpretation of the version in the literature, it’s a little
weaker than that. So for convenience let me start with an isofibration.

Definition 11.1. (1) An isofibration E
p↠ B is a Cartesian fibration if for any

2-cell

X E

B

e

b p

β ⇒

has a lift

X ⇑ χ E

B

e

e′
p

such that χ is a p-Cartesian natural transformation with a universal prop-
erty I won’t state but that you can look up in chapter 5 if you want.

(2) The class of p-cartesian natural transformations is stable under restriction:

Y X ⇑ χ E
f

e′

e

is p-Cartesian.

So in particular I can do this with the codomain and domain projection along
with φ for

HomB(B,p) E

B

and then the lift χ becomes a map ⌈χ⌉ from HomB(B,p) to E2 [missed some]
and then you can see that the composition of ⌈χ⌉ with ⌈pκ⌉ is the identity by the
universal property.

Theorem 11.2 (Internal characterization). E → B is a Cartesian fibration if and

only if E2 ⌈pk⌉ÐÐ→ HomB(B,p) has a right adjoint right inverse.

Theorem 11.3. (1) Cartesian fibrations pull back.
(2) Cartesian fibration is equivalence-invariant.

missed

Proposition 11.2. A2 domÐÐ→ A is a Cartesian fibration, the adjointI’m looking for
is restriction along a particular inclusion 3 → 2 × 2 and that has a left adjoint left
inverse, just in Cat.
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So being a Cartesian fibration, I want a lift of

1 A2

A

⌈y
gÐ→z⌉

x
dom

f ⇒

to

1 ⇑ χ A2

A

⌈g⌉

?
dom

and so how do we find this?
x y

z z

f

g○f g

12. Thomas Nikolaus, Higher Categories and algebraic K-theory III

Last time we saw that when we do algebraic K-theory at a finite prime and then
complete it’s the same as topological K-theory. We also do it for F̄p, localized at
` (away from p). These are the topos points in the étale topos. Finally we showed
that K(R) is an ∞-ring spectrum. Today I want to localize at ` = p. So Quillen
already considered this, with λ-rings, a way more powerful tool is trace methods,
but I don’t want to talk about those in this lecture series.

Now R is an actual commutative ring. We have functors Λn from ProjR to itself.
This takesM to (M⊗n)Σn . These give rise to operations λn ∶K0R →K0R. There’s
a formula for what happens to the sums, but it’s not entirely obvious how this
works. Let me gloss this point and assume we just have these operations. Then we
have the following theorem.

Theorem 12.1. (1) (Grothendieck) (K0(R), λn) forms a “λ-ring”—I won’t
say what this means precisely, the proof is not enlightening, but one con-
sequence, this admits Adams operations ψp, ring maps that are Frobenius
lifts, if you reduce modulo p it’s Frobenius. You can recharacterize in the
situation [unintelligible].

(2) If R is of characteristic p, then ψp = (ϕp)∗
(3) ([unintelligible]and attributed to Quillen) These structures extend to higher

K-groups. That is, KnR are λ-rings with 0 multiplication. The maps lift to
the space level. This gives a cohomology theory in λ-rings. If you evaluate
on the sphere you get a copy of KnR and K0R and KnR is a zero ideal.
It’s a non-unital ring. SO the Frobenius is zero modulo p. So the ψp lifts
to 0 modulo p.

The proof of the third item comes to writing these down on the K-theory space
level. These can’t be spectra maps, these aren’t stable. They satisfy the λ-relations
up to homotopy. So I want to mainly lift up to the space level with a lot of coherence.
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This was asked by several people. The λ-versions are just polynomials. It’s not
entirely clear how to give a coherent version of these operations. Then K0 will
become a consequence.

Let me first give you a corollary.

Corollary 12.1. If R is perfect of characteristic p (i.e., Frobenius is an isomor-
phism) then K∗(R)∧p for ∗ > 0 vanish. Why is that? Since the λ-operations exist,
then ψp is homotopy trivial mod p. Then it’s also an isomorphism. Then the
groups are trivial modulo p and then so after p-completion. You really want derived
completion but that’s what the λ-operations let you do.

So this says that K(F̄p)∧p is HZp. So you have the `-completions, and then the
Eilenberg MacLane spectrum, and so you get

K(F̄p) ∏`≠pKu
∧
`

HZ ∏`≠pHZ∧`
is a pullback of ∞-ring spectra. So this tells you everything.

The point is, just from the existence you can already see that higher K-groups
are trivial.

So now let’s pause for a second and see how the λ-ring structures arose. So
we’d like to say that for a certain type of functor we get an induced map on K-
theory. This tells us something about group completion that I didn’t know and was
astonished by.

So we have a group M and a commutative monoid A, and we have a map
f ∶ A → M , a map of sets. This is called polynomial of degree ≤ n − 1 if the nth
cross-effect

crnf(a1, . . . , an) = ∑
U⊂{1,...,n}

(−1)∣U ∣f(∑
i∈U

ai)

vanishes.

Exercise 12.1. Polynomials Q→ Q are polynomials.

What are polynomial maps Z → Z? These are polynomials with rational coeffi-
cients that send integers to integers, which are all x↦ ∑n ai(xi).

Here’s a fact that I was amazed by when I learned it

Proposition 12.1 (Passi).

Hom(Agp,M)→ Hompoly(A,M)
is a bijection.

This means group completion is actually universal not just for additive maps but
also for polynomial maps.

Proof. (1) You can extend Hompoly(A,M) to HomAb(Z[A],M), and this is
polynomial of degree n if it passes to Z[A]/In+1, the quotient by the power
of the augmentation ideal.

(2) You have to check that Z[A]/In+1 → Z[Agp]/In+1 is an isomorphism, which
is ture because a has an inverse,

1 − (1 − a)n+1

a
. �
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Again this tells me that group completion is more universal than you’d think.
So let me give polynomial functors

Definition 12.1 (Eilenberg–MacLane). Let A and B be idempotent-complete ad-
ditive categories. They have direct sums, so you can take direct sum K-theory. A
functor F ∶ A→ B is polynomial of degree less than or equal to n − 1 if, we need to
make sense of the cross effect

DA1 ,DAnF = 0

where DXF (Y ) = fib(F (X⊕Y )→ F (Y )). The fiber exists because it’s idempotent
complete.

The definition is maybe not really helpful. For example Λn from ProjR to ProjR
is polynomial of degree n.

Similarly the symmetric powers and the tensor and direct sum functors. This
captures the phenomena that show up when you do multilinear things. Any ques-
tions?

What is the point now? Almost by definition, a polynomial functor of additive
categories gives rise to a functor on isomorphism classes of objects.

Corollary 12.2. K0 extends to polynomial functors.

Let me denote additive ∞-categories and additive functors by Catadd
∞ , so K0 was

a functor from this to CGp(Set). But Catadd
∞ embeds into Catpoly

∞ and this extends
K0 to a functor to Set which makes the diagram (involving the forgetful functor)
commute.

Catadd
∞ CGp(Set)

Catpoly
∞ Set .

K0

U

Here’s the theorem we prove, together with Barwick, Glasman, and Mathew.

Theorem 12.2. Ω∞K extends to a polynomial functor. In other words:

Catadd
∞ Sp

Catpoly
∞ S.

K

Ω∞

Ω∞K

Let me make some remarks. In particular we get maps λn ∶ Ω∞KR → Ω∞KR,
and these have been constructed before. The point is that all the techniques I used
there, now we’re extending from the homotopy theory to say that this is highly
structured and as coherent as you want it to be.

More remarks. I’m promoting to forget the K-theory functor at the top, and
replace it with the space. For every additive category, you have the functor ⊕ ∶
A × A → A which gives an ∞ structure on Ω∞K(A), and ⊗ (if A is symmetric
monoidal) make it an ∞ ring spectrum.

The third thing I want to say, maybe I’m not going to say this, but there are
variations for stable ∞-categories and n-excisive functors.

Now so far I’ve given polynomial functors that are very universal. For a concrete
ring R there may be many more. They might not base change to higher rings. We
want to distill the essence of those that extend to all rings.
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Definition 12.2. (Friedlander–Suslin) A strict polynomial functor ProjnZ → ProjmZ
is a scheme-enriched polynomial functor

There’s a canonical enrichment over schemes in the sense of enriched category
theory. Using the functor of points approach we can say what that is very explicitly,
so let me just do that. That is, for every ring R a functor, a polynomial functor
from ProjnR

FRÐ→ ProjmR (everything is commutative here) so that for any map of
commutative rings R → S, we have equivalences

FR(−)⊗ S ≅ FS(− ⊗R S)
which are compatible with compositions.

By polynomial functoriality, these act on all K-theory spectra. I want to say
that in a structured way and to do that I’ll use ∞-algebraic theories (in the sense
of Lawvere).

Definition 12.3. TFS is the ∞-category with objects ProjnZ and morphisms

Ω∞K(Funstrict(ProjnZ,ProjmZ )).
One needs a kind of Waldhausen K-theory to make this make sense, or something,
but let me skip this.

A spectral λ-ring is a product-preserving functor Ã from TFS to S, a model for
this algebraic theory.

You might object what this has to do with spectra, and I’ll address the point in
one second.

The essence of what I’ve explained so far is that Ω∞K(R) is a spectral λ-ring.
I’ll notationally identify the functor with its value at 1 (at ProjZ). There are these
operations ⊕, this is like BZ×BZ → BZ, there is ⊗ ∶ BZ×BZ → BZ, for everyM ∈ BZ
you get ⊗M ∶ BZ → BZ and you get λn ∶ BZ → BZ. So the first three give an
E∞ −KZ-algebra spectrum. This gives me the self-maps λn ∶ Ω∞KR → Ω∞KR.
These have coherences that have been pushed into the category.

This now rests on what we can say about this category.

Theorem 12.3 (BGMN). (1) The endomorphisms of 1, the spectrum

K(Funstrict(BZ,BZ))
is a direct sum of KZs. That’s the first part.

(2) The homotopy ring is given by (K∗Z)[e1, e2, . . .] with ei in degree 0 cor-
responding to elementary symmetric polynomials, symmetric functions on
K∗Z.

(3) The homotopy category of this algebraic theory is exactly the algebraic theory
of λ-rings, classical λ-rings. Automatically, for free, I get this structure.

The first statement is a dévissage statement.
If you unfold this statement that the [unintelligible]is a λ-ring then this is very

close to their proof, a higher version of their group.
Let me talk about one thing I find surprising

Corollary 12.3. If I take K(R) and base change it to the integers, K(R) ⊗KZ Z
is a simplicial commutative λ-ring.

This is generally a very hard constraint, usually you have like divided power
operations and things.

Also, if R is characteristic p, then K(R)(p) is a simplicial commutative λ-ring.
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This has concrete consequences, such as divided powers on the K-theory groups.
Now this is what I wanted to say about λ-rings. For the remainder of the time

I want to prepare for next time, where I’ll talk about Waldhausen K-theory.
So what’s the idea? The idea is to say that K0 of a category C is not only group

completing π0C but also introducing relations of the form [A] + [C] = [B] for an
“exact” sequence A↣ B → C.

Definition 12.4 (Waldhausen, Barwick). A Waldhausen ∞-category is a pointed
∞-category (in Emily’s sense: it has a zero object) with a class of morphisms, let
me call them cofibrations (Clark calls them ingressive, sorry Clark), denoted like
this ↣ which contain all equivalence such that

(1) 0↣ A,
(2) pushouts of cofibrations exist and are cofibrations.

The sequences we care about are cofiber sequences.

What are examples?
(1) Abelian categories with monomorphisms as cofibrations
(2) Stable ∞-categories with all maps as cofibrations
(3) Fin∗ with injections,
(4) ProjR with split monos.

These are typical situations where you want to form K-theory by breaking up these
sequences.

Definition 12.5. If C is a Waldhausen ∞-category, then Ω∞KC is Ω∣S.C≅∣ where
SnC is the full subcategory of the functor category

Fun(Fun(∆1,∆n),C)

So that’s S., and a priori this defines a space. Why is this a spectrum? It’s a
spectrum because all SnC are symmetric monoidal with respect to coproduct. So
bing a Waldhausen ∞-category means you have a coproduct so that SnC≅ is an
E∞-monoid. Also ∣SnC∣ is an ∞-monoid because [unintelligible]is computed with
sifted colimits.

Then by an Eckmann–Hilton argument is that Ω∣SnC∣ is an ∞-group (since it
has another structure) so KC is a spectrum.

An exercise until nexti time is to compute this and show how it breaks up these
exact sequences as I said.

13. July 5: Emily Riehl: The model-independent theory of
(∞,1)-categories IV

Thank you for sticking with me for this week. It’s been a lot pretty fast and
today will be even worse. LAst time the main takeaway is that we could give many
categorical otions as fibered equivalences, f ⊢ u if and only if HomA(f,A) ≅A×B
HomB(B,u) and an element ` is the limit of d if and only if HomA(A, `) ≅A
HomAJ (∆, d), the ∞-category of cones.

The idea I want to push today is that ∞-categorical notions may be encoded
as equivalences of modules (or profunctors or distributors) because the comma

construction C
HomA(f,g)ÐÐÐÐÐÐ→ B is the prototypical example of a module which has a

left action of C and a right action of B.
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I need to say what I mean but let me give some motivation. I want to talk
about the calculus of modules, which resemble actual modules over actual rings.
The categorical interest in modules is that it’s the universal home for categorical
statements of a next-level of complexity, but for us it’s mainly to give the proof of
model-independence of models of (∞,1)-categories. I should tell you what modules
are.

Definition 13.1. A module A
EÐ→ B is a “two-sided discrete fibration,” something

known from 2-category theory.
The data is given by a span of isofibrations A

q←Ð E
pÐ→ B such that three things

are true
(1) p is a Cartesian fibration over A (that is, B acts on the right of E, con-

travariantly). So E and A × B live over A and the map (q, p) from E to
A ×B is a Cartesian fibration in the slice cosmos K/A. So p is a Cartesian
fibration but the lifts can be chosen to project to identities along q.

(2) q is a coCartesian fibration over B so A acts on the left of A, so E → A×B
is a coCartesian fibration in K/B.

(3) The fibers are discrete ∞-categories (in (∞,1)-categories this would say
they are ∞-groupoids) but specifically, any natural transformation living
over A ×B is invertible, E → A ×B is discrete in the slice over A ×B.

Let me mention some examples of this.
The thing I’ll shortly call the unit module is the arrow construction, which I’ll

write A
HomAÐÐÐ→ A, as a span it looks like A

cod←ÐÐ HomA
domÐÐ→. [some quick explana-

tion]
Modules are stable under pullback, so the pair of modules represented by a

functor A
fÐ→ B so I can make the pair of right and left represented modules

A
HomB(B,f)ÐÐÐÐÐÐÐ→ B and B

HomA(f,A)ÐÐÐÐÐÐ→.
There’s a version of the Yoneda lemma for these.

Theorem 13.1. For any functor f from A to B. It’s easier to think of A as 1.
Anyway, for a module A

EÐ→ B, I can consider

FunA×B(HomB(B,f),E)
evidfÐÐÐ→ FunA×B(A,E)

If A is 1 these are fibered elements, and the statement, anyway is that these are
equivalences of quasi-categories.

So what I want to tell you about now is the calculus of modules. The main thing
to understand is an analogy. If I consider the interactions between ∞-categories,
∞-functors, modules, and module maps, this closely resembles rings, ring homo-
morphisms, bimodules, and module homomorphisms.

I’ll state the theorem that describes the calculus of modules and state the parallel
in rings to give some context. This is the weirdest result today

Theorem 13.2. Any ∞-cosmos K has a virtual equipment of modules Mod(hK)
(related to the homotopy 2-category).

The next ten minutes or so will be explaining what this entails. I’ll give two ex-
amples of virtual equipment, the categorical one and the one for rings and modules.

So a virtual equipment has
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So special cases are module homomorphisms from A ← E → B to A ← F → B.
Another one is arestriction of scalars, E(b, a) the pullback of E with X × Y which
gives something like X ← E(b, a)→ Y mapping to A← E → B. If I have a single E
I get something like A ← E → B mapping by f and g to C ← F → D with α, this
is α a map from E to F (g, f) a map of A ×B-bimodules.

There’s a particulary interesting module with a nullary source, which is ι from
the identity to HomA, this is A as an A-A-bimodule. So this is the identity two-cell
from A← A→ A to A← HomA → A.

So we take the wide pullback and then do an essential fibered functor. So this
is a virtual double category, a categorified multicategory, As long as I end up with
a unary target.

What makes this into a virtual equipment is the restriction of scalars, the things
that pull back a module along a pair of functors and coCartesian unit cells. I
haven’t explained what (co)Cartesian means here, there are bijections between cells
of various types in this virtual double category.

An exercise which is also motivation, a pair of modules E and F are equivalent
if and only if E and F are vertically isomorphic. As a corollary,

Corollary 13.1. The homotopy 2-category embeds into Mod(hK) in three different
ways.

I can faithfully represent a natural transformation as three different kinds of cells.
One possibility that we won’t use is to have the horizontal modules be HomA and
HomB . The second option is HomB(B,f) and Hom(B,g). The third is Hom(g,B)
and Hom(f,B), which is reversed because this is contravariant.

The main question is why did we bother with this. To answer this question I’ll
make a definition very natural from the point of view of virtual equipment, of right
extensions and right liftings. If you’ve seen right Kan extensions in a 2-category,
that’s what you should be thinking.

The input data is a binary cell from a pair of modules A
KÐ→ B

RÐ→ C to A
FÐ→ C

(by the identity maps vertically), so that any cell from KE1⋯En to F , this has a
unique factorization through a cell from E1⋯En to R.

Dually, if R is given a priori and K determined a posteriori, then this is a right
lifting in the virtual equipment if for any sequence E1⋯EnR → F factors uniquely
through a cell E1⋯En →K.

One other thing I meant to mention, there is no corresponding notion of left
extension or left lifting because the directions are wrong. The virtual equipment
can only have unary targets, so I can’t turn around the arrows in this picture. But
that’s not important for the following reason.

The homotopy 2-category embeds in the virtual equipment. This relates natural
transformations in the homotopy 2-category to something in the virtual equipment.

Proposition 13.1. Say ρ is a natural transformation in hK from rk to f , then ρ is
an absolute right lifting (respectively a pointwise right Kan extension) if and only if
when I embed this with the covariant embedding Hom(B,k)Hom(C, r)→ Hom(C, f)
is a right lifting (right extension).

Analagously, λ from f to `k is an absolute left lifting (pointwise left Kan exten-
sion) if the contravariant embedding from Hom(`,C)Hom(k,B)→ Hom(f,C) is a
right extension (right lifting).
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What’s really cool is that these highly relevant more complicated to define uni-
versal properties in the 2-category are captured by this more natural structure in
the virtual equipment.

So what I meant about a pointwise right Kan extension is,

Definition 13.2. ρ is a pointwise right Kan extension if, well, ρ is a right extension,
and also for any generalized element X

bÐ→ B, I can take my extension diagram ρ,
and form the comma cone φ for the cospan X

bÐ→ B
k←Ð A then the diagram is still a

right Kan extension. So if X is 1, then rb is the limit of HomB(b, k) codÐÐ→ A
fÐ→ C.

I was asked whether you can use Kan extensions to define limits in the first
lecture and the answer is absolutely but this is less elementary so I deferred it.

We looked for this virtual equipment to study these. We didn’t think about the
relationship and one of my students David Meyers noticed this a week ago. I’m
very grateful to him.

I want to spend the last twenty minutes talking about model-independence.
The basic ideas are simple, maybe I’ll be like John Francis and say that if there’s

a takeaway, this should be the takeaway, and if you were a little lost, this should
be more down-to-earth.

So now we’ll talk about changing∞-cosmoi. I’ll talk about two kinds, the bread-
and-butter, and the equivalences.

Definition 13.3. A functor K FÐ→ L is cosmological if it is simplicially enriched,
preserves isofibrations, and preserves limits.

It’s a cosmological biequivalence if also
● It’s essentially surjective on objects up to equivalence—for any C in L there
is A in K such that FA is equivalent to C.

● It’s a local equivalence, for any A and B in K the map FunK(A,B) →
FunL(FA,FA) is an equivalence of quasi-categories.

The reason it’s so strict is because there are lots of examples.
So you have cosmological biequivalences among complete Segal spaces, quasi-

categories, Segal categories, and [unintelligible](1-complicial sets?)

If you have an equivalence A
BÐ→ in K then K/B f∗Ð→ K/A is a biequivalence.

If K FÐ→ 1 then K/B → L/FB.
Finally, if K is biequivalent to quasi-categories, then there’s a particular functor

that’s always a biequivalence, called (−)0 which is Fun(1,−) which is the underlying
quasi-category functor. An abstract biequivalence (a finite zig-zag) then that one
is as well.

The main result about biequivalences is the following

Theorem 13.3. A cosmological biequivalence K FÐ→ L induces biequivalences of
homotopy 2-categories hK hÐ→ L and virtual equipments.

I’ll explain the rest of this board explaining what this means.
This induces first an explicit bijection on equivalence classes of ∞-categories. It

preserves, reflects, and creates equivalence.
Relative to this, it’s local bijection on isomorphism classes of parallel functors.
Relative to this, it’s a local bijection on natural transformations.
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Relative this, it’s a local bijection on equivalence classes of modules in the equip-
ment. I’ll give a hint about the proof. Again, if I have A and B ∞-categories in K
and A′ and B′ equivalent ones in L then the modules are the same.

Finally, relative to this, a local bijection on module maps.
The basic idea is that I can look at K/A × B FÐ→ L/FA × FB → L/A′ × B′.

This composite biequivalence preserves, reflects, and creates equivalences of ∞-
categories. This is more or less the proof of the fourth statement which is maybe
the hardest one.

What does this have to do with models of ∞-category theory? Let me state and
try to justify that.

The point is that the virtual equipment is the home to state equivalence of
models.

Corollary 13.2. A cosmological biequivalence preserves, reflects, and creates all
“non-evil” ∞-categorical notions.

The justification is that any such thing can be captured in something like the
virtual equipment.

So as a specific example, K ∼Ð→ L creates Cartesian fibrations. Say you want
to work with a Cartesian fibration you have in quasi-categories, but you want it

in complete Segal spaces. So we have E′ p′↠ B′, then we can find FẼ ∼ E′ and
FB̃ ∼ B′ and I can find F p̃ which is equivalent, then I replace p̃ with p ∶ E ↠ B
an isofibration. Why is this Cartesian? So p′ admitted a right adjoint section with
counit an isomorphism but now the notion of having an adjunction is equivalence-
invariant, and the left adjoint of the adjunction is the image of the analagous
functor in K and create the adjoint using the standard 2-categorical biequivalence.
There exists again something with counit an isomorphism, and so that makes it a
Cartesian fibration.

I want to end with one more sophisticated example. The last thing I wanted to
mention is, the most important thing about the model-independence result is that
analytic theorems are transfered across biequivalent models. Analytic theorems
transfer across models. There are lots of things I know how to prove using analytic
arguments in quasi-categories that I don’t know in other models. So let me give an
example.

In quasi-categories, if I have a cospan C
gÐ→ A

f←Ð B admits an absolute right
lifting if and only if there is an absoluter right lifting for every element 1

cÐ→ C.
The corollary is that this is true for any K equivalent to quasi-categories (via

(−)0 as before).
One direction is easy, if I have an absolute right lifting I get one for every

element. I’ll assume that working in K, for all elements I have this absolute right
lifting. Applying the cosmological biequivalence, this preserves the absolute right
lifting (which is encoded in the virtual equipment) and every element of C0 of the
underlying quasi-category is isomorphic to an element that comes from K. So up
to isomorphism quantizing is the same over all elements in C or in C0.

So thene there is an absolute right lifting from C0 and this creates one in K by
the process I narrated before. There is something here, r lifting r0, and then I can
uniquely pick ρ lifting my 2-cell, and then this maps to an equivalence of modules,
so it’s an equivalence of modules.

Maybe I’ll stop there.
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14. Thomas Nikolaus, Higher Categories and algebraic K-theory IV

Thank you very much. The last time we proved that K-theory of a commutative
ring was a spectral λ-ring, so then we proved that the strict thing hasKZ with these
ei generators on the underlying thing. At the end I defined what a Waldhausen
∞-category is and how to get something out of that.

So there is a construction, a map of E∞-monoids from C≅ to Ω∞KC. So you
have S1C and S2C and you can just put the bar construction of C, with respect to
direct sum. The bar construction of C. The claim is that there’s a map from the
bar construction to S.C. So (x, y) maps to (x ↦ x ∧ y). So ΩBC≅ is just a model
for the group completion. Then you go to Ω∞KC.

So, good. To make this precise you have to be more careful than I am here. Here’s
a theorem. First, Waldhausen proves what is called additivity. This says that the
map from C×C to S2C, which is C∆1

, this functor of Waldhausen categories, induces
an equivalence KC ×KC to K(S2C). It’s not super-hard to give this a Waldhausen
structure, and that’s additivity. Morally this says that Waldhausen K-theory splits
cofiber sequences. You can write down an inverse.

There’s this beautiful theorem due to Barwick in this language, saying Wald-
hausen K-theory is universal with respect to this functor. More precisely, the
transformation C≅ to Ω∞KC as functors from Waldhausen ∞-categories into ∞-
monoids is initial among all such functors out of C≅ whose target satisfies additivity
and is product-preserving.

This tells us precisely that Waldhausen K-theory is universal. It’s a universal
property for the functor. [outline]. There’s a different proof given by [unintelligible]–
Gepner–Tabuada, where [unintelligible] is an idempotent, and additivity then isn’t
going to change it. Then the localization [unintelligible] just the additive functors.

So for example you can get ring structures, or translate the story about polyno-
mial functors. A lot of the story that we did could be paralleled. One thing that
I want to do now is to define for R a ring spectrum, I’ve always assumed some
connectivity, now I don’t. Let PerfR ⊂ ModR be the smallest stable subcategory
closed under retracts and containing R. This is a perfect module. Equivalently,
you could say it’s a compact one or dualizable. I like this because you take direct
sums and retracts, cofibers, and cones. Everything can be broken up to projective
modules. If you are actually connective this tells you why you can compare this to
K-theory as before. If R is an ordinary ring, this is the enhanced derived category
of perfect complexes.

Theorem 14.1 (Gillet–Waldhausen). If R is a connective ring spectrum, then the
maps from, what can you do to a connective ring spectrum, then Kgp(ProjR) this
goes to KWald

ProjR
and this goes further to KWald(PerfR), and the claim is that these

are equivalences.

So we get back our old K-theory but now we can do it for arbitrary ring spectra,
not only for connective ones.

Let me say a few words about the idea of the proof. Maybe I’ll verbatim say
a few words about the first theorem. You end up contemplating the Segal space
that Tobias talked about. On S. this is levelwise a fiber sequence. It stays a fiber
sequence after geometric realization. Then you have to work and show that it’s
actually true. That’s roughly how you prove this. So then the third thing is two
theorems, two equivalences. The first one is something about the construction I
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erased, that’s it’s a levelwise equivalence after group completion. If I do group
completion K-theory of the upper map, it’s an equivalence. You can’t quite write
down an inverse, but the trick is to add enough factors that you can, well, this is a
very rough sketch.

The last one, on π0 you can break things up into projective modules, this shows
that the map is surjective. If you want to prove the actual theorem, this runs as
follows. Say R is an actual ring. Then Dperf(R) is a stable ∞-category, then you
write down N Chb(ProjR) and then you have those that are actually acyclic. Then
there’s the Waldhausen fibration theorem, which says that you get a fiber sequence
in K-theory. Then by induction using additivity, you prove that K-theory of the
left-hand guy is an infinite sum of KR, the middle one too this is basically clear,
you break it up into projectives, if you concentrated in a fixed range, you get one
less in the acyclic ones, and so you get one extra summand which passes to the
colimit.

This is true in the generality of weight structures, which was worked out by a
student of Andrews named Fontes. You don’t have a t-structure, you don’t have
canonical decompositions.

So that’s what I wanted to say about the abstract situation. So let me draw a
picture [picture].

The purpose of today is to say what tools we have in Waldhausen K-theory.
Good. So, right. Now let me say a word about, I already sneaked in the fibration

theorem. I find this most cleanly expressed in ∞-categories. So

Definition 14.1. (1) A sequence of stable ∞-categories and exact functors
C iÐ→ D pÐ→ E is called a Verdier-sequence if it is a fiber and cofiber sequence
in Catstab

∞ if
(a) p ○ i = 0,
(b) C is the kernel of p,
(c) E is obtained from D by killing C, it’s the cofiber, but more concretely,

the Dwyer–Kan localization at maps f such that the fiber lies in C.
(2) A sequence is exact if it is a fiber sequence and the map D/C → E is an

equivalence up to idempotent completion. Objects in E might be retracts.

What are examples? There are a bunch of obvious examples

(1) C iÐ→ C ⊕ C prÐ→ C
(2) C idÐ→ C∆1 cofibÐÐ→ C
(3) (a more important case from the point of K-theory) if R is a ring spectrum

and x ∈ π∗R is central, then we can consider Perf(R) and can localize at
the element, and consider Perf(R[x−1]). A priori it’s not clear that every
module in the codomain arises this way but up to idempotent completion
it does. So that means that x acts nilpotently on homotopy in the fiber:

Perf(R)x−nil → Perf(R)→ Perf(R[x−1])

Antieau–Barthel–Gepner show that Perf(R)x−nil is PerfA where we have
A = EndR(R/X). In some sense this corresponds to this ring spectrum.
We’d like to get rid of a bottom (negative) term in this which is what
[unintelligible] sometimes lets us do.

What is the significance of these Verdier sequences to K-theory?
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Theorem 14.2 (Thomasson and many others, let me not try to be fair here be-
cause I can’t, [unintelligible] and Barwick has a version of this, and so do [unintel-
ligible]–Gepner–Tabuada). For an exact sequence C → D → E there is an induced
fiber sequence of connective spectra KC → KD → KE. It is a fiber sequence of
spectra if the sequence was Verdier.

Maybe not every object of KE comes from KD but up to idempotent completion
it’s okay. The fact that this is not surjective in K0 I can force this to be a fiber
sequence and if you do this in a universal way you get negative homotopy groups,
negative K-theory.

Let me state some abstract consequences.
The functor which sends R toK(R) considered as an object in connective spectra

satisfies Zariski descent. Zariski open sets are localizations and so this satisfies local
descent. If X is a scheme, then I can define K(X) as the Zariski sheafification of
X. Before this could have changed the value on affines but now it doesn’t.

So but one thing is, there’s no étale descent. K-theory doesn’t satisfy étale
descent, so I can make it, define Két as the étale (Postnikov) sheafification. Let’s
gloss over this and say we have already understood the stalks. If ` is invertible on
X, then I should have said K-theory of strictly Henselian local rings, we know it,
essentially a form of ku. So we totally understand the stalks of this sheaf. This sort
of tells me that the étale K-theory can be totally understood (after `-completing)
as τ≥0(kuX)∧` . In general X means the étale homotopy type. So this gives a spectral
sequence from étale homotopy to étaleK-theory. So you should really do some other
thing, maybe “invert the Bott element”. The message is that you can compute this
in terms of actual étale cohomology. This is away from the characteristic. At the
characteristic you want to use trace methods.

Okay? Good. So, good, so, what did I say? I guess I erased the fiber sequence,
unfortunately, I said contemplate perfect modules over R and [unintelligible] and
then the nilpotent term, and now we’re near dévissage theorems.

Theorem 14.3 (Barwick, after Neeman). If C is a stable∞-category with a bounded
t-structure, then K(C) is equivalent to K(C♡).

Let me start with an example for which this is overkill. We knew K(ProjZ) is
equivalent to K(PerfZ). But this has a t-structure. The homology of a perfect
complex is a finitely generated Abelian group. Then this is equivalent to K-theory
of finitely generated Abelian groups. That’s the statement. More importantly
you can recover a theorem of Blumberg–Mandell. Let’s say you want to compute
K(KU) and for some reason we can compute K(ku). So we use this localization
sequence and see we get

K(Perfβ−nil
ku )→K(ku)→K(KU)

So something on the left is bounded, and as a result it’s ordinary Postnikov towers.
So the thing on the left is K(Modfg

Z ) which is K(Z).
So this fiber sequence is beautiful.
Let me also of course make the important case that Quillen already did of lo-

calizations. Then we need the theorem that Quillen proved, if A ⊂ B is an exact
inclusion of Abelian categories, say, and every object in B has a finite filtration
whose subquotients lie in A, then the inclusion induces an equivalence on K-theory
of spectra. K(A)→K(B). It turns out that technically these theorems are totally
different.
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Let me also demonstrate this in the most classical example. Say you want to
understand K(Z) and you can understand K(Z[1/p]). We’ve seen what to do to
understand étale K-theory here. On the video you can just turn back. In any case,
we can understand étale K-theory. I’ve not explained how to relate étale K-theory
and K-theory. This is an equivalence above degree 1 after going to Qp. Then
the fiber is K(Perfp−nil

Z ) but that’s just K(Modfg,p−nil
Z ). This has a filtration whose

quotients are p-torsion. Classical Quillen dévissage tells us this is just K(Fp) which
I say we can also understand, that’s classical. So to understand K of the integers
we should compute K of the rationals. That can be compared to [unintelligible]
where there is a chance of computing it. Then this is almost solved. Up to the
[unintelligible] conjecture this is enough then to give you K theory of the integers.

Let me end with a question and an outlook.

Question 14.1. Is there a joint generalization of the theorem of the heart and
Quillen’s dévissage.

Clark has some real good thoughts on this. Rognes has said that if you assume
[unintelligible] then you can look at some “fiber sequences” and wonder if they are.
In the example I gave before, you have some negative homotopy group and want to
dévissage that away. But Antieau–Barthel–Gepner show that there can’t be such
a fiber sequence. This is hard, the problem for me that the things I dream of as
being true is false because of their work.

Okay, for the very last thing, let me tell you what I left out. If you really want
to learn about K-theory, let me say one of the big tools I didn’t mention at all
is motivic cohomology, which basically arose out of making a motivic quotient to
K-theory, used to prove Quillen–Lichtenbaum or [unintelligible]. The map between
[unintelligible] and [unintelligible] is an isomorphism in high enough degrees.

The second thing is, there’s recently this brilliant work on cdh descent and the
[unintelligible] conjecture, proven by Kerz–Tamme–[unintelligible]. This says K-
theory satisfies some cdh descent for certain [unintelligible]-squares. [missed some]
This says that negative K-theory goes down to negative the Krull dimension. This
was open for quite a number of years.

The third thing I left out, one thing I stressed in the first lecture is about
geometric topology, the Farrel–Jones conjecture about K-theory of group rings,
the fundamental group of a manifold or A-theory, like K(S[G]). This says I can
break this up into virtually cyclic subgroups. If this is true for the group G then it
proves the Borel conjecture, if you have homotopy equivalent aspherical manifolds
then they are homeomorphic.

Another thing I didn’t mention at all is excision. K-theory in low degrees sat-
isfies excision for Milnor squares. It’s a theorem of Suslin related to the Karoubi
conjecture that you still have [unintelligible] if you’re in [unintelligible]. For me this
was incomprehensible. Then Tamme gave a brilliant proof using Verdier sequences
of ∞-categories.

There’s a version related to trace methods. We saw that K(C) is the universal
additive functor, so as soon as you get another functor that’s additive, then you
get a functor. So THH or TC, and you have this map and it’s a theorem of many
people that the map K(C) to TC(C) is a good approximation. There’s a nice recent
theorem of Clausen–Mathew–Morrow that says, for a p-complete commutative ring,
p-adic ring, the étale K-theory is equivalent to TC(R)∧p . This is based on the work
of many people.
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Okay, good, thank you very much for listening, and I wrote some notes in case
you care, at some point I’ll upload them on my homepage. Thanks.

15. Rune Haugseng: Higher categories of higher categories

Higher categories of higher categories, and to be more precise I want to talk
about the following result,

Theorem 15.1. If we have V an En-monoidal ∞-category that is compatible with
small colimits, meaning it has small colimits preserved by the product in each
variable, then there is an (∞, n + 1)-category CATV(∞,n) of V-enveloping (∞, n)-
categories such that CATV(∞,n)(1n,1n) is CATV(∞,n−1).

If V is symmetric monoidal (or Em+n-monoidal), then CatV(∞,n) is symmetric
monodial (Em-monoidal).

The morphisms are iterated bimodules. If functors were morphisms this would
be false.

I thought I’d say something about how to construct this but before I put you
all to sleep with that, as motivation, let my suggest how we might hope to harness
this higher structure (laughter). Let me emphasize the hope here.

(1) One context would be in TQFTs, an n-dimensional extended TQFT is a
symmetric monoidal functor of (∞, n)-categories

Bord(∞,n) → C
and for the kind of TQFT revelant in physics and the examples from rep-
resentation theory, such a TQFT should assign to the point a C-linear
(∞, n − 1)-category (enriched in modules over C). This expectation can
be motivated both from physics, with defect, but also with examples in
low dimensions, like constructions of Turaev–Viro saying that for certain
monoidal C-linear category (a special kind of C-linear 2-category) they give
you 3-dimensional TQFTs, and special kind of braided monoidal categories
(a special kind of 3-categories) you get 4-dimensional TQFTs.

Then the hope is that CATC
(∞,n) is the correct target for TQFTs.

(2) In the context of higher versions ofK-theory, Baas–Dundas–Richter–Rognes
showed that, they defined a version of algebraic K-theory, a very special
kind of 2-category and they considered a category I’ll call 2 −Vect, which,
morally, it’s the 2-category of certain C-linear categories, and then they
showed that K(2)(2 Vect) is closely related to K(ku) and is of chromatic
height 2 (due to the computation of Ausoni–Rognes).

Now based on this you might optimistically hope that you can do some-
thing similar in higher dimensions, that there is some sort of K-theory of
suitable (∞, n)-categories, and that we can define nVect as some kind of
subobject of CatC(∞,n) and then K(n)(nVect) should be related to Kn(C)
and throw in the redshift conjecture and say this should have chromatic
height n. This is foreshadowed by recent work of [unintelligible] where they
construct a version of K(2) more general than what I have said here, with
a secondary Chern [unintelligible].

(3) Higher Brauer groups: inside CatV(∞,n) you can consider invertible objects,
which tensor with something to the unit, then you get a symmetric monoidal
∞-groupoid. In the case of a ring, we can call that the nth Brauer space
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of the ring spectrum R, and the invertible objects in CatModR

(∞,n), this de-
looping statement that I just erased, then Ω Brn(R) ≅ Brn−1(R) so these
assemble into a non-connective “Brauer spectrum” BR(R), so Br0(R) ≅ R×

and Br1(R) ≅ Pic(R) and Br2(R) ≅ Br(R) and the hope I want to say is
that we can say something in general, that BR(R) satisfies étale descent
and we can compute homotopy groups as some étale cohomology groups,
something like (most optimistically)

π−nBR(R) ≅Hn
ét(R,Gm)⊕Hn−1

ét (R,Z).

The n = 2 case is due to Toën and Antieau–Gepner.
So after that motivation, let me get back to explaining the actual theorem. I’ll
start with, let me start by saying what I mean by enriched (∞, n)-categories, and
I’ll start with enriched ∞-categories, which goes back to Gepner–Haugseng. Let
me start by considering the non-enriched case.

An associative monoid in an ∞-category C is a simplicial object ∆op MÐ→ C such
that Mn

∼Ð→ M1 ×⋯ ×M1 via ρi so that [1] → [n] with 0 ↦ i − 1 and 1 ↦ i. Then

M1 ×M1
∼←ÐM2

d1Ð→M1as the product and ∗ ∼←ÐM0
s0Ð→M1 as the unit

Now a Segal ∆−object in C is a map ∆op XÐ→ C so that Xn
∼Ð→ X1 ×X0 X1 ×X0

⋯ ×X0 X1 via ρi and [0] → [n]. Then Segal spaces model ∞-categories, X0 is the
space of objects, X1 is the space of morphisms, the maps X1 → X0 are source and
target, and the composable pairs X1 ×X0 X1 have a composition as before

X1 ×X0 X1
∼←ÐX2

d1Ð→X1.

Now a monoidal ∞-category is an associative monoid in Cat∞, so we can equiv-
alently view that as a coCartesian fibration V ⊗ → ∆op and dually a Cartesian
fibration V⊗ →∆.

Then V will denote the underlying ∞-category, which is the fiber at [1]. So we’ll
use V⊗ to define the enrichmend, so objects there look like (v1, . . . , vn) with vi in
V and a morphism (v1, . . . , vn) to (w1, . . . ,wm) over φ ∶ [n]→ [m] you have

vi → ⊗
φ(i−1)<j<φ(i)

wj

So the connection to enriched categories, we can think of (v1, . . . , vn) as being like
a category with objects 0 through n and morphisms vi ∶ (i − 1) → i. So we can
present enriched categories by looking at maps from these things.

So we can define the notion of a Segal presheaf on V⊗ as a map F ∶ V op
⊗ → S such

that F (v1 . . . , vn) is the iterated fiber product F (v1)×F () F (v2)×F ()⋯×F () F (vn)
via Cartesian morphisms over ρi and [0]→ [n].

So if we restrict this presheaf to the fiber over [1] this is V op, and with the
face maps from [1] to [0] we can view this as lying over F ()2, and the slice is
Fun(F ()2, S), and so this is F ()2 → P(V ), and I’ll say that F is representable if
this functor lands in the subcategory of representable presheaves.

Then the claim is that this notion is a reasonable notion of an enriched ∞-
category, representable Segal presheaves on V⊗. So say X = F (), the sapce of
objects of the enriched ∞-category. Then F (v) maps to X2 and so I can take
the fiber F (v)(x,y) and representability says there is an object C(x, y) ∈ V so that
F (v)x,y ≅ MapV (v,C(x, y)). Then for example we have a map from F (v,w) to
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F (v ⊗w). The fiber over (x, y, z) goes to the fiber over (x, z). This goes
MapV (v,C(x, y)) ×MapV (w,C(y, z))→MapV (v ⊗w,C(x, z)).

Then we see that we get a composition map taking v = C(x, y) and w = C(y, z). Push
forward the identity maps. Then by the Yoneda lemma we see that [unintelligible]
has to be given by this map.

This is equivalent to other ways to define enriched ∞-categories, so

PRep Seg(V⊗)
ev()ÐÐ→ S,

this turns out to be a Cartesian fibration and the fibers can be identified with, the
fibers at X are equivalent to algebras Alg∆op

X
(V ), some kind of ∞-operad ∆op

X , so
the weird looking definition turns out to be the same as looking at algebras over a
certain category of operads.

I was supposed to talk about enriched (∞, n)-categories. You could use Θn,
I’ll use ∆n, and basically iterate the previous definitions. You consider a Se-
gal ∆n-object (a ∆n-monoid) defined iteratively as X ∶ ∆n,op → C such that
∆op,Fun(∆n−1,op,C) is a Segal object (monoid) valued in ∆n−1-objects (∆n−1-
monoids).

If you look at C being spaces, then Segal ∆n-spoces model n-fold ∞-categories.
So a ∆n-space X, you see XI breaks up as the limit of X0,...,0 (the space of objects),
and then X1,0,...,0, . . . ,X0,...,1 which give you n kinds of 1-morphisms, and then by
looking at things with two 1s you get a bunch of kinds of squares, until you get
X1,...,1, a space of n-cubes.

An En-monoidal ∞-category is a ∆n-monoid in Cat∞. This again gives a co-
Cartesian fibration V ⊗ → ∆n,op and a Cartesian fibration V⊗ → ∆n. Then, in the
same way as here, I can lift the Segal conditions for ∆n to this V⊗ and define Segal
presheaves on that. We again define a notion of representable Segal presheaves on
V⊗, and then these now model V -enriched n-fold ∞-categories.

Proposition 15.1.
PRep Seg(V⊗)→ PSeg(∆n

⟨0⟩)
(where ∆n

⟨0⟩ is the full subcategory on (i1, . . . , in) with some it = 0) is a Cartesian
fibration with fibers Alg∆n,op

X
(V) which is a special case of work in progress with

Chu.

Now we actually want to model (∞, n)-categories.
Definition 15.1 (Barwick). An n-fold Segal space is a Segal ∆n-space X such that
X0,− is constant and X1,− is an (n − 1)-fold Segal space.

You can reformulate this in terms of ∆n
⟨0⟩, this only depends on, well this is

instead X ∣∆n,op

⟨0⟩
is the right Kan extension of ∆n−1,op ×{[0]} and this is (n−1)-fold

Segal.
Right, so these n-fold Segal spaces, now, are models for (∞, n)-categories. So

now XI breaks up as the limit, X0,...,0 is the space of objects, we have X1,0,...,0

the space of 1-morphisms (the others are trivial), up to X1,...,1, the space of n-
morphisms.

Now we can define in the same way, a V -enriched (∞, n)-category is a repre-
sentable Segal presheaf on V⊗ such that F ∣∆n,op

⟨0⟩
satisfies the same condition as

before.
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I see I was quite optimistic in how much time I had. Let me say something
about how to construct the (∞,2)-category of V -∞-categories. So ∆/[n] has as
objects sequences (i0, . . . , ik) with 0 ≤ i0 ≤ ⋯ ≤ ik ≤ n. Now we can define, just as
we defined Segal objects and monoids for ∆, we can define ∆/n-monoids, and Segal
∆/n-objects as X ∶ ∆op

/[n] → C such that

X(i0, . . . , ik)
∼Ð→X(i0, i1) ×X(i1) ⋯×X(ik−1) X(ik−1, ik)

and now ∆/[1]-monoids model bimodules.
More precisely such a ∆/[1]-monoid gives you a pair of associative monoids and a

bimodule between them. If instead of monoids you take Segal spaces, then you get
a kind of bimodule between categories. Then a ∆/[2]-monoid gives you 3 monoids
X(0,0) andX(1,1) andX(2,2) and then 3 bimodulesX(0,1), X(1,2), andX(0,2)
along with an X(1,1)-bilinear map X(0,1) ∧ X(1,2) → X(0,2). This exhibits
X(0,2) as ⊗ if and only if X is a left Kan extension of Λ/[n] (the subcategory of
∆/[n] where it − it−1 ≤ 1). So this is a model for [unintelligible], and we can look at
PSeg(∆/[n]), and look at those extended from Λ/[n], this is a double ∞-category,
and you can do the enriched version by crossing over ∆ with V⊗.

16. Chris Schommer-Pries: The relative tangle hypothesis

[I do not take notes at slide talks— the first half was a slide timeline of TQFTs
and some motivation and questions.]

The answer to my questions, that allows us to solve these problems, is the relative
tangle hypothesis.

What is this? It’s an (∞, n)-variant of the Baez–Dolan tangle hypothesis. You
use it to describe the passage from the (d − 1)-theory to the d-dimensional theory.
That’s what makes it a relative statement, rather than an absolute statement.

Before I get to the statement of the relative tangle hypothesis, I want to go
back to the Baez–Dolan tangle hypothesis, and try to come up with a proof for a
particular case. So this is a warm-up.

This will be a one-category case. So d = 1, so the dimension of the manifolds in
1, and our m = 2, so we’ll look at an E2 situation. I want to consider this category
CobE2

1 , this is an ordinary category where the objects are 0-manifolds embedded in
R2, the morphisms are 1-manifolds embedded in R2 × I. [pictures]

We can compose these morphisms in a linear way and there is also an E2 compo-
sition. There’s another variant of this bordism category, CobE2

0 , where the objects
are the same and the morphisms are just braids. The morphisms have no arcs
swinging back and forth and no circles, just braids.

So there’s a nice functor from CobE2

0 to CobE2

1 , and I’d like to describe the
difference between the two and try to deduce the Baez–Dolan cobordism hypothesis.
Let me make a variant to make the answer a little nicer. Now I will let the 0-
manifolds have + and − and let the tangles be oriented. We can try to replace the
category CobE2

1 with an equivalent category with a bit more structure.
I want to assume that the projection to the interval I is a Morse function.

Generically it’s a Morse function, let me assume this, which is a bit of a problem—
even if I consider these as up-to-homotopy, then this space is not connected, I can
never change the number of critical points. I’ll also allow A2 singularities, of the
form x3

1 ± x2
2 ± x2

3 ± ⋯ Then consider a path on this space of Morse functions and
A2-singularities. Look at x3 + tx. [pictures] We might call these Igusa functions
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and these are connected, this is a connected space. If we’re building this as a 1-
category. There are only one of these things, this is an equivalent category. Now
we can assume our bordisms are equipped with these structures—and then filter.

Now the idea is to filter. This is Jacob’s idea, really, to filter the bordism
category. We start off with CobE2

0 . Then in the next stage we get the part of the
bordism category where we allow index 0 critical points. [pictures]. Then we allow
one-handles, and birth-death and at the end we get CobE2

1 .
A theorem of Joyal and Street on braided monoidal categories tells us that CobE2

0

is the free braided monoidal category on two objects + and −. At the next level we
add on a space of Morse functions. [pictures]

Similarly, when we add the index one critical point, again there’s a moduli space
that’s connected, it’s again a circle. If you’re careful with this analysis, at the
end you get that CobE2

1 is free on the + point and the − point and you have a
coevaluation and evaluation map, and if you compose them in either of two ways
you get a straightening [picture].

So this is the free braided monoidal category on its object together with a dual
for that object. Then you need a lemma to say that up to contractible choice
everything is determined by the plus point.

This is similar to the strategy that Jacob outlined. Jacob’s proof is a sort of
symphony with three movements. There are three stages. The first part is to
show that the space of Igusa functions (this is not contractible so)— the space of
framed Igusa functions—he wants to show that this framed Igusa function space is
contractible.

The second step is to use this to prove what you might call the relative cobordism
hypothesis. This is a similar description, so you alter the cobordism category to
put these Igusa categories on the top dimensional cobordism. So then he uses the
associated filtration, and the relative cobordism hypothesis is what you need to do
to move through this filtration.

Then there’s a final act, where he shows that the relative cobordism hypothesis
implies the usual one.

You can do this in order of increasing detail here. Since Jacob’s paper appeared,
there have been otherversions for the framed Igusa functions, Eliashberg–Mischev
‘11 and Sorin Galatius, and Igusa all have proofs.

The relative cobordism implying the usual cobordism hypothesis is totally rig-
orously done by Jacob. The last one is the relative cobordism hypothesis, after a
lot of reformulation, it’s Claim 3.4.12, he says that it’s a claim but if you accept it,
then you’re done. In the paper he writes “claim”, he doesn’t call this a complete
theorem, he’s clear about that. Okay, we need to get to some homotopy theory. We
need a version of the bordism category which is not just a category but involves
spaces as well. We need an (∞, n)-category of bordisms.

Let me do this uniformly. So n will be the category number. m is for our
Em monoidal structure, which we’ll encode in extra category directions. So d is
the maximal dimension of our cobordism category. We have some sort of map
X

ξÐ→ Grd(Rm+n), and we’ll have a functor

(m,n)Bord
(X,ξ)
d ∶ (∆op)m+n → sSet .

So if I give myself an n + 1-tuple [p⃗], I need to give a space, which will be a space
of tuples (ti)m+n and (wθ) and χ.
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So ti is a map [pi]→ (R,≤), cutting out hyperplanes.
W d is a manifold in Rm+n, and θ is an (X,ξ)-structure on W . We require that

the projection (the last one) from W to R is an Igusa function, and that χ is a
framing (I don’t want to say what that is).

I have two conditions. One is that for i ≤ m we want that W ∩ π−1{i}(tik) is
empty.

Then for all x ∈W with π{i}(x) = tik, we have that the projection π{i,i+1,...,m+n}
is submersive at x

[picture].
Let me state the relative cobordism hypothesis and then call it quits.
You use your generalized Morse function to filter this bordism category, you

start with Bord
(X,ξ)
d−1 and then allow yourself to have 0-handles I0 Bord

(X,ξ)
d and

then I1 Bord
(X,ξ)
d , and then you can add cusps Ic1 Bord

(X,ξ)
d , and then eventually

look at Grd(Rm+n) = O(m+n)
O(d)×O(m+n−d) and I can pull back X and O(m+n−1)/O(d−

k) ×O(m + n − 1 − d) over this.
The homotopy hypothesis says that there is a sequince of homotopy pushouts

that looks as you might expect, of (m+n)-fold simplicial spaces in the Segal model
structure. The first one looks like adding in a new (m + n)-cell. There’s a moduli
space which is already contained in Bordd−1(x, ξ). For each subsequent stage there’s
another [unintelligible].

I’m already over time, but that’s a formulation of the relative cobordism hypoth-
esis. Then if you take the n →∞ limit, you get the relative cobordism hypothesis,
but one important part is that this condition that you only need your category
number to be at least two. The reason is that you’re attaching handles, you don’t
need to go down to points, just down two, because handles have codimension two
corners.

Maybe I’ll stop there because I’m over time.

17. Kathryn Hess: A Künneth spectral sequence for configuration
spaces of products

It’s a pleasure to be here, I’d like to thank the organizers, the talk I’m going to
give is a followup to a previous talk I gave here at the Newton institute five years
ago. As the oldest speaker by a fair bit, my talk will be about harnessing model
categories. It will be about a filtration and to get this you need to get your hands
dirty and get a hold of the cofibrant replacement.

So first I’ll talk about work I did with Bill Dwyer and Ben Knudsen, giving an
operadic model for configuration spaces of products.

So to fix notation, I’ll use the same notation as earlier this week by I don’t
remember whom, Confk(X) is sequences {(x1, . . . , xk) ∶ i ≠ j Ô⇒ xi ≠ xj}.
Computing its homology, cohomology, homotopy type, is a hard problem. One
nice thing about this space is this converts sums into products. If we look at
configurations of k points in a disjoint union of two spaces, you have i points in one
and k − i in the other, and so you hav ∐i+j=k Confi(X) ×Confj(Y ) and then you
do something with the symmetric groups.

I’m interested in a more complicated question, what about products? So Bill
and Ben and I did was to provide an operadic formula, in an article that should
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appear this year, I think, an operadic formula for configuration spaces of k points
in a product of, not two arbitrary spaces, but of parallelizable manifolds.

Now I’m going to need to explain to you what this looks like, and say what we
do if we want to use this to compute anything. I sholud tell you that we haven’t
actually computed anything but we’ve got a tool that should help us.

Let me tell you what the relevant operads are. We’ll be concerned primarily with
an honest-to-God, old-fashioned, one-colored operad, the little m-cubes operad,
Cm(k) is the standard embeddings of a disjoint union of k open m-cubes into the
open m-cube. You’ve all seen the picture [picture]. The operadic structure comes
from embedding cubes into cubes and erasing the outside lines.

One reason we’re interested in studying it, if we look in arity k, if we look in
arity k and shrink each cube to its center we get a configuration in the cube, we
have a homotopy equivalence

Cm(k) ≃Ð→ Confk(◻m).
A variant we’ll need is to look at Em(k) which has in arity k the framed embeddings
of k copies of Rm in Rm. My choice of diffeomorphism between the open m-cube
and Rm will give an operad map ϕm ∶ Cm → Em, and we’ll pull back a module
structure along this operad map.

So we’ll generalize the target, taking any m-dimensional parallelizable manifold.
If M is m-dimensional parallelizable I’m going to study the following symmetric
sequence CM(k), where k varies. Now CM(k) is framed embeddings of disjoint
unions of Rm into M . Then a special case of this is M = Rn. So for every k and
n1, . . . , nk, we get CM(k) × Em(n1) × ⋯ × Em(nk) → CM(∑ni). These things are
appropriately associative, unital, and equivariant.

Okay, so we’re going to exploit this structure, what this tells us is that the
symmetric sequence CM is a right module over the operad Em. Because we have a
morphism of operads from the m-cubes operad to Em, we can pull this back and see
that this is a right module along the little m-cubes operad. I’ll drop right because
the only operads we’ll talk about are right modules.

This is the important algebraic structure we’re getting out of the manifold that
we use to build the model of configuration spaces. One thing I should point out, just
as in the case of the little cubes operad, we have a weak equivalence to configurations
of k points in the cube, there’s an equivalence from CM(k) to configurations of k
points in M .

Now suppose I have two parallelizable manifolds. So CM is a module over Cm and
CN over Cn. I want to compare to the structure for M ×N , for M an m-manifold
and N an n-manifold, both paralellizable.

The trick is to use the Boardman–Vogt tensor product. But we have to kind of
revisit it and understand maybe a little more closely what’s going on.

Let’s look at operads O and P in simplicial sets. Then there’s an operad O☀P
(there are other tensor products so I’ll use this notation). Operads give you some-
thing to encode algebra structures. So what are the algebras encoded by the
Boardman–Vogt tensor product, they are O-algebras in P-algebras or P-algebras
in O-algebras.

I’ll say a word about how one actually constructs this thing. The point is, if I
want to calculate O☀P, I take their coproduct, which is quie a nasty beast. This
coproduct is way out there, and then quotient it by an equivalence relation, let me
use some colored chalk. If I have [pictures].
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The reason I made this explicit is to make a point. I needed to use a diagonal.
If you’re doing this in a category that’s not Cartesian, you will have a problem
expressing this, sets, simplicial sets, topological spaces, and so on.

I’m not feeling as athlectic as Emily, and Chris discovered the hook, so—
Why did I discuss the Boardman–Vogt tensor product, this was mentioned im-

plicitly in Rune’s talk. Essentially because products of cubes are cubes, we can get
the following map of operads. There exists an operad map

Cn1☀⋯☀Cnk
→ Cn1+⋯+nk

so this additivity theorem

Theorem 17.1 (Dunn 1988; Brinkmeier 2000). This map is an aritywise Σ-
equivariant weak equivalence.

The corollary is the following for talking about configuration spaces.
Look at two operads in one arity. So look at Cm☀Cn → Cm+n. Then let’s look

at what we get in arity k,

(Cm☀Cn)(k)
≃Ð→ Confk(◻m+n)

and if you look at how Cm☀Cn is defined, it’s built out of arity i and arity j points
in th two pieces, so Confi(◻m) and Confj(◻n). So ij = k because you multiply in
the Boardman–Vogt tensor product.

So now we’d like to generalize this again, and think about configuration spaces
in arbitrary manifolds along the same lines.

If we want to generalize to having a target other than Rm or Rn. This goes back
to lifting the Boardman–Vogt tensor product to modules, which I talked about here
five years ago.

So we replace Rm by M .
We have the following theorem

Theorem 17.2 (Dwyer–H. 2014; Dwyer–H.–Knudsen 2018 (?)). There is a functor

ModO ×ModP
−☀−
ÐÐÐ→→ModO☀P

satisfying some condition on what the tensor product of free modules should look
like.

It turns out that one can endow these categories with model structures where
weak equivalences and fibrations are created in symmetric sequences or just se-
quences. With respect to the projective model structure on module categories, if
I have a right O-module which is cofibrant, then M☀−, as a functor ModP →
ModO☀P is left Quillen. There is an explicit right adjoint. There is a similar result
on the right with P-modules. So it makes sense to talk aboutM☀LN . This is, if
you like, in the homotopy category.

I’ll use this side board to give a generalized version of the Dunn–Brinkmeier ad-
ditivity theorem. This is proved by induction from the Dunn–Brinkmeier theorem.
Let ι be this aritywise equivalence Cm☀Cn → Cm+n andM and N as usual. Then a
choice of trivialization of TM and TN gives rise to an isomorphism between, on the
one hand, the derived tensor product CM☀LCN and on the other hand Ho(ι)∗CM×N
in Ho(ModCm☀Cn).

I think it’s a pretty result, and you could ask whether it’s useful. It’s somtimes
helpful to decide if it’s useful.
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Corollary 17.1. Look at arity k on both sides. On the right side it’s equivalent to
Confk(M ×N). On the other side it’s the derived tensor product (CM☀LCN)(k).
Maybe that doesn’t feel like a whole lot of progress, but it’s built from Confi(M)
and Confj(N) with ij = k.

One thing I want to mention, parallelizable manifolds are nice but you’d like to
beable to reduce the structure group. A lot of that stuff works for reduction, but
the missing hard piece is the skew version of the additivity theorem. There’s a skew
version of this, and we need someone to prove the skew version of the additivity
theorem.

So now how do you do this computationally? My title gives it away—we want
some sort of Tor or Künneth spectral sequence. So I’ll give you the theorem and
then see what I have to explain to make it make any sense.

Theorem 17.3 (H.–Knudsen). Let R be a commutative ring an O and P be sim-
plicial operads, with M a right O-module and N a right P-module. Assume that
everything is R-flat when I calculate homology. Then there exists a natural con-
vergent spectral sequence that converges to what we want, which is the homology
Hp+q(M☀LN ), and this should converge from Hp((H∗M☀LH∗N )q).

So we have to figure out how to get the filtration. Then we need a Boardman–
Vogt product in a non-Cartesian category.

We really hope to do this whenM is CS1 and N is CS1 and then maybe at least
from E2 on Ben thinks it may be related to the Totaro spectral sequence. This
is a relatively simple way to express this, one may actually be able to do some
computations.

Okay let’s go back to operadic modules, there’s a sort of folklore result—one
place you can find it is Arone–Turchin

Proposition 17.1. If O is a simplicial operad and C a simplicial category then
ModO(C) is equivalent to the category of (simplicially enriched) functors

Fun(F(O)op,C).

So F is finite sets, and the morphisms use O. So the objects are those of finite
sets, and

F(O)(X,Y ) = ∐
f∈F(X,Y )

∏O(f−1(y)).

One thing I’ll remark, is suppose I start with a morphism of operads ϕ ∶ O → P.
This gives rise to an adjunction between the module categories, which is forgetful
and enriched left Kan extension, ϕ∗ and ϕ!. We also have the free O-module functor
which goes from sequences CN to ModO(C), and a forgetful functor. This gives rise
to a comonad with underlying functor FOUO. This is all very standard. Using this
you can make bar constructions hich turns out to be important.

Proposition 17.2. If C is a nice enough simplicial model category, such as sim-
plicial sets, then the projective model structure exists on ModO(C) exists and is
simplicial.

One version of this is due to Lynn Moser, which has something to do with earlier
work I did with Emily, Brooke, and Magdalena, all fo whom are here. Then ϕ! and
ϕ∗ are a Quillen pair.
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The last thing I want to say is, we have an O-bar construction, and BOM
≅Ð→M

is an (explicit) cofibrant replacement.
Let’s say something more about the Boardman–Vogt tensor product.
So if O and P are simplicial operads, there is a simplicial functor

µ ∶ F(O) ×F(P)→ F(O☀P)
which takes (X,X ′) ↦ X ×X ′ and I’ll leave it as an exercise to decide what to do
on morphisms.

If we suppose there is C × C −⊗−ÐÐ→ C closed symmetric, then F(O)op × F(P)op

goes by µ to F(O☀P)op and we have

F(O)op ×F(P)op C × C CM⊠N

F(O☀P)op

M×N

µ

−⊗−

µ!(M⊠N )=M☀N

so this is just a left Kan extension.
So let me say how well-behaved this is. If M is cofibrant (with respect to this

structure that we defined) then (ModP)proj → (ModO☀P)proj is left Quillen and
similarly for −☀N . Then the corollary relevant for the theorem is that there is a
specific model for it that gives rise to a spectral sequence.

The corollary is:

Corollary 17.2. M☀LN makes sense and BO(M)☀BP(N ) is a model for it.

Corollary 17.3. There is a spectral sequence converging to H∗(M☀LN ) given by
the skeletal filtration of the diagonal of BO∗ (M)☀BP∗ (N ).

I have only five minutes left and I’m certainly not going over at the end of a
very long very hot day so let me try to just summarize very quickly. We want to
do an R-linear version of what we’ve done. There’s no R-linear Boardman–Vogt
product but there is an R-linearization of a simplical category. What does that
mean? There’s a functor from categories enriched in simplicial sets to categories
enriched in graded R-modules given by applying homology to the hom simplicial
sets. What we do then is to define what it means to look at modules over OR, it’s
not really a linearization of the operad, but a linearization of the category F(O)
exists, and

Definition 17.1. Define ModOR
to be Fun(F(O)op

R ,gr ModR).

Now we have a category into which we map. Now we have a result of Christensen–
Hovey giving a nice model structure on (gr ModR)∆op

and we put this together
with Moser to get a projective model structure on (ModOR

)proj to get a cofibrant
replacement again from the bar construction.

To conclude let me tell you how to define the Boardman–Vogt tensor product in
this case. We’re interested in left Kan extensions so we can do as follows. We take
the product and linearize,

(F(O) ×F(P))R F(O)R ×F(P)R gr Mod×2
L gr ModR

F(O☀P)R

µR

M×N −⊗−

(µR)!(−)=M☀N ∈Mod(O☀P)R
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so we don’t have to worry about doing a Boardman–Vogt structure for operads in
this way, we have the module structure and that’s what we need.

18. July 6: Claudia Scheimbauer: Dualizability in the higher Morita
category

Thank you for coming on Friday morning after the last evening. I’ll try to
be gentle. I’ll talk about dualizability. This is something you know so I did my
homework and rewrote it. The first thing we will talk about is adjoints, we have
categories C and D. Then L ∶ D → C is left adjoint to R ∶ C → D if there are unit
u ∶ idD → R ○L and counit v ∶ L ○R → idC such that (v ○ idR)(idL ○ u) ∶ L → L and
(idL ○ v)(u ○ idR) are identities. So now we work in any bicategory instead of CAT
and just have morphisms instead of functors and bimorphisms instead of natural
transformations.

Similarly, a vector space V ∗ is dual to V if there are evaluation evV ∶ V ∗⊗V → k
and coevV ∶ k → V ⊗ V ∗ such that the two maps V → V and V ∗ → V ∗ built from
these are identities. This also makes sense in any monoidal category.

So let’s look at examples. So Alg has as objects algebras (over k) and a morphism
from A to B is an (A,B)-bimodule. To have this as a category I have to take
isomorphism classes. Composition, given an (A,B)-bimodule M and a (B,C)-
bimodule N , the composition is the relative tensor product over B. As an exercise,
every object A has a dual, which is Aop and coevaluation and evaluation are just
A viewed as a bimodule in two different ways.

What about pointed vector spaces, (V, v), so this is k vÐ→ V . In the example before
a vector space only had a dual if it was finite dimensional. Now in this context,
dualizable objects are the 1-dimensional vector spaces. Somehow I reduced to the
trivial thing, to the monoidal unit.

These two were examples of the dual definition, what about having an adjoint.
The category of algebras is actually a bicategory, with morphisms (A,B)-bimodules
and homomorphisms of bimodules. This was even a double category in Emily’s talk.
The claim is that AMB has a left adjoint if and only if M is finitely presented and
projective over A. It has a right adjoint if and only if it satisfies the same thing
over B.

Let’s see what we can do for higher categories.
The main place I want to go is to find an (∞, n)-generalization of this, at least

for dualizability, for now.
We’ve seen several talks about (∞, n)-categories so far. In general I will give

the definition a little informally. Informally, an (∞, n)-category has objects, 1-
morphisms, 2-morphisms, and so on, up to n-morphisms and everything from
(n + 1) onward is invertible up to isomorphism. We can truncate by discarding
non-invertible higher morphisms. I’ll only need the 2-truncation τ≤2C to get an
(∞,2)-category, and even from there one can do the homotopy category and get a
bicategory h2(C). The other thing I can do, is if C is symmetric monoidal, what I
want you to think about is that we can do a similar truncation to get a symmetric
monoidal category h1(C). We have a way of, starting from a symmetric monoidal
(∞, n)-category, produce a situation where we understand dualizability.

Now I’ll say an object is dualizable in C if it has a dual in h1(C) and an adjoint
if it has one in h2(C).
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Definition 18.1. Let C be a symmetric monoidal (∞, n)-category. We will say C
is fully n-dualizable (sometimes called “C has duals”) if

(1) every object X has a dual and
(2) every k-morphism for 1 ≤ k < n has a left and right adjoint.

Now any object X in such a C is called n-dualizable.
Then for an arbitrary symmteric monoidal (∞, n)-category C there is Cnd, the

maximal subcategory of objects that are n-dualizable and with morphisms having
left and right adjoints.

I should tell you how to get the condition for k. I can pick out the layer for k,
which has (k − 1)-morphisms, k-morphisms, and (k + 1)-morphisms.

In Chris’ talk yesterday this came up as a condition for the cobordism hypothesis
and that’s exactly the motivation for this result.

Let me recall our motivation, which is the cobordism hypothesis, which says that
if you take any symmetric monoidal (∞, n)-category, and look at functors out of it,
you can evaluate and get an equivalence of ∞-groupoids

Fun⊗(Bordfr
n , C´¸¶

(∞,n)

)
evptÐÐ→ (Cnd)≃.

Informally, we’ll look at Algn(S), the “higher Morita category” where S is a “nice”
(∞,1)-category, like Ch or Vect or spaces or (nice) categories.

So in this category, objects are En-algebras, morphisms are bimodules (which
are still En−1-algebras). The 2-morphisms are bimodules (En−2-algebras). The
n-morphisms are bimodules, objects in S or I could say E0-algebras in S. The
n + 1-morphisms are homomorphisms in S or in pointed S.

There are different ways of formally defining this. One way in this case is due
to Haugseng using generalized ∞-operads. Another was part of my thesis (partly
joint with Calaque). I also want to consider higher categories, so thetn I could keep
going and get up to n + k this way. This extension was joint with Johnson-Freyd.

I wanted to have the informal discussion to be able to state the theorem

Theorem 18.1 (Gwilliam–S.). Algn(S) in the sense of Calaque–S. is fully n-
dualizable.

Corollary 18.1. Every object A determines a fully extended n-TFT

Bordfr
n → Algn(S).

Why is this good or bad? We got fully extended n-TFTs. It’s not good because
we’d like to see what we get explicitly. The recipe for that is factorization homology,
so this is the A-factorization homology from John’s talk. If A and B are k then
bimodules are vector spaces and homomorphisms are linear maps. So we get vector
spaces at the top, as Rune said we should.

If we think again of the example, we want vector spaces and linear maps, but we
want 1 + 1-dualizability, and so we’d want n + 1-dualizability or even more.

Theorem 18.2 (Gwilliam–S.). In the pointed version of Algn(S), only algebras
equivalent to 1 as En-algebras are dualizable.

This is not good. For the lower dimensional part Algn is good but it’s not good
if you want to go higher.
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What can we do? We should have a symmetric monoidal functor forgetting the
point. Philosophically this should not be a big thing. We don’t have this now, just
for technical reasons. If you had this, then you get the corollary as well for the
unpointed thing. So that’s a conjecture.

So, questions so far?
If you look at the classical Morita bicategory. Every object has a dual. Having

2-dualizability, that’s a condition. Not every morphism has a left and right adjoint.
We get the lower part, every object has a dual, but we get finiteness conditions,
going higher.

So examples, S = Vect or S = Ch is something to have in mind. Alg1(S) for
Vect gives us back what we erased. Every object is 1-dualizable. The 2-dualizable
objects (let me be over C) are finite dimensional semi-simple.

I could also choose Alg2 of Vect, and everything is 2-dualizable, and for n = 3 I
get the same finiteness conditions. I could instead put in S = CATk, and for the
n = 1 case and take Alg1(Fin Cat), which is Douglas–Schommer-Pries–Snyder, and
every object is 2 1

2
-dualizable. This is due to having finiteness conditions, and put in

something like presentable categories. This was in Brochier–Jordan–Snyder, where
they got Alg1(Pr) is “almost 2” and Alg2(Pr) is “almost 3”-dualizable.

This is just to kind of connect to what other people are doing.
Let me now make this a little more precise. So, what is Algn(S)? Let me start

with n = 1. First I need to start with what factorization algebras are. Let X be a
topological space, I’ll only need R or Rn.

Definition 18.2. A factorization algebra on X valued in S is basically something
similar to what John was talking about, a multiplicative version of a cosheaf. I
have an assignment F from opens of X to S along with a map for disjoint unions
of opens U1 ⊔⋯ ⊔Un ⊂ V then I get a map F (U1)⊗⋯⊗ F (Un)→ F (V ) such that

(1) we have coherence
(2) we have multiplicativity F (U ⊔ V )← F (U)⊗ F (V ) is a weak equivalence

This was used by Costello–Gwilliam to construct field theories. But we have
simpler examples, specifically all the things I want to encode. So for A an algebra
and X = R to every interval I assign A and I can include them into the big one,
which is also A. The extra data that I have to tell you, I have the inclusion and have
to give you a multiplication map, and this actually uses R with an orientation or a
framing. The second example, I have A and B algebras and an (A,B)-bimoduleM
with a point, and p a point in x = R. So for an interval left of p I assign A, for an
interval right of p I assign B, and for an interval containing p I assign M . So you
can think of stratified factorization homology in the sense of Ayala–Francis–Tanaka,
and these are the ingredients to get there.

Theorem 18.3 (Lurie; Ayala–Francis). There is an equivalence between AlgEn
(S)

and certain (locally constant) factorization algebras in S on Rn.

This locally constancy means that the structure map for an inclusion of disks
is an equivalence. In the stratified case this should be understood constructibly—
respecting the stratification.

So let’s do n = 1, Alg1(S) = Y is a simplicial object, a Segal space in the sense of
Toby’s talk. What’s my Y0? This should be my objects of Alg1. Here I should have
objects algebras and morphisms bimodules. So I define Y0 to be locally constant
factorization algebras on R. What will Y1 be? I want to encode the bimodule
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picture. Heuristically I’ll define them to be constructible factorization algebras on
R together with a point as a stratified space. My source and target maps will be
given by restricting to either side.

For a Segal space I have to tell you the higher ones, so for Y2 I’ll take two points
p1 and p2. In the rough translation, you should think of the point as an (A,B)-
bimodule. So this should be thought of, with two points, as an (A,B)-bimodule
and a (B,C)-bimodule. The source and target are hopefully clear. What I have to
tell you is how composition works.

So in the Segal space the composition is encoded by the d1 map. I have my two
bimodules M and N hre and the factorization algebra that lives there. I want to
get a single bimodule. We can push forward factorization algebras. If I have f from
X → Y and F on X, then I can define (f∗F )(U) as F (f−1(U)). So I use the map
that collapses everything betweenM and N to a point. The gluing condition that I
haven’t told you about implies, if you think about the module situation, you really
get the (derived) tensor product. This really gives you exactly what you want from
the Morita category.

Okay, we wanted something about dualizability. Let me show you for this par-
ticular example that our theorem is true.

The proof of the first theorem for n = 1, we need to show that every object has
a dual, and here for the other condition there is nothing to check. So let’s see. We
start with A my factorization algebra, and I can define a map from R to R that
folds over my map and collapses. [picture]

Now I can push forward F under this map f and get a stratified R. Let me
redraw this. [pictures]. On the left I get A⊗Aop. If I touch the point I get A. On
the right I get k. So we produced A as an (Aop ⊗A,k)-bimodule.

I’d just like to show you why the snake identities hold. This construction was the
evaluation map. It’s a 1-morphism. Similarly I can get a coevaluation by bending
down [pictures].

Now the snake identities, I have to check that these identities hold downstairs,
but I can use information from upstairs. I need (ev⊗id) ○ (id ⊗ coev) to be the
identity, and this will come from the projection of this map [picture].

This this here is very nice because you can pull at the ends and get the trivial
guy. This is an explanation for why you get this identity.

If you want the n-dimensional version, you take a little Rn and do the same
thing, fold and project. Since I’m out of time I’ll stop here.

19. Markus Spitzweck: Hermitian K-theory for Waldhausen
∞-categories with genuine duality

[I did not attend this talk.]


