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1. December 19: Sasha Voronov: Higher Categories and TQFTs I

What a great place to have a school. Thank you very much for inviting us. You
may have noticed that the title of my minicourse is like the title of the school.
There is one small difference, I will be talking about TQFTs whereas the school is
talking about TQFT. I want to talk eventually in these lectures about the cobordism
hypothesis.

String theory has made a tremendous impact on mathematics. It’s enough to
look at the number of fields medals that went to mathematicians who used ideas
of string theory to update mathematical results. Donaldson in the 90s, Jones
and Witten, Kontsevich, and [unintelligible]. The basic idea is that TQFT from
the mathematical side is explained by cobordisms, while physics pays attention to
vector spaces of states and correlation functions. Field theory relates these two
ideas, cobordisms and linear categories.

I want to talk today about two dimensional topological quantum field theories,
which explain some simple topology and simple algebra. Let me start with a defi-
nition.

Definition 1.1. A 2 dimensional TQFT is a vector space V over k of characteristic
zero, most often the complex numbers and a correspondence between surfaces Σ
with labelled boundary 1, . . . ,m (the inputs) and (1, . . . , n), the outputs, to ∣Σ⟩, a
map V ⊗m → V ⊗n.

This should satisfy some axioms.

(1) If Σ1 ≅ Σ2, respecting the boundary component labels, then ∣Σ1⟩ = ∣Σ2⟩.
(2) ∣Σ1 ⊔Σ2⟩ = ∣Σ1 ⊗Σ2⟩ ∶ V ⊗(m+m′) → V ⊗(n+n′)

(3) If we glue two surfaces Σ1 and Σ2 as cobordisms [picture], then ∣Σ2 ○Σ1⟩ =
∣Σ2⟩ ○ ∣Σ1⟩.

(4) An extra condition usually assumed is that a cylinder S1 × [0,1], then the
corresponding operator is the identity.

Then the folklore theorem, probably first in Dijkgraaf’s thesis of 1989, is the
following.

Theorem 1.1. A two dimensional topological quantum field theory is a equivalent
to a commutative Frobenius algebra.

This notion, whatever it is, explains how this data, presented geometrically,
can be interpreted algebraically. It’s a very simple algebraic law satisfying certain
properties.
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Definition 1.2. A vector space V is a (commutative) Frobenius algebra if it’s a
finite dimensional (commutative) associative algebra with a unit along with a linear
map θ ∶ V → k such that θ(ab) defines a nondegenerate symmetric bilinear form.

Exercise 1.1. Show that these are Frobenius algebras:

(1) The matrix ring Mn(k) with trace θ the trace.
(2) The cohomology H●(M,k) of a closed oriented manifold, with trace evalu-

ation on the fundamental cycle.
(3) For G a finite group, the center Zk[G] of the group algebra k[G] with

θ(∑λgg) = λe/∣G∣
The first example is non-commutative and the second example is a graded com-

mutative example. The third is the most standard.
Let me give you the idea of how this theorem is proven, it has quite a beautiful

proof. First let’s go from a TQFT to a Frobenius algebra. How can we do this?
There is a vector space around, and we want to define the structure of an algebra
on it. So we can take a pair of pants with two inputs and one output, and then the
corresponding operator will go V ⊗ V → V and we’ll denote it a ⋅ b.

The next elementary cobordism is one with two inputs and no outputs, which
we’ll call the inner product, this will correspond to V ⊗ V → k. This map, we’ll
denote it a⊗b↦ (a, b), which will be our future nongdegenerate symmetric bilinear
form. Next is what happens to a cap with one input, call this θ ∶ V → k. The cap
with no input and one output is a map k → V , this, let’s call the image of 1 the
element e of V , and this will be our future unit element.

This is more than enough of the structure than I need, and I want to check that
I get a Frobenius algebra. There are axioms like commutativity, and they all come
from considering diffeomorphisms between surfaces [pictures].

Associativity comes from a different picture [pictures]. The first picture gives us
(a ⋅ b) ⊗ c and then we multiply again and get (a ⋅ b) ⋅ c. The second surface, you
get a⊗ (b ⋅ c) and then by multiplication to a ⋅ (b ⋅ c). Then the trilinear operators
should be equal.

So we’ve got a commutative associative algebra. What else do we get? The unit
axiom is simple, it’s obtained from noticing that this [picture] is diffeomorphic to
a cylinder, which gives the unit e ⋅ v = v. It’s also a right unit.

What about the trace and the non-degeneracy of the trace. How do we see that
it’s non-degenerate. You can see that if you take a pair of pants and cap it off, then
you get something diffeomorphic to the bent cylinder, so θ(ab) = (a, b), so the inner
product is redundant. I want to use it to see that we have a Frobenius algebra,
that this inner product is non-degenerate, which may be done this way: [picture].
Gluing this Z-shaped Riemann surface, this is also called Zorro’s property.

We get V → V ⊗ V ⊗ V , which maps a → a ⊗ ∑ bi ⊗ ci. This sum comes from
the shape we have, I should have put this other shape which gives an operator to
k → V ⊗ V , defined by its distinguished element in the tensor product of V with
itself. It’s a finite sum, maybe represented by different linear combinations, but
nevertheless. Let me use, well, the next cobordism, we need to apply the inner
product to the first two arguments and keep the third intact, this is ∑(a, bi)ci, and
this map should be the identity, this should be equal to a for all a ∈ V . So what kind
of conclusion can we draw from this? This tells us that the choice of ci generate
the whole space. Any element a can be represented as a sum of ci. This implies
that every a in V is a linear combination of the (finite) list of ci so the dimension



HIGHER CATEGORIES/TQFT 3

of V is finite and at most n, and it also shows, well, we need to see the bilinear
form is nondegenerate. If v is in ker( , ), then we get ∑(v, bi)ci = v. But if it’s in
the kernel, then the left hand side is zero, so v = 0.

Now we’re done with the first part. We got a Frobenius algebra. Who knows,
maybe we got something better or stricter, but the converse tells us that this is
exactly what we get.

The second part is regarded as elementary by physicists, but is less simple for
mathematicians. Often there are references to that part of the proof of the theorem,
which goes from a Frobenius algebra to a TQFT, there are proofs that use Morse
theory for oriented surfaces and really get kind of complicated. Myself being some-
where between mathematics and physics I want to present a simple combinatorial
proof of this theorem. Suppose we have V a Frobenius algebra, and for each Σ we
want to make a linear operator. So we cut Σ into pairs of pants, cylinders, caps,
and so on, using notions we get from the Frobenius algebra, and obtain the operator
Σ as a composition of tensor products of the corresponding operators, using pairs
of pants, cups, caps, and cylinders.

I didn’t mention what corresponded to a pair of pants in the other direction. To
regular pants I do the product, for cylinders the identity, for caps and cups you
assign θ and e, and for the last pair of pants you apply the comultiplication that
comes from identification of V with its dual, getting an operator V ∗ → V ∗ ⊗ V ∗

and use θ or rather the inner product to identify on the other side. You can check
that this is cocommutative and coassociative, it’s all inherited from the structure
of a TQFT.

The nontrivial part is what happens if you cut your surface in a different way,
into different blocks, that you can take weird closed curves on the surface, why
would the corresponding operators be equal to each other. Here is some kind of
idea of how you can prove it properly.

So to a cutting you assign a sort of graph [pictures]. Suppose I have two such
graphs. From simple moves, using associativity, coassociativity, and other axioms
of a Frobenius algebra, we can move any graph like this representing a cut oriented
surface to a unique normal form. The normal form is like this [pictures]. How can
we do this? Suppose your graph is a real mess. You choose input number one, find
input number 2, and move it across the vertices. Moving across vertices is possible
because of the axioms. Then once you’ve gotten the inputs and outputs to the
beginning and end in this way, you pick a loop and move all the things incident on
it off of it and get one disjoint loop. In this way you start going through. If you
compose an oriented surface from this graph, this corresponds to gluing a surface of
genus g with m + n boundary components. The surface you get doing this has the
same number, two normal forms are the same means the operators are the same.
So your awful graph will give you the same operator as your normal form graph.
This is the proof of the statement. Any questions?

In the remaining couple of minutes,

Exercise 1.2. (1) Do a similar story but consider surfaces with boundary and
corners. Then the question is what would correspond to such a thing al-
gebraically? The anticipation is that this should be a non-commutative
Frobenius algebra
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(2) Verify that a two-dimensional TQFT is a monoidal functor from the cat-
egory of cobordisms Bord(1,2) to the category of vector spaces. The bor-
disms, the morphisms are diffeomorphism classes of oriented surfaces. The
objects are compact closed one dimensional oriented manifolds, disjoint
unions of circles, up to diffeomorphisms not mixing components, labelled
components.

2. Andrei Cǎldǎraru: Algebraic structures on Hochschild
invariants of algebraic varieties and dg-categories I

[I do not take notes at slide talks]

3. Junwu Tu: Homotopy L∞ spaces and its applications I

I will talk about homotopy theory of A∞ or L∞ spaces. I got this notion by
considering families of Lagrangians in a symplectic manifold. I wanted to know
how Fukaya–Oh–Ohta–Ono structures varied in families. The L∞ case was defined
already by Kevin Costello. I’ll discuss what I mean by homotopy theory in the first
lecture. I’ll talk about L∞ and A∞ spaces in the second and third, and then I’ll
give some applications.

In classical topology, first you need the notion of object, so in algebraic topology
the objects you need are topological spaces, and then you need to tell me what are
the morphisms, which are continuous maps. Then the algebraic topologists came
up with the notion of homotopy, a relation on the set of homomorphisms. We call
two maps f0 and f1 homotopic if there is a map f ∶X × I → Y such that f ∣X×0 = f0

and f ∣X×1 = f1. Now you can start to do homotopy theory.
So now I want to do some version of this, let me work with complexes of vector

spaces over k (probably characteristic zero).

My objects will be cochain complexes (C∗, d), that is Cn−1 dÐ→ Cn
dÐ→ ⋯ with

d2 = 0. We have morphisms maps f in each degree such that f commutes with d.
Now I want to define the homotopy relation, and this is the usual one. You have

this interval in topology but in the algebraic case you don’t have the interval. We
say f0 ≅ f1 if there exists h ∶ C∗ → D∗−1 such that f1 − f0 = dh + hd. I want to use
a different definition that is equivalent to this one but which can be generalized to
more situations.

I think the idea is due to Sullivan, who wanted to define an interval in kind of
the same way. I want to define Ω∗

∆1 , this is k[t, dt], which is two copies of k[t] one
indexed by dh. Then the differential is the de Rham differential. Now we say f0 ≅ f1

if there exists a map f ∶ C∗ →D∗⊗Ω∗
∆1 . There are evaluation maps Ω∗

∆1 → k which
evaluate at 0 and at 1, so ev0(α + βdt) = α(0) and ev1(α + βdt) = α(1). When
you look at f , you postcompose with the evaluation map, we want ev0 ○f = f0 and
ev1 ○f = f1.

Let’s quickly check this more geometric definition is equivalent to the algebraic
one. If f0 is algebraically homotopic to f1, then I can write f = (1− t)f0 + tf1 +hdt.
This is from C∗ to D∗ ⊗Ω∗

∆1 . If I start with some element x, then

d(f(x)) = d [(1 − t)f0(x) + tf1(x) + h(x)dt]

and then when we evaluate the differential, I get two parts:

(1 − t)df0(x) + tdf1(x) − f0(x)dt + f1(x)dt + dh(x)dt.
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On the other hand we have (1 − t)f0(dx) + tf1(dx) + h(dx)dt for f(dx) and the
terms match up (up to sign).

Let’s look at the other way up to sign. If you have C∗ →D∗ ⊗Ω∗
∆1 , say we send

x to α(t)(x) + β(t)(x)dt. These are polynomials with values in morphisms from
C∗ to D∗. It must commute with the differential, so we have dα(t)(x) + α′(x)dt +
dβ(t)(x)dt = α(t)dx + β(t)dxdt. This says that if you differentiate the family of

maps, dα(t)
dt

= [d, β(t)]. I have the same problem with signs. The point is now to
integrate from 0 to 1, and the d we have in the commutator is independent of t,

and so we get ∫
1

0
dα(t)
dt

= [d, ∫
1

0 β(t)] and so this evaluetes to α(1) − α(0) = [d, h].
An important property of this homotopy relation is that it is an equivalence

relation. You can sit down and prove this easily with homological algebra. I’ll give
a different proof, not so elementary. It’s a relation on Hom(C∗,D∗). I should talk
about simplicial enrichment of this morphism set. So this, I’ll just give you an
idea of the general theory, I only need the bottom parts of this. I’ll give vertices,
edges, triangles, and that’s all I’ll need. The vertices are maps of complexes. The
one-simplices are Hom(C∗,D∗ ⊗Ω∗

∆1). This is like an edge connecting f0 and f1.

Then this construction of Sullivan does not have to be ∆1, and you define your
triangles as Hom(C∗,D∗ ⊗ Ω∗

∆2). An object here will be complicated because of
the two-dimensional parameter, but it will have three vertices and then you’ll have
these homotopies, and a biggest dimension thing. In chain complexes you can write
this down, some compatibility of these homotopies, you can integrate the algebraic
thing and you get something like h01−h12+h02 = [d, h012], something like that, very
explicit. Now stop here, the next parts are important but for my talk the higher
simplices are not important.

An important theorem proven by Hinich and Getzler, when you use their theorem
in this particular case, tells you that,

Theorem 3.1. (Getzler–Hinich) In this particular case, Hom(C∗,D∗) is a Kan
complex.

I won’t define this but let me say what it means for us in low dimensions. It
implies the following corollary.

Corollary 3.1. The homotopy relation on Hom(C∗,D∗) is an equivalence relation.

How do I prove this using the so-called Kan condition?

(1) With no condition, you see that any map f is equivalent to itself, implied by
taking the 1-simplex C∗ →D∗⊗Ω∗

∆1 , this is with the “homotopy” x↦ f(x)
with no t dependence.

(2) How do I use the Kan condition to show symmetry. By definition there’s
a path from f0 to f1. I always have the constant path from f0 to f0 itself.
Then the Kan condition is a lifting condition, a horn-filling condition, that
says if you remove one facet from a simplex, you can lift to the boundary
and interior of the simplex. Then you get a backward map and even a
homotopy for this map f1 → f0. You see nicely that this equivalence relation
corresponds to removing different edges from a 2-simplex. [Pictures].

You can define the homotopy category whenever you have this sort of situation.

Definition 3.1. π0(chk) ≅ chk / ≅.

Part of topology is to characterize isomorphisms in this homotopy category.
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In algebraic topology we have the Whitehead theorem, which says that a map
f ∶X → Y for X and Y connected CW complexes is a homotopy equivalence if and
only if the induced map on all homotopy groups is an isomorphism. We know that
in our case, by analogy:

Theorem 3.2. A chain map f ∶ C∗ → D∗ is an isomorphism in π0(chk) if and

only if H∗(f) ∶H∗(C∗) ≅Ð→H∗(D∗).

Now I want to consider homotopy theory of A∞ algebras.
I’ll probably only have time to make definitions, like what is an A∞ algebra.

This was introduced by Stasheff. It will look algebraic but it is very topological.

Definition 3.2. An A∞-algebra is a graded vector space A endowed with multi-
linear maps mk ∶ A⊗k → A, the degree of mk is 2 − k, such that

∑
r+s+t=N

±mr+t+1(id⊗r ⊗ms ⊗ id⊗t) = 0

for N ≥ 0.

Over a field, we’ll assume that m0 = 0.
Now N is the number of inputs, so ms has s inputs, and the total inputs is N .
When m0 is zero, you get m1m1 = 0 and ∣m1∣ = 1 so this is a complex. Then for

m2 you have m2(m1x, y) +m2(x,m1y) =m1m2(x, y), so this m1 is a derivation of
m2.

There are higher compatibilities that I can’t write. So this is some algebraic
structure.

Definition 3.3. An A∞ homomorphism f from A to B, two algebras, is given by
fk ∶ A⊗k → B, and now I assume k ≥ 1. The degree is given by 1 − k. The A∞
morphism relation says that

∑
r+s+t=N

fr+1+t(id⊗r ⊗ms ⊗ id⊗t) = ∑
i1+⋯+i`=N

m`(fi1 ⊗⋯⊗ fi`)

So just as in the case of chain complexes you have m1f1 = f1m1 but you actually
have more, this is just the first compatibility.

Definition 3.4. So two A∞ homomorphisms f0 and f1 are homotopy equivalent
if there is a map f ∶ A→ B ⊗Ω∗

∆1 which restricts appropriately.
You define Mk(b1⊗α1, . . . , bk⊗αk) =mk(b1, . . . , bk)(α1⋯αk) for k ≥ 1, and k = 1

it’s M1 the tensor differential.

Again you can prove by the same argument that this is an equivalence relation
on morphisms, and then define a homotopy category. Then π0(A∞) is A∞/ ≅.

There is also a Whitehead theorem in this case, which says that if f ∶ A → B,
there are a lot of names here, Kadeishvili, Kontsevich, Fukaya–Oh–Ohta–Ono in
this version, this is an isomorphism in the quotient category if and only if H∗(f1)
is an isomorphism.

4. Grégory Ginot: Higher Hochschild homology and factorization
algebras I

Somehow my talk is going to be in between Andrei’s talk and Sasha’s talk, and
be related to some things that Junwu talked about or will talk about. The main
point is to talk about homology of higher algebras related to (topological) quantum
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field theory described by Sasha, higher dimensional versions of what Sasha will
describe. The philosophy or the motivation behind that is that, what is going
to be, factorization algebras, many people here come from symplectic topology or
algebraic geometry, it’s common to describe a manifold by its functions, its sheaf of
functions, and in the same way I want to think of a quantum field theory as being
described as some algebraic data which is going to be factorization algebras. This
will encode quantum field theory, I put the topological in parentheses because then
the factorization algebras will be locally constant.

A topological field theory gives invariants of closed manifolds of dimension the
dimension of the field theory. This is viewing the value on a closed manifold as the
value of a morphism from empty to empty.

If you want to see the classical picture, in a classical picture, or perhaps “classi-
cal” picture, the invariant will be, if you have a space X, then the cohomology of
the space X is the sheaf cohomology of the constant sheaf on X.

In the same way, we will get sheaf cohomology for these factorization alegbras,
the invariants produced by factorization algebra and higher Hochschild homology
will be global sections of locally constant factorization algebras. This will be the
idea that I’ll describe but I’ll start with something giving an invariant for any n
corresponding to differential graded commutative algebras, this is a special kind of
locally constant factorization algebra and you lose some information but it’s easier
to compute. This is related to what Andrei has been talking about.

Let me recall the definition of Hochschild homology that Andrei was giving this
morning. I want to recall the definition of the standard Hochschild chain complex
of a differential graded associative algebra A. So

Cn(A) ∶= A⊗n+1

b(a0 ⊗⋯⊗ an) =
n−1

∑
i=0

(−1)ia0 ⊗⋯⊗ aiai+1 ⊗⋯⊗ an + (−1)n(ana0) ⊗ a1 ⊗⋯⊗ an−1

You can see this kind of weird thing by writing them on a circle. The multiplication
is by taking consecutive pairs in all possible ways. If you put this in the circle, this
is easy.

The idea of higher Hochschild homology is to do the same but to put the points
on any space. To do so, you will need commutative algebras. With the circle it’s
okay to have an associative algebra because you know the order to multiply in. If
you work more generally, you need to pay attention to the order.

Let me start with a very stupid thing, a finite set with a finite number of points.
If A is a unital commutative algebra, and everything can be extended naturally to
differential graded commutative algebras by extending to the standard symmetric
monoidal product on chain complexes, then you can define a functor from Fin the
category of finite sets to k-vector spaces which to a set I associates A⊗I . To a
map f ∶ I → J , you define, A⊗I → A⊗J , you do ⊗ai → f∗(⊗ai) = ⊗ bj where you
look at the elements in the preimage and multiply all of the things in the preimage,
bj = ∏i∈f−1j ai; if it’s empty it’s the unit.

[picture]
A lemma, not really hard, is to check that (f ○ g)∗ = f∗ ○ g∗, and that’s exactly

where commutativity is needed.
You can see that if I’m doing something in the next step, if I compose things

together I don’t know how I’m multiplying things in the end. So anyway this is
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actually a functor from finite sets to commutative differential graded algebras, the
defining property is somehow that A ⊗ A → A is a map of algebras when A is
commutative.

Before I go to simplicial sets, you can extend this construction to all sets by
colimits, the tricky part is the tensor product for an infinite set, which is the
colimit over finite things. So A⊗X is the colimit over finite subsets of A⊗K . Now
we extend it to simplicial sets. We want to model spaces by simplicial sets, let’s
take X0, X1, X2, and so on be a simplicial set, that means that we are thinking of
this as a space where X0 are vertices, X1 are edges glued on the vertices, X2 are
triangles glued on the edges, and so on. It’s like a simplicial complex but we keep
track of degeneracies everywhere.

Let me remind you about geometric realization, for a simplicial set, you have
∐Xn ×∆n modulo the relation that (dix, t) ∼ (x, εit) and (sjx, t) ∼ (x, ηjt), where
εi and ηj are the comsimplicial structure on ∆●.

The example to start with is X0 a point, X1 having a single non-degenerate one
cell, and that’s it.

Every time you have something like that, you only need to take care of the non-
degenerate simplices. But to remember the homotopy and do some bookkeeping,
multiplying two simplicial sets, you should use the degeneracies to remember you
have small things in higher dimensions.

The best way to remember this thing is that there is a canonical map from
∆n ×Xn → ∣X●∣ given by the quotient map, t, σ ↦ (σ, t). My convention for the
simplex is that it’s elements 0 ≤ t1 ≤ ⋯ ≤ tn ≤ 1.

Let’s do the interval, which has I0 equal to two point, I1 having one non-
degenerate simplex (and two degenerate things from the two points) and in higher
dimension In will have n+ 2 things, all degenerate. Two of them correspond of the
degeneracies of the two points and n of them for the degeneracies of the 1-simplex.

Basically I’ll write In as {0, . . . n + 1}, where the underline corresponds to the
two degeneracies of the vertices.

For this interval, the degeneracies occur when you discard all but one (or none)
of the ti points and the face maps are obtained by putting adjacent points together.

What do you get if you start with the standard model for the simplicial circle?
Take the model S1

n, where you identify these endpoints, and that is the same thing
as writing {0,1, . . . , n}, and you have the same structure ϕ(t, i) = ti if i is between
1 and n and ϕ(t,0) = 0. Now let me explain what I was doing with my algebra. If
X was a simplicial set, we get a simplicial commutative differential graded algebra
A⊗X0 , A⊗X1 , and so on, with faces and degeneracies. In particular you have a
simplicial chain complex or vector space and make a chain complex out of that in
the standard way, define CHX●

(A) as ⊕n≥0A
⊗Xn where A⊗Xn is in homological

grading n and the differential d is given by the alternating sum (−1)i(di)∗, where
the di are the face maps Xn →Xn−1.

You can extend to chain complexes using the inner differential in the same way,
A⊗Xn means the shifted complex A⊗Xn[−n], the shifted complex, and you need to
add a shift to the differential that is internal because of that shift.

Now you can check as an exercise that CHS1
●

(A) = C(A) the standard Hochschild

chain complex. The exercise is really easy because CHS1
●

(A) is A⊗S1
n which is

isomorphic to A⊗(n+1), and identifying ti and ti+1 in the differential, you get a term
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that looks like a0⊗⋯⊗aiai+1⊗⋯⊗an. Then the final one is the last multiplication
for the weird term at the end.

The theory tells you that if you have used a different model of S1 then do you
get a related chain complex? If not, that’s a little weird.

Proposition 4.1. If X● → Y● is a map of simplicial sets which is a weak equiv-

alence (it’s enough to be a homology equivalence) then CHX●
(A) f∗Ð→ CHY●(A) is

a quasi-isomorphism. In other words, any simplicial set model of a space gives
a canonical quasi-isomorphism. You can always compare two of them because you
have a canonical map, X● →∆●(∣X●∣) (where this last is defined as Maps(∆●, ∣X●∣)).

Since A⊗X● is a simplicial commutative differential graded algebra, then the
chain complex CHX●

(A) is a commutative differential graded algebra with algebra
structure given by the shuffle product.

So for CHXp(A) ⊗ CHXq)(A) → CHXp+q(A) you get something which factors
through CHXp+q(A⊗A) (which then maps by multiplication to the desired target,
and for that we take

x⊗ y ↦∑(sα1)∗ ○ ⋯ ○ (sαq)∗(x) ⊗ (sv1)∗ ○ ⋯ ○ (svp)∗(y).

where the sum is over p, q-shuffles, where you premute v1 through vp and α1 through
αq which maintains the relative order of each subset

I just want to say, tomorrow examples of higher dimensional things than the
circle and give some other characterizations.

5. December 20: Sasha Voronov: Higher Categories and TQFTs II

Yesterday we were talking about closed topological quantum field theories in
dimension 2. We actually touched upon the open-closed case, or actually just the
open case, it was given as an exercise. But today I wanted to look at a mixture of
those, of the open-closed two dimensional quantum field theory.

By the way, there is a good tradition of adding some letters in front of TQFT,
you can talk about OCTQFT, ETQFT, CohFT, CFT, maybe T is an another
addition, Q is also often dropped. We will be talking about OCTQFT, and here
I’d like to generalize our setup to the following. Let me summarize about closed, I
gave it to you as an exercise, that closed 2d-TQFTs are functors, on the category
of cobordisms, monoidal functors, 2-dimensional cobordisms between 1-dimensional
manifolds, to vector spaces.

For the open-closed, you want to modify the bordism category slightly, and
you consider the category which I call Bord2 which is better called Bord0,1,2, and
its objects are oriented compact one-dimensional manifolds, possibly with bound-
ary. Morphisms between Y− and Y+ are diffeomorphism classes of two-dimensional
cobordisms between Y− and Y+. These cobordisms may have corners.

Moreover, the morphisms from Y− to Y+ will also have other data: each boundary
component—oh wait. I’m doing some dirty trick in including some data on the
vector side on the objects of the category. Let me change the objects, they are
oriented compact 1-manifolds, with boundary components labelled by points in a
set B0. This is the set of boundary data of our open-closed field theory.

So say Y− is an interval, this is a 1-manifold with boundary. Then Y+ is like this
[picture]. A morphism could look like this [picture]. For morphisms there is a con-
dition that the boundary, manifolds with corners have boundary, take the boundary
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in the topological sense, and then you see several components, the boundary con-
sists of Y− and Y+ and some other pieces. This could be thought of as the worldsheet
of a propagating string. At some point it closed up and became a closed string. It
opened again and then closed up and kept moving. If part of the initial boundary
had boundary, it also has its worldpath. The boundary has a worldpath, and this
is the other components of the boundary. The string acquired a boundary and
traced a worldpath. The extra boundary that we get is called Yc (for constrained
boundary) and sometimes (amazingly enough, since they contradict each other),
free boundary. So I should have constrained boundary labeled with elements of B0

in a way compatible with labelling on the boundary of objects.
So part of this is the “purely open sector” that we looked at yesterday [pictures].

This is just a planar sheet and this is another example.

Definition 5.1. A 2-dimensional open-closed topological quantum field theory is
a monoidal functor from BordB0

2 to vector spaces.

Another thing that I hould have said is that all of this is considered up to
diffeomorphism.

As a consequence of the definition, both the cylinder and the strip give rise to
the identity map, which was an assumption last time.

The question is, what do we have, how can we describe this possibly algebraically.
Is there an analogue of the folklore theorem classifying 2-d closed field theories as
Frobenius algebras.

Let’s take a closer look at what’s going on. If you have such a functor, there
is only one connected closed one dimensional manifold, which corresponds to a
vector space V . A union of several circles would give rise to V ⊗n. What about the
interval, we have only labelled intervals. Corresponding to this is a vector space
Oab, using the orientation of the interval. The diagram here [picture] tells me that

there is a product Oab ⊗Obc
∣Σ⟩
Ð→ Oac. If you sketch a similar picture, part of the

story is a closed field theory, the surfaces with no corners, oriented surfaces with
just boundary, you get the closed topological field theory. So this is a commutative
Frobenius algebra. There might be something else coming from the union of the
open and closed sectors.

You see that the product is associative. If you also add units by sketching
pictures, you can talk about a category B, a k-linear category B whose objects are
B0 and whose morphisms Mor(a, b) = Oab.

So you get this commutative Frobenius algebra plus the k-linear category, and
then there should be some extra conditions. What about a complete description
that would say that this theory is equivalent to a certain algebraic object.

The complete description is given by a theorem of Moore and Segal in 2006, and
it says the following.

Theorem 5.1. A two-dimensional open-closed TQFT is equivalent to the following
data:

(1) V a commutative Frobenius algebra
(2) (a) a collection Oab of vector spaces for each a, b in B0 with an associative

composition law
(b) A non-degenerate trace θa ∶ Oaa → k which makes Oaa into a Frobenius

algebra. Such a map, as before, defines a bilinear form if you compose
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it with the product, and this gives a perfect pairing on Oaa or an
identification with its linear dual.

(c) The compositions Oab ⊗ Oba → Oaa
θaÐ→ k is also a perfect pairing.

Moreover, θa(uv) = θb(vu)
(3) A linear map ιa ∶ V → Oaa and a linear map ιa ∶ Oaa → V satisfying

(a) ιa is an algebra homomorphism.
(b) ιa is central: ιa(u)v = vιb(u), and
(c) ιa and ιa are adjoint:

θV (ιa(u)v) = θa(uιa(v))
(d) (Cardy condition) If we define πab from Oaa → Obb as ∑µ eµueµ for a

basis eµ in Oab and a dual basis eµ for Oba, then this is ιb ○ ιa.

[pictures]
Next time around I’ll move to higher categories.

6. Andrei Cǎldǎraru: Algebraic structures on Hochschild
invariants of algebraic varieties and dg-categories II

It would be good to integrate the lectures, so I want to spend the first quarter
of my lecture connecting what I’m doing to what Sasha was doing. I want to
give a naive approach that shows how Hochschild homology could appear. Sasha
has explained that an open closed TFT is a functor from the category of open-
closed cobordisms to vector spaces. These are exactly the topological surfaces with
boundary that Sasha was talking about. There is a lot of data so let me restrict
to a couple of pieces of interest. I could forget the open part, looking only at
manifolds without corners, and what I get from this, I’m looking at a subcategory
of cobordisms, is a closed TFT. Or I could forget the closed part to open TFTs. An
open-closed theory could give you just an open part or just a closed part. These
open TFTs are symmetric Frobenius algebras while the closed ones are commutative
Frobenius algebras.

A fundamental question you could ask about is whether there’s a left adjoint
to the forgetful functor to open TFTs. If someone gives you a purely open field
theory, is there a universal open-closed field theory containing this open theory
as its open part. If there is such a left adjoint (I’ll tell you there is one), you
could ask, what is the natural closed string sector associated to an open string
sector. The answer is that the canonical closed string sector associated to an open
TFT (and let me call the open TFT A) is, I need to give you a commutative
Frobenius algebra, which is C ∶= A/[A,A], and the pairing is given by the formula
(a, b) = Tramb which is the trace of the operator A→ A which sends x to axb. You
should convince yourself that this does not change if you replace x by a multiple
of a commutator. It’s commutative because you’ve modded out by commutators.
This is a theorem, I’m not claiming I’ve proved it. You could convince yourself
that with this multiplication and pairing, this data together with A satisfies all the
axioms that Sasha gave.

And what is A/[A,A]? It’s the zeroth Hochschild homology.
There is something strange here. Nothing about C cares about the pairing of

the open string sector. The open field theory had to have a trace, but that’s not
apparent. Also, we have nothing dg, and we only ended up with HH0. What
happened to higher Hochschild? If you really start doing things dg, you want to
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replace open-closed cobordisms with a dg version of it itself. We had some surfaces
and we took homology of those. An object like this [picture] was discrete. If you
put a conformal structure on your pair of pants, you get a moduli space of these
things, then you’ll getMg,n, and taking chains on that makes this into a dg object.
This is Costello’s theory for TCFTs. You turn the topological one to one which
has some topology and some conformal structure.

I wanted to say, relative to Junwu’s talk, that there is a natural theory of
Hochschild homology for A∞ algebras. We had our multiplication m2, and he
said there were these higher multiplications. Now when we were describing the
Hochschild chain complex, we had like a0∣⋯∣an and to apply b we collapsed two
consecutive ones and then also brought the last one to the front: m2(a0, a1)∣⋯∣an ±
⋯ ±m2(an, a0)∣a1∣⋯∣an−1. If we have m3 we have the same thing, a b3 which does
things like m3(a0, a1, a2)∣⋯∣an ±⋯ ±m3(an−1, an, a0)∣⋯∣an−2.

Gregory explained that the way you do this is collapse things on the circle using
a multiplication, if you have m3 you collapse consecutive 3 points, if you had 4
points you’d do that too. If you have m1, you do the same thing, apply to one
thing. In an A∞ algebra, m2 does not need to be associative, but you might be
worried because b2 being a differential relied heavily on m2 being associative. The
total differential b2 = 0 where b = b1 + b2 + ⋯, and in fact this is equivalent to the
A∞ relations.

I want to explain today, getting back to the material, I gave Hochschild homology
and cohomology for a space X, say a smooth variety, we defined this as HH∗(X) =
Ext∗X×X(O∆,O∆) or HH∗(X) = RΓ(X,L∆∗O∆). But is this computable? I want
to give you a very nice theorem, and one I’ll actually try to prove, and before I
state the theorem let me explain a little more. But let me use a simple adjunction.
If I use Hochschild cohomology, this is RHomD(X×X)(∆∗OX ,∆∗OX). But now
there’s a fundamental result that lower star is adjoint to upper star, so this is the
same (in the derived category of X if you want) to RHomDX(L∆∗∆∗OX ,OX),
which, L∆∗∆∗OX is the same as L∆∗O∆, but now I can notice a strong similarity
to the sections for Hochschild homology, which is RHomD(X)(OX , L∆∗O∆).

So these are almost dual. But what is the gadget L∆∗O∆? For X = Spec A,
then this is (C∗(A), b). Find a resolution as an A −A-bimodule, then base change
back to A. That’s exactly what Hochschild was.

So conceptually, this is the scheme version of the Hochschild chain complex. But
can we understand this reasonably well? Here’s the main theorem, which has many
authors.

Theorem 6.1. (Swan, Yekutieli, Kontsevich, Kapranov) If X is smooth and the
characteristic of the ground field is 0 or greater than the dimension of X, then
L∆∗O∆ ≅ ⊕ΩiX[i] as objects in Db(X).

How do I read this? Saying these are isomorphic in the derived category says
that they are quasi-isomorphic. I can calculate the cohomology sheaves, which are
the sheaves of differential forms. In particular, H−k(L∆∗O∆) = ΩkX . I’ve said HKR
is the affine version of this, which says that the spaces of cohomology was the space
of forms, but we have an explicit map which gives an isomorphism.

This theorem then tells me the Hochschild homology and cohomology as vector
spaces. This implies, automatically, that

HH∗(X) ≅ ⊕
p+q=∗

Hp(X,∧qTX)
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and

HH∗(X) ≅ ⊕
q−p=∗

Hp(X,ΩqX).

How do I do this? I want to compute for HH∗(X), maps from OX to this chain
complex. If I’m looking at HH0, then I’m computing maps from OX to OX with
no shift, that’s in the p = q = 0, or I could look at p = q = 1 and get something
that lands in Ω1 and look in H1 of that. If I want to look at HH1 then I need to
shift my complex but everything else is unchanged. Does this make sense? Any
questions?

In particular, it’s nice because Hochschild homology can be calculated from
knowing the Hodge diamond of a variety, if I write the Hodge diamond with hp,q

and so on, then the dimension of HH0 is the sum of the numbers p = q, the
dimension HHn is hn,0 and HH−n has dimension h0,n. So this lives in degrees from
−n to n where n is the dimension of the variety. This has a very nice consequence,
I’ll spend zero time on this but it’s important. If X is compact, then the numbers
on one side are the same as on the other.

Theorem 6.2. If X is compact, there’s a natural duality induced by the Mukai
pairing saying that HHi(X) ≅HH−i(X)∨.

To prove this, you first construct the Mukai pairing (using wedge and integrate
with a correction from the Todd genus) and then show it’s nondegenerate. It’s very
similar to Serre or Poincaré duality. This is mirror to the Poincaré pairing. Mirror
symmetry should rotate the Hodge diamond on the side and get the Betti numbers.

The duality here is totally natural without any choices or anything like that.
Let me outline a proof. We want to construct a map L∆∗OX to ⊕Ωi[i]. A

map in the derived category is a quasi-isomorphism is a local statement, that the
induced maps in homology are isomorphisms, that’s something to check locally.
Checking locally because the diagonal is a local complete intersection, a smooth
variety inside another, this can be calculated using a Koszul resolution. So the
hard thing is constructing the map.

By adjunction again, I want a map from O∆ → ⊕∆∗Ωi[i]. This is now a map
on X ×X, not on X.

But a map to a direct sum is a sequence of maps to each individual term. The
first map is O∆ → O∆. When i = 1, this is the most interesting map. I want a map
O∆ → Ω1

∆[1]. So think about this, such a map in the derived category of X ×X
means nothing but an extension, an Ext1, which will look like

0→ Ω1
∆ →?→ O∆ → 0

Does anyone know what to put in the middle? The first jets, so O∆(1) is OX×X/I2

where I = I∆. This extension is called the universal Atiyah class, and I take that
map. Now how do I go from i = 1 to i = 2? Now I need a map O∆ to Ω2

∆[2]. I
break this up into a few steps. I start with the map I already had Ω1

∆[1], and then
I go from there to Ω⊗2

∆ [2] and from there to Ω2
∆[2] via antisymmetrization, from

the second tensor to the second exterior power.
The only question is, I take At1⊗π∗1 idΩ1[1]. I get a short exact sequence from

above by tensoring:

0→ Ω⊗2
∆ → π∗1Ω1 ⊗O∆[unintelligible] → Ω1

∆
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and then I do the same thing moving forward, just repeat. I take my map ∑ 1
i!

Ati

(and you see this interesting factor we saw in HKR) and now you’re basically done,
the rest is a local check which is easy with a Koszul resolution.

By the way, I want to say one more thing related to the proof but not to
Hochschild homology. The same proof gives the following theorem

Theorem 6.3. (Annkin, C.) If i ∶ X ↪ Y is a closed embedding of smooth things,
then

(1) H−k(i∗i∗OX) ≅ ∧kN∨
X/Y

(2) i∗i∗OX is formal, is quasi-isomorphic to its homology computed in the first

item, if and only if the conormal bundle extends to X(1)

I have five more minutes. I want to give a preview of what comes next. This proof
I gave is not nice. Kontsevich and Kapranov had a better conceptual understanding.
The next ideas are that we can think of L∆∗O∆ as OLX , the structure sheaf of
some geometric object. The L∆∗O∆ is a commutative dga, this is the functions
on a generalized space, we should think of this as the fiber product of the diagonal
with itself over X × X, and using an analogy with topology, is the same as the
maps from S1 to X. This is closely related to what Gregory has been explaining.
The maps from S1 to X should have fibers groups. If you want to understand a
Lie group, locally they are isomorphic to their Lie algebras. The dg Lie algebra
is the shifted tangent bundle TX[−1]. Now what we are proving is, the standard
theorem from Lie theory says that the exponential gives a (formal) isomorphism
between the group and the algebra, and I think that I have this family of Lie groups
LX with the family of corresponding Lie algebras TotTX[−1], and the map is the
exponential map, and when you see this thing, well, this explains the 1

i!
. This will

be our next goal, to understand the next level of similarity. That’s tomorrow.

7. Junwu Tu: Homotopy L∞ spaces and its applications II

I’ll continue from last time. I defined what is an A∞ algebra. It’s a vector
space with the mk multiplications, k ≥ 1, still over a field k, and the definition
was complicated of course, I gave a construction that makes the definition easier
to understand, this is the bar construction. It works in general but I’ll assume
dim A < ∞. It looks like an algebraic trick. So I start with mk ∶ A⊗k → A, and
then I do a shift, I look at mk ∶ A[1]⊗k → A[1], the same map but up to sign. Then
I dualize, get m∨

k ∶ (A[1])∨ → (A[1]⊗k)∨ ≅ (A[1]∨)⊗k, and so we know that the
dual of a shifted graded vector space, A[1]∨ = A∨[−1]. Then we have this for every
k ≥ 1. Now I put these maps together and get,

∞
∏
k=1

m∨
k ∶ A∨[−1] →

∞
∏
k=0

(A∨[−1])⊗k

The right hand side is the completed tensor algebra T̂ (A∨[−1]), completed be-
cause this is the direct product not the direct sum. If this tensor was the sym-
metric algebra, then we thing Ŝ(V ∨) is formal functions OV,0, so this is formal
non-commutative functions, and the space that we’re looking at is A[1], formal
functions (at 0) of this graded vector space.

It’s a general property that if you have a map from V ∨ to Ŝ(V ∨) → Ŝ(V ∨). So
an m̃ gives rise to a derivation here such that [m,m] vanishes.
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You can also give this for morphisms, f ∶ A → B is an A∞ homomorphism, f
is by definition given by multilinear maps, I still denote by the shifted one fk ∶
A[1]⊗k → B[1], and I dualize to get f∨k ∶ (B(1))∨ → A[1]∨⊗k and put it together

f∨k ∶ (B[1])∨ → ONC
A[1] and this extends to f̃ ∶ ONC

B[1] → O
NC
A[1], the same picture as

in the commutative space. Now we are doing commutative geometry. The induced
map f̃ ∶ ONC

B[1] → O
NC
A[1], the condition of being an A∞ homomorphism is that

ONC
B[1]

f̃ //

m̃B

��

ONC
A[1]

m̃A

��
ONC
B[1]

f̃

// ONC
A[1]

commutes.
So this has lots of applications. Look at the Hochschild chains, C∗(A), then

C∗(A) is derivations of ONCA[1] with differential given by bracketing with the vec-

tor field [m̃A, ]. In the finite dimensional case, C∗(A)∨ is the space of non-
commutative one-forms, and the vector field acts by Lie derivative, and this is
C∗(A)∨ ≅ (ΩNC

A[1], Lm̃A
).

What I want to talk about is not A∞ algebra but L∞ algebra. I’ll take a minute
to define those.

I could have written down a complicated one, `K ∶ ∧kg → g of degree 2 − k and
this should satisfy a complicated equation, this is Q, a derivation of Ŝ(g∨[−1]) such
that [Q,Q] = 0, and the degree of Q is 1. You can define L∞ homomorphisms in
the same way.

So let me make a table
vector spaces L∞-algebras
vector bundle (locally free module
over the functions OM )

L∞-algebra bundle (again locally

free over OM ): Ŝ(g∨[−1]) and Q
a derivation, OM -linear

vector bundle with flat connection L∞ spaces
vector bundle with flat supercon-
nections (Ω∗

M -modules)
Costello’s L∞ spaces

Let me give the definition

Definition 7.1. An L∞-space is a triple (M,g,D) such that

(1) g is an L∞ algebra bundle of the form

g = TM [−1] ⊕ g2 ⊕⋯⊕ gd

(positively graded), and we want to look at the Chevalley–Eilenberg com-

plex C∗
g = (Ŝ(g∨[−1],Q), so that Ŝ(g∨[−1]) ≅ Ŝ(Ω1

M) ⊗ Ŝ(g≥2∨[−1]) with
this first factor in degree zero.

(2) D is a connection. This is not flat in each degree, but the right notion is not
a flat connection on the Lie algebra itself but on the Chevalley–Eilenberg
algebra. So D ∶ C∗g → Ω1

M ⊗ C∗
g , a flat (D2 = 0), and there are lots of

properties:
● the internal degree of D is zero, so it keeps the symmetric degree and

only has form degree 1
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● D is a derivation, I’m not assuming this is OM -linear, only R-linear,
and it acts on functions OM by de Rham d

● [D,Q] = 0
● Restricted to the 1-form part D ∶ Ω1

M → Ω1
M ⊗OM sends α to α⊗ 1.

The definition is not important. The two examples, very simple, will be what’s
important, you can interpret them in terms of L∞ algebras, and that’ll give you an
advantage.

Example 7.1. Consider the case g = TV [−1], the tangent bundle of V shifted. So
V is an open subset of Rn. If you work out the degree, `k, when you take exterior
powers, this is Symk TV → degree 2, which is zero, since the degree of `k is 2−k. So
we start with a trivial L∞-algebra bundle. What is D? If we write the Chevalley–
Eilenberg complex down, we get C∗g = Ŝ(Ω1

M), all in degree 0. The connection

part, Ŝ(Ω1) → Ω1 ⊗ Ŝ(Ω1). How do we see what should be this D? I have this D,
it’s a derivation of the algebra structure, and I know it’s R-linear, so this is uniquely
determined by what it does on the generators, but the generators as an R-algebra,
and this is generated by OV ⊕ Ω1. Now by the axioms that I gave, D∣OV

is ddR,
fixed by the definition. All I have to do is say what it has to do on the one-form
part, and there one part is fixed, we have Ω1 ↦ Ω1⊗O⊕Ω1⊗Ω1⊕Ω1⊗Sym2 Ω1⊕⋯

So I put for the first part τ and ∇ a connection for the first component and zero
elsewhere. So this is D = τ +∇.

We can verify everything in local coordinates. If I fix my chart, then TM =
⟨ ∂
∂x1

, . . . , ∂
∂xn ⟩ and then I have the dual frame ΩM = ⟨ξ1, . . . , ξn⟩, and then I’ll make

another copy ΩM = ⟨dx1, . . . , dxn⟩. So very concretely, ŜOV
(Ω1) = OV [[ξ1, . . . , ξn]],

and in this way, τ = dxi ∂∂ξi and ∇ acts by de Rham, ∑dxi ∂
∂xi

.

You can check that D2 = 0, this is the same as [D,D], there are no ξ in one or
x in the other so you get zero.

This should be thought of as a derived scheme. When you only have one tan-
gent, g = TM [−1], by this construction we can calculate kerD, and that’s just OV ,
and this is a very explicit computation. This is how you connect this space to a
commutative space.

Example 7.2. For V ⊂ Rn, I can define g = TV [−1] ⊕ Rm[−2]. Here the L∞
structure does not have to be trivial, `k is a map from SkTV → Rm, this is what
`k could be, and if you put anything in degree two, you’ll get 0. The good thing
is that L∞ identity uses two `k and so any bundle map satisfies the L∞ condition.
We don’t have to check the complicated axioms.

So again I choose coordinates x1, . . . , xn, and f1, . . . , fm for Rm, a local frame
for the trivial bundle. The Chevalley–Eilenberg looks like Ŝ(Ω1

V ) ⊗ ∧⟨f∨1 , . . . , f∨m⟩,
with the first factor in degree 0 and the generators on the second factor in degree
−1. This is C∗g, and I have this Q coming from the `k, and again I want to put
D = τ + ∇ as before. There is a fixed part τ , and then there is a connection on
Ω1
V given by the local coordinates, and you can verify, this is a computation that

you can do, so D2 = 0, there is nothing changed here, but there is a compatibility
[Q,D] = 0 which happens if and only if, now we have some restriction on the maps,
we need

∇ ∂
∂xi

`k(
∂

∂xi1
, . . . ,

∂

∂xik
) = `k+1(

∂

∂xi
,
∂

∂xi1
, . . . ,

∂

∂xik
)

which means that {`k} is determined by `0, which is just a section.
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So whenever you have an L∞ space with just the tangent bundle in degree 1, it’s
isomorphic to this first example, and if you have [unintelligible]then it’s isomorphic
to the second example.

(Ω∗
M ⊗C∗

g ,D +Q)
is isomorphic to the derived critical locus

0→ ∧top(Rm)∨
⌟`0Ð→ ⋯

⌟`0Ð→ (Rm)∨
⌟`0Ð→ OM

8. Grégory Ginot: Higher Hochschild homology and factorization
algebras II

Yesterday we have seen that if we have X = ∣X●∣ with X● a simplicial set, we can
define the higher Hochschild homology for X, which was

CHX●
(A) = (⊕

n≥0

A⊗Xn , b)

Example 8.1. We have a nice simplicial model for the torus from S1, Tn = S1
n×S1

n =
{0, . . . , n}×{0, . . . , n}, and you can think of this as being like a kind of matrix. Okay,
so it’s, obviously what I’ve been doing as taking what Gabriel calls the stupid model
for the torus, where we have been identifying the opposite sides of a square, and
what we have been doing is, ϕ ∶ In ×∆n → S1 × S1 = ∣Tn∣, so

ϕ((i, j); t = 0 ≤ t1 ≤ ⋯ ≤ tn ≤ 1) = (ti, tj)

where t0 = 0, my marked point.
[pictures]

Then the rule on CHT (A), so A⊗Tn , this is A⊗(n+1)2 , for every point I put an
element aij , on this grid on the torus square.

What is the simplicial structure? I get di ∶ Tn → Tn−1 when ti = ti+1. [pictures]
So what’s really going on in the end, here’s my torus [pictures], I multiply the

rows i and i+ 1 and multiply the columns i and i+ 1. In the middle I multiply four
guys together.

Example 8.2. For the two-sphere, take S1
● ∧ S1

● , so kill all the boundary, we have
S2
n = {0, . . . , n2} = {0} ∐ {1, . . . n}2.

What’s the presentation? We have n2 guys in the middle and then one point
along the boundary. The simplicial map multiplies adjacent rows and columns
together. You have nothing on the exterior in these lines. The only difference is
going to happen when i = 0 or i = n. If i = 0, then the picture looks like this, where
the first row and column is all multiplied into a0, and similarly for i = n.

Now these two things look the same because of the similar presentation but since
the differential is different they have different homologies. You can make a several
genus surface. Let me make a comment for higher spheres. You have a model of
Sd● which is S1

● ∧⋯∧S1
● so then Sdn will be {0}∐{1, . . . , n}d and instead of a square

you’ll have a higher cube and in the middle you will just be multiplying all the rows
and so on.

This is not the smallest model you can take for the sphere. This is a simplicial
set describing Sd as Id/∂Id. You have d many one-cells and so on.
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There is a smaller one, given by Sd = Dd/∂Dd. If you do that, then Sd,small,

which has Sd,small
n = {0} for 0 ≤ n ≤ d − 1, and Sd,small

d = {0,1}, and in fact for n ≥ d
it is {0,1, . . . , (n

d
)}.

That’s a much smaller model. It has some interest, it makes it much easier to
compute the first cohomology group of that thing. What is the chain complex in
this situation? We have CHSd,small

●

(A) is the following:

A← A← ⋯← A← A⊗A← A⊗d+2 ← ⋯

and so you get 0, the identity and back and forth. So I have A in degree zero and
then no cohomology in degree 1 and so on. So HHSd,small

●

(A) is A in degree 0, is 0

in degree ≤ d − 1, and then Ω1
A in degree d. That computation is not hard to do in

this setting.
So the remark is just that using this model it is easy to do a computation. That’s

what I wanted to say, and I think I wanted to go, let me say some properties of
Higher Hochschild.

Theorem 8.1. (G., Tradler, Zeinalian) CH( )( ) from either Top×CDGA or
sSet×CDGA to CDGA (switching between topological spaces and simplicial sets
using singular and geometric realization) satisfies

(1) it is homotopy invariant with respect to maps of spaces and commutative
differential graded algebras (meaning a quasi-isomorphism of algebras in-
duces a quasi-isomorphism of the result) (homotopy invariance)

(2) CHpt(A) ≅ A (as algebras) (dimension)
(3) CH∐Xi(A) ≅ ⊗CHXi(A) (as algebras) (symmetric monoidal)
(4) This should be Mayer–Vietoris, if X ⊂ Z is a subcomplex and you have

f ∶X → Y , then we can glue Y to Z by identifying, we have Z ∪X Y , which
is the pushout, and in that situation we have four algebras, in that situation,
this gives you a map of algebras CHX(A) → CHZ(A) and CHX(A) to
CHY (A), and we have maps CHY (A) → CHZ∪XY (A) ← CHZ(A), and in
particular you have a canonical map,

CHY (A) ⊗L
CHX(A) CHZ(A) → CHZ∪XY (A)

is a quasi-isomorphism. That’s the statement.
(5) (this is really cool) Any functor Top×CDGA satisfying the above is natu-

rally equivalent to the one I’ve given, this axiom determines the functor.
(6) There is a natural (weak) equivalence

MapssSet(X●; MapsCDGA(A,B)) ≅ MapsCDGA(CHX●
(A),B).

This could have been taken as a definition of the functor.

In the case I described above, this is not just a pushout but a homotopy pushout,
and what I want to say is that this result is true (and more interesting in some
sense) for any homotopy pushout. Once you have a homotopy pushout, you get
a cofibration, and then you get this canonical map, this is more general although
they are implied by each other.

That derived tensor product is in the category of commutative differential graded
algebras. This means that to compute that thing, you should resolve one of the
two sides as a module which is free (well, cofibrant) over CHX(A).
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For S2 =D2∪S1D2 and what we’re saying is that CHS2(A) ≅ CHD2(A)⊗CHS1(A)

CHD2(A), so this is A ⊗L
CHS1(A) A, so if D2

n is In × In and S1 is ∂D2. This is

not the usual model, let me note that this is defferent than the S1 that I was
describing. So the model has {0, . . . , n + 1, . . . ,2n + 2, . . . ,3n + 3, . . . ,4n + 3}, and
then the D2

n guy is semifree essentially by definition because we can embed that
boundary. But that’s not the most effective way. Instead I could take CHD2

●

(A),
this is CH∂D2(A)⊗A⊗n2

, and with a differential which stays on the left and a part
that interacts on the right ,and this is a semifree algebra over CH∂D2

n
(A). That’s

not easy to compute.
If A was smooth, say A = Sym(V ), then we have CHS1(A) ≅ SymA(Ω1

A[1]),
and this is really Sym(V ⊕ V [1]), and now the question is, I know CHS2(A) ≅
A⊗L

Sym(V ⊕V [1])A, and that’s Sym(V )⊗L
Sym(V ⊕V [1])Sym(V ⊕V [1]⊕V [2], ∂ ∶ V [2] →

V [1]) and that will look like Sym(V ⊕ V [2]) ⊗L
Sym(V ) Sym(V ) ≅ Sym(V ⊕ V [2]).

Finding a semifree resolution will always be easy and that will do the semifree
thing for you. Now that you know you have this result, you pick the convenient
model and you know how to make this computation much easier.

I want to mention two statements and stop.

Corollary 8.1. (“Fubini formula”) There is a canonical equivalence of commuta-
tive differential graded algebras between CHX(CHY (A)) ≅ CHX×Y (A).

Proof. Or CH(−×Y )(A) satsifies the axioms with A replaced by CHY (A). �

So for instance, C∗(C∗(A)) ≅ CHT 2(A).
The other comment I wanted to say is that any map from X to Y tells you, if

you have a group on X and you want the group to act on CHX , this tells you what
to do.

Let me state the HKR theorem.

Theorem 8.2. (HKR) If X is a formal space (e.g. a sphere or a suspension
or a Lie group or a Kähler manifold) then A = (Sym(V ), ∂), then CHX(A) ≅
(Sym(V ⊗H∗(X)), d) as a commutative differential graded algebra, with, if ∂(v) =
∑i≥0 va1 ● ⋯ ● vai , and then if σ ∈Hk(X), then

d(v ⊗ σ) = ∑
i≥0

(va1 ⊗ σ(1)) ● ⋯ ● (vai ⊗ σ(i))

where ∆(i)(σ) = ∑σ(1)⊗⋯⊗σ(i), where ∆ is the coalgebra product on H∗(X) dual
to cup product.

9. Sangwook Lee: Mirror symmetry of Calabi–Yau categories

Today I will cover

● the Fukaya category,
● the pairing ⟨⟩Fuk,
● the pairing ⟨⟩Kapustin–Li,
● ks
● OC ∶HH∗(Fuk(X)) → QH∗(X)
● η ∶HH∗(MF (W )) → Jac(W )
● results

For me (M,ω) is a symplectic manifold.
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Definition 9.1. The Fukaya category Fuk(M) A is an A∞-category (over a
(Novikov) field Λ) with objects Lagrangian submanifolds, and homFuk(L1, L2) =
⊕p∈L1∩L2

Λp.

Recall that an A∞ category consists of objects, morphism sets, and mk maps

homA(A1,A2) ⊗⋯⊗ homA(Ak,Ak+1) → homA(A1,Ak+1)

satisfying Tu’s A∞ relation. The m0 means that we assign an element mA
0 for each

object A.
We should define the structure maps in the Fukaya category. If we have L1 →

L2 → ⋯ → Lk+1, so we have p1, . . . , pk, intersection points of Li and Li+1, then
mk(p1, . . . , pk) means that we count holomorphic (k + 1)-gons with boundary on
Li and vertices on p1, . . . , pk and an output, so I evaluate on the output point,
weighted by the symplectic area. I chose an almost-complex structure compatible
with the symplectic form.

This will also be covered by Sasha tomorrow so I won’t be very precise about
this.

[some discussion about mA
0 ]

Definition 9.2. A Lagrangian L is weakly unobstructed if there is b ∈ homFuk(L,L)
such that mb

0 ∶= mL
0 +m1(b) + ⋯ +mk(b, . . . , b) = WLidL = WL[L], and we should

choose these things properly so that this kind of equation holds.

Definition 9.3. The pairing ⟨⟩Fuk, the strip in Sasha’s talk, is a pairing

homFuk(L,L′) ⊗ homFuk(L′, L)
m2ÐÐ→ homFuk(L,L)

trÐ→ Λ,

and this trace is ∫L under the identification (that I’ll always take) of homFuk(L,L) ≅
C∗(L).

So we read the coefficient of [ptL].
Why do we care about the Fukaya category? This is one part of homological

mirror symmetry.

Conjecture 9.1. (Kontsevich) Suppose M and M ′ are mirror Calabi–Yau mani-
folds. Then Dπ Fuk(M) ≅DbCoh(M ′) and vice versa, as triangulated categories.

Don’t worry about this notation, which we won’t use today.
Beyond Calabi–Yau manifolds, the statement changes:

Dπ Fuk(M) ≅H0MF (W )

the category of matrix factorizations, where W ∶ (C∗)n holÐ→ C.
People often show this by showing A∞ equivalences on generating categories of

each side. So I also need to talk about matrix factorizations.

Definition 9.4. Let W be central in an associative algebra R, then a matrix
factorization of W is the data p0 ∶ P 0 → P 1 and p1 ∶ P 1 → P 0, such that P i is a
free R-module and p0 ○ p1 =W idP 1 and p0 ○ p1 =W idP 0 .

An easy fact is that MF(W ) is a differential graded category, like chain com-
plexes.

Today I’ll talk about the case R = Λ[x1, . . . , xn], or a Laurent polynomial ring,
and W is a polynomial with isolated singularities.
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I think of Fuk as forming a sort of open TCFT maybe, this has holomorphic
data. We also want to treat MF as a sort of TCFT. This is not all the data we
need, but I will anyway talk about this kind of thing, I want to warn you that in a
strict sense we will not get a Calabi–Yau category structure. I suppose that I have
a matrix factorization, so I have P ●, and I’ll use the notation δP with δ2

P =W idP .
When we think of these as objects in the differential graded category, morphisms
are R-linear maps.

So if I have a map ϕ, this is a matrix and δP is the same.
So I’ll define a pairing ⟨, ⟩KL of morphisms

homMF (P ●,Q●) ⊗ homMF (Q●, P ●) m2=○ÐÐÐ→ homMF (P ●, P ●) trKLÐÐÐ→ Λ.

Now if P ● was two pieces of degree n then this homMF (P ●, P ●) is then a 2n×2n-size
square matrix. Then

trKL(ϕ) =
1

(2πi)nn!
∮
{∣∂xi

W ∣=ε∣i=1,...,n}

tr(ϕ ○ dδP ●)∧n

∂x1W⋯∂xnW

So if I have P ● = R⊕R with maps (x+y) and (x2+y) then δP ● = ( x + y
x2 + y ),

and dδP ● = ( dx + dy
2xdx + dy ) and we compute (dδP ●)∧2 in the usual way as

( ∗
∗ )dx ∧ dy.

I can’t make this strict on the chain level, but my trace should factor through
Hochschild homology. I have a map homFuk(L,L) → Λ and homMF (PL, PL) →
Λ, two different traces, and these, I request that they factor through Hochschild
homology as chain maps:

homFuk(L,L) → CH∗(Fuk) → Λ

and similarly for matrix factorizations. The map for matrix factorizations is the
“boundary-bulk map” computed explicitly by Polishchuk–Vaintrob and Dickerhoff–
Murfet.

Now I’d like to talk about closed string mirror symmetry which shows the iso-
morphism betwen QH∗(X) and Jac(W ). For X compact toric, So Fukaya–Oh–
Ohta–Ono gave a geometric map ⊕ksL (for Kodaira–Spencer), then Jac(WL) uses
a counting of Maslov–index two holomorphic disks on Lagrangians. Their way to
define the quantity is by considering these moduli spaces, this is free boundary, you
pushforward under an evaluation map and they showed that this is given by a [L]
so ksL(c) = a .

[pictures]
So the Hochschild chain complex of A∞-categories are the same as in the algebra

case. The Hochschild chain complex (CH∗(A), b) is

⊕
L0,...,Lk

hom(L0, L1) ⊗⋯hom(Lk − 1, Lk) ⊗ homLk,L0 .

We always think of these tuples of morphisms, and

b(x0, . . . , xk) = x0⊗⋯⊗m∗(xi+1, . . . , xj)⊗⋯⊗xk±m∗(x`+1, . . . xk, x0, . . . xi), xi+1, . . . , x`

and then b2 = 0 due to the A∞ equations.
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The endomorphism space goes very naturally into this complex. The embedding
map is actually a chain map.

The formula for the boundary-bulk map is given in a complicated way, but if we
see Hochschild as a kind of bar, then this is nothing but the inclusion. In much of
the literature, they call this map HH∗(Fuk(X)) → QH∗(X), and here if you have
a Hochschild homology element p0 ⊗⋯ ⊗ pk, then the definition is that this tuple
should go to the counting of [picture].

Okay, and so we have HH∗(MF (W )) → Jac(W ), and here if I have ϕ0⊗⋯⊗ϕk,
then the map takes this to s tr ○HKR ○ exp(−bDW ) applied to this element.

So bDf(ϕ0 ⊗⋯⊗ ϕk) = ϕ0 ⊗ δP 1 ⊗ ϕ1 ⊗⋯⊗ ϕk ±⋯ ± ϕ0 ⊗⋯⊗ ϕk ⊗ δP0

and HKR(ϕ0 ⊗⋯⊗ ϕk) = 1
k!
ϕ0dϕ1 ∧⋯ ∧ ϕk.

Finally we have a supertrace, the alternating trace.
I have a bunch of definitions and finally I can state our result.

Theorem 9.1. (Cho–L.–Shin) Let X be compact toric Fano. Then

homFuk(L,L) //

F

��

CH∗(Fuk)

F∗

��

// QH∗

ks

��
homMF (W )(PL, PL) // CH∗(MF ) // Jac

commutes at the homology level, where F is the Cho–Hong–Lau map.

This allows us to say that F is an equivalence. So the result is that F intertwines
the traces I have defined.
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