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1. March 18: Julie Bergner: Comparing models for (∞, n)-categories

Thanks to the organizers for the invitation to speak and to be here for a couple
of weeks of the program. The goal today is to look at some of the models for (∞, n)
categories and talk about some ways that they can be compared. This won’t be
comprehensive and there are lots of other ways to do this, but there’s only so much
I can do in an hour.

So let me just start, if people are not so familiar with the idea of what these
should be, with an intuitive sense, an (∞, n) category should have, it should by an
∞-category, so there should be objects, 1-morphisms between objects, 2-morphisms
between 1-morphisms, and so on, and the n part says that at some point things
should be weakly invertible. We want all k-morphisms to be weakly invertible for
k > n.

Okay, so this is always going to be a bit inductive in nature. Let’s start with the
most basic case when n = 0, so we have (∞,0)-categories when all morphisms are
invertible, so these are ∞-groupoids. I’ll approach this by considering these to be
topological spaces or Kan complexes.

The idea, in spaces for the moment (I’ll get more simplicial as the talk goes on)
is that the points are the objects, the paths are the 1-morphisms. We want every-
thing to be weakly invertible, you can always run a path in the opposite direction.
Then we can take homotopies between those paths, which gives 2-morphisms, and
homotopies between homotopies, all of which are weakly invertible, you can run
them all in the other direction.

I want to look at the homotopy theory of all the structures I’m looking at,
this is the homotopy theory of topological spaces, this is where all of that started,
but I want to treat these as having a model category structure. This is the model
structure on topological spaces where the weak equivalences are the weak homotopy
equivalences. Or we can take the equivalent structure on simplicial sets where the
fibrant objects are Kan complexes.

How do we keep going from here? A general principle, and this is just a general
principle with higher categories in general, is that an (∞, n)-category should be
a category enriched in (∞, n − 1)-categories. We have a kind of structure with
objects, and the morphisms between a pair of objects is an (∞, n−1)-category. We
could take that as the definition. We want to take categories enriched in (∞,0)-
categories, and these are either topological or simplicial categories. We can again
do homotopy theory here, we have a model structure in either case, whether we
take simplicial or topological categories. We could think of this as the homotopy
theory of (∞,1)-categories.
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There are reasons we might want a different approach. We want to think of things
in a weak sense, we don’t want things to be strict. You have a strict composition
in this case. We want to look at a model where this composition isn’t so strict,
so we might want a model that’s a bit different. So our starting point for the way
I’ll approach this, is we’ll start with a simplicial category, a category enriched in
simplicial sets, and we’ll take the nerve, which will give us a bisimplicial set.

So this is a functor X from ∆op to simplicial sets. But if it comes from the nerve
of a simplicial category, it’ll have some special properties. First, X0 is discrete, we
have a discrete set in degree 0 (because we have a set of objects). The second prop-
erty comes from the composition. The n-simplices are determined by compositions,
so if we take the Segal map

Xn →X1 ×X0 ⋯×X0 X1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

this is an isomorphism of simplicial sets. That’s very strong. We’re more interested
in these things being weak equivalences. So we can consider bisimplicial sets where
these maps are just weak equivalences.

This leads to

Definition 1.1. A Segal category is a bisimplicial set X such that X0 is discrete
and so that the Segal maps are weak equivalences for every n ≥ 2.

That gives one way to weaken the composition, but in homotopy theory asking
for something to be discrete is awkward. We could, I suppose, ask for it to be
homotopy discrete but we’ll do something different, leading to the complete Segal
spaces of Charles Rezk.

So X1 is the space of morphisms and X0 objects. This is enough to make sense
of homotopy equivalences, a subspace Xheq ⊂ X1, and we have a degeneracy map
s0 ∶ X0 → X1, and the image should be identity maps. This degeneracy factors
through this subspace, as it should if these are homotopy equivalences.

Definition 1.2. A (Reedy fibrant) bisimplicial set X is a complete Segal space if

Xn →X1 ×X0 ⋯×X0 X1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

is a weak equivalence for n ≥ 2 and

X0 →Xheq

is a weak equivalence.

The difference between X0 and X1 is the same as the difference between homo-
topy equivalences and not-equivalences.

I haven’t really talked about the homotopy theory of these at all. We’d like
model structures but also if this is going to be good we want the homotopy theories
to be equivalent.

Theorem 1.1. (1) (Pelissier, B.) There is a model structure (actually two but
I’m shoving this under the rug) I’ll call SeCat whose fibrant objects are Segal
categories (the underlying category is of bisimplicial sets with discrete X0).

(2) (Rezk) There is a model structure CSS whose fibrant objects are complete
Segal spaces (the underlying category is of bisimplicial sets)
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(3) (B.) There are Quillen equivalences between (SSets)−Cat, SeCat, and CSS.

How do we continue and generalize from (∞,1) to (∞, n)? We’d like to find, we
have this as a diagram, this is something indexed by ∆, and so maybe we’d like to
just replace ∆. Again, we could enrich in SeCat or CSS but then things will be too
strict, we’d like to generalize the indexing category instead.

One generalization goes to (∆)n, and this gives “multisimplicial” models, and
the other way is to use the categories θn, I’ll call them the θn-models, which I’ll
mainly focus on here. So I first need to tell you what θn is.

These categories were first defined by Joyal. I’ll follow Berger’s θ-construction.
Let C be a small category, and we’ll define from it a new category θC which will
have objects [m](c1, . . . , cm) where [m] is an object of ∆ and ci is an object of C.
We draw the object [m], and label the arrows of [m] by ci. For the morphisms, we
have maps from [m](c1, . . . , cm) to [p](d1, . . . , dp) which are given by maps from
[m] to [m] in ∆op along with some other maps ci → dj . So for example

●0
c1 //

��

●1

��

c2 // ●2

~~

c3 // ●3

��

c4 // ●4

~~●0
d1 // ●1

d2 // ●2
d3 // ●3

and we want maps c1 → d1, c3 → d2, and c3 → d3 in this example.
So we inductively define θ0 = ∗ and θn = θθn−1. Note that θ1 = ∆. Then θ2 has

objects like [3]([1], [2], [0]) where we think of this as having a sequence of 1, 2, or
0 two-morphisms in horizontal sequence

● ● ● ●⇓
⇓

⇓

We want to consider functors XΘop
n → SSets. Here are two constructions. There’s

the functor τθ from ∆ to θn which takes [m] to [m](∗, . . . ,∗), where ∗ is the
terminal object in θn−1

This induces a functor τ∗θ ∶ SSetsθ
op
n → SSets∆op

which we’ll think of as the
“underlying bisimplicial set of X.”

The second thing that we have in mind is that our (∞, n)-categories should be
enriched, maybe in a weak sense, in our (∞, n − 1)-categories. So given x, y in
X[0]0, we have a mapping object Mθ

X(x, y) ∶ θop
n−1 → SSets defined by

c↦ fib{X[1](c)→X[0] ×X[0]} over (x, y)

Definition 1.3. A θn-space is a (Reedy fibrant) functor X ∶ θop
n → SSets such that

the following hold.

(1)

X[m](c1, . . . , cm)→X[1](c1) ×X[0] ⋯×X[0] X[1](cm)
for all m ≥ 2 and ci in ob(θn−1).

(2) The bisimplicial set τ∗θX is a complete Segal space.

(3) Every Mθ
X(x, y) is a θn−1-space for every x and y in X[0]0

Theorem 1.2. (Rezk) There is a model structure whose fibrant objects are θn-
spaces.
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We want to know that θn-spaces are equivalent to categories enriched in θn−1-
spaces, and we’d like this on the level of model structures.

Theorem 1.3. (B–Rezk.) There is a chain of Quillen equivalences (we’ll mimic the
chain for (∞,1)-categories) between (θn−1−Sp)−Cat, SeCat(θn−1 Sp), CSS(θn−1 Sp),
and finally θn Sp.

Let me say some things about these entries. Knowing you have a model structure
on categories enriched in another model structure can be difficult in general, but
because Rezk’s structure is Cartesian and everything is cofibrant, it comes down to
checking a condition of Jacob Lurie. I won’t say as much about the intermediate
stages. So SeCat(θn−1 Sp) is functors Y ∶ ∆op → θn−1 Sp satisfying conditions
very similar to the Segal category conditions. We want Y0 to be discrete and
Yn → Y1 ×Y0 ⋯×Y0 Y1 should be a weak equivalence in that model structure now.

I want to say more about the complete Segal objects. In analogy with the Segal
category objeccts, I can think of these as functors W ∶ ∆op → θn−1 Sp, but I want
to think of this as a functor W ∶ ∆op × θop

n−1 → SSets. We have a functor, I’ll call it
τ∆ this time, which goes ∆ → ∆ × θn−1 which takes [m] to ([m],∗). This induces

τ∗∆ ∶ SSets∆op
×θopn−1 → SSets∆op

. In fact τ∗∆(W ) =W ( ,∗). Given x, y ∈W ([0],∗),
we have M∆

W (x, y) defined as the fiber of W ([1], ) → W ([0], )2 over (x, y).
Using this I want a definition that looks similar to our definition of θn-spaces.

Definition 1.4. A (Reedy fibrant) functor W ∶ ∆op × θop
n−1 → SSets is a complete

Segal object if

(1) (Top level Segal)

W ([m], c) ≅W ([1], c) ×W ([0],c) ⋯×W ([0],c) W ([1], c)

for m ≥ 2 and c ∈ ob(θn−1)
(2) (Top level completeness) τ∗∆(W ) =W ( ,∗) is a complete Segal space
(3) M∆

W (x, y) is a Segal object for every x, y in W ([0],∗)
(4) W ([0],∗)→W ([0], c) is a weak equivalence for every object c in ob(θn−1).

The third item may look a little weird at first because it drops completeness.
I’m being a little sloppy, the definition of a Segal object just drops “complete”
throughout the definition.

What’s the point of the fourth condition? We want just a space of objects,
not a more complicated set of objects. We want enriched categories not internal
categories. The objects shouldn’t have extra structure.

You may ask why this mapping thing shouldn’t be a complete Segal object?
In fact, not just evaluating at a terminal object, evaluating at any object gives a
complete Segal space, and that’s a consequence of the rest of this. So W ( , c) is
complete.

A last comment, I mentioned the multisimplicial version earlier. We can say
something a bit more general about the last Quillen equivalence. We’re taking
∆ × θn−1 → θn by ([m], c) ↦ [m](c, . . . , c), and this induces θn Sp → CSS(θn−1 Sp).
You can keep doing this and get (∆)n → ∆n−2timesθ2 → ⋯ → ∆ × θn−1 → θn and
this gives a way to compare the multisimplicial and θ models.
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2. Markus Spitzweck: Hermitian multiplicative infinite loop space
machines

Most of this work is joint with Heine and Lopez–Avila, my PhD students. If
time permits I’ll mention joint work with Niklaus.

The goal is to generate E∞ ring spectra. We want to mimic what is done for
K-theory, so I’ll recall a little bit about K-theory. So R is a ring, I denote by P(R)
the category of finitely generated projective R-modules. It’s well-known how to
get K-theory. So π0 of this gives commutative monoids with respect to the direct
sum operation. This is clearly an associative and commutative operation on the
set of isomorphism classes, and the group completion of this is the K0 group of
R, the group completion of π0P(R). Because we’re interested in ring structures,
I should know that R is commutative. We then also have the tensor product over
R of projective finitely generated R modules. This endows P(R) with a second
symmetric monoidal structure and we get a commutative ring structure on K0(R).

What about higher K groups? Well P(R) together with ⊕ and the 0 module
is equivalent to the so-called permutative category. Then I take the nerve of the
groupoid of P(R), and that’s an E∞ space. You can let the Barratt–Eccles operad
act on it. How do I take the higher K-groups? I take the group completion, this is
a group-like space. This is the K-theory space of R. This is a grouplike E∞ space
so it corresponds to a connective spectrum K(R). Then the higher K-groups are
the homotopy groups of this spectrum.

If R is again commutative, then P(R) can be strictified to a bipermutative cate-
gory. There is machinery by May–Ellmendorf–Mandell to get an E∞ ring spectrum
with underlying spectrum [unintelligible]. Then K(R) is an E∞-spectrum, then
the goal is to produce something like this in a Hermitian context.

If C is an ∞ category with finite products, then I denote by MonE∞(C) the ∞-
category of commutative monoids in C, and you can take the functor category from
pointed finite sets to C with the properties, the full subcategory so that F (⟨n⟩ =
∗ ⊔ {1, . . . , n}) ≅ F (⟨1⟩)n, these maps should be equivalences.

Now notation Cat∞ is the ∞-category of small ∞-categories. The category of
Sym Mon Cat∞ is the E∞-monoids in Cat∞.

You can also look at GrpE∞(C) in MonE∞(C), there are several ways to say this,
and if you specialize to spaces, then MonE∞(Spc) ≅ E∞-spaces and GrpE∞(Spc) is
the subcategory of grouplike E∞ spaces.

So let me talk aobut direct sum K-theory. I have

K ∶ Sym Mon Cat∞ ( )
∼

ÐÐÐ→MonE∞(Spc)→ GrpE∞(Spc)→ Sp

Work of Gepner–Groth–Nikolaus says that Sym Mon Cat∞ itself has a closed sym-
metric monoidal structure and K is lax symmetric monoidal. This has the advan-
tage that it preserves all kinds of algebra objects, in particular E∞-algebras.

Then RigE∞(Cat∞) is E∞ objects in Sym Mon Cat∞, which is AlgE∞(Sym Mon Cat∞).
Here this is a categorification of rigs, which have no additive inverses but are oth-
erwise rings.

How do we produce these?
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Theorem 2.1. (Gepner–Groth–Nikolaus) Let C be a symmetric monoidal ∞-category
with finite coproducts and so that ⊗ ∶ C × C → C preserves coproducts in each vari-
able. Then one can turn the coproduct into a symmetric monoidal structure, and
so C ∈ RigE∞(Cat∞).

In a little while I’ll discuss the proof because we want to extend to the Hermitian
case.

As an example, the category P(R) is in RigE∞(Cat) (since it’s an ordinary
category). For R in E∞(Sp) we have finitely projective R-modules P(R), and this
is in RigE∞(Cat∞). It follows that you get a K-theory E∞ ring spectrum. You
have to be careful. This category P(R) only sees the connective part of R. If R is
connective then K(P(R)) is the usual K-theory of R considered by many people.
Otherwise you get [unintelligible].

Now we come to Hermitian K-theory. A small introduction. I consider a com-
mutative ring for simplicity. Then P(R) has a duality M →M∨. Then a Hermitian

object is M
ϕÐ→ M∨, an isomorphism, and you have M → M∨∨, and then you can

take the dual M →M∨∨ →M∨ and this should also be ϕ. This information is the
same as a symmetric nondegenerate bilinear form on M . Then you have an orthog-
onal sum M ⊕N ↝ P(R)h, taking the direct sum of the underlying objects. Then
we have a symmetric monoidal structure and can group complete an E∞ space.

But you can’t apply the theorem, this is neither the coproduct or the product.
But anyhow we can take P(R)∼h, the group completion, which again correpsonds to
a connective spectrum, Kh(R) ∈ Sp. This goes back to Karoubi (this is in the case
when 2 is invertible). There is recent work saying that we do not actually need 2
to be invertible.

Because R is commutative you also have the tensor product of objects. We want
to mimic the approach of Gepner–Groth–Nikolaus. You can’t apply their theorem
directly because it’s not the coproduct.

Let me recall the following theorem, in this version due to Toën (but there are
also higher versions due to Barwick–Schommer-Pries)

Theorem 2.2. The A∞ space of autoequivalences of Cat∞ is Z/2 and the nontrivial
element, as one expects, acts as C ↦ Cop.

This is not possible if Cat∞ were being considered with 2-morphisms, but this
works here.

Now Cat∞ is in PrL[C2], the presentable ∞-categories with a C2-action, and
you can take the so-called homotopy fixed points, this can be seen as a functor
CathC2

∞ , it’s the ∞-category of small ∞-category with duality.
This isn’t the nicest definition. A C2 space should have the fixed point informa-

tion as datum.
We have one small proposition, which says that duality on C corresponds to C2-

homotopy fixed points of Fun(C × C,Spc), and you want the underlying functor
to be a perfect pairing. That’s an observation. We have some other observations.
Inside Cat∞, the subcategory of Spc, the C2 action is trivial.

Further, Sym Mon Cat∞ and RigE∞(Cat∞), these all inherit C2 actions. The C2

homotopy fixed points preserve the monoidal structures. Then E∞(Sym Mon CathC2
∞ )

is equivalent to RigE∞(Cat∞)hC2 , you have several such equations.
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Now we can define the direct sum version of Hermitian K-theory, this is the
following functor, we can start with an additional C2-action,

Kh ∶ Sym Mon CathC2
∞

( )
∼

ÐÐÐ→MonE∞(Spc)[C2]
( )

hC2

ÐÐÐÐÐ→MonE∞(Spc)→ GrpE∞(Spc)→ Sp

Proposition 2.1. Kh is lax symmetric monoidal.

So we want to look at the subcategory of ∞-categories with coproducts (non-full,

with coproduct preserving functors), this Cat∑∞ is preadditive, with a null object,
products and coproducts, and now we consider the following functor

Sym Mon Cat∞ ≅ MonE∞(Cat∞)→Mon(CatΣ
∞) ≅ CatΣ

∞

and all these functors are symmetric monoidal. There is a right adjoint to this

composition, one can equip Cat∑∞ with a monoidal structure, I should have said.
[missed a little]. Then applying the right adjoint we get the required structure.

Now we want to include everything with dualities. If you take the opposite of
an ∞-category with coproducts it has products but not coproducts. So we consider
Catpreadd

∞ , which sits inside CatΣ
∞ → Sym Mon Cat∞, this is lax symmetric monoidal,

with C2-actions. This then gives a natural functor

(Catpreadd
∞ )hC2 → Sym Mon CathC2

Now we come to the second question, how do we get the duality? That’s not a
trivial question, and there I should state a theorem

Theorem 2.3. (H.–L.-A.–S.) Look at the rigid symmetric monoidal categories, the
homotopy fixed points, then the forgetful functor, this has a natural section. A rigid
symmetric monoidal category can be equipped with a natural duality respecting the
symmetric monoidal structure, this is the formual (X ⊗ Y )∨ = Y ∨ ⊗X∨

Now we are in the position to put things together.
We will get by combining this theorem with previous statements the following. If

we have a symmetric monoidal rigid category which is preadditive in the sense that
the sum distributes over the symmetric monoidal structure, then we get an object
in RigE∞(Cat∞)hC2 . The monoidal structure is the second one and the preadditive
is the first one. Then we can apply Kh(C) and get an E∞ ring spectrum.

For example, we can put in R an E∞-spectrum, then we have P(R) which has
a rigid preadditive structure, so we get, Kh(R) is an E∞ ring spectrum.

In the end I would like to comment a little bit on ongoing work.
There are different dualities, you can twist this by tensoring with [unintelligi-

ble]objects. There is a functor Pic(C) → CathC2
∞ , lax symmetric monoidal, and

the duality is given by taking a line bundle L, X ↦ X∨ ⊗ L. Because this is lax
symmetric monoidal, this is a module over the original E∞ ring spectrum.

You can equip everything with additional group actions, so for example start
with Pic(C)hC2 , and maybe you get Pic(C)[C2], so 1[1]⊗2, you get symplectic
Hermitian K-theory. That’s one thing. You also have another theorem which
states that for an arbitrary line bundle L, take a twisting c on L⊗2. alread the
duality will be the same as 1, id, this is a periodicity.

I wanted to draw a diagram but I’ll just mention. In the case of preadditive
Cat∞ with duality, there is a [unintelligible]spectrum with fixed points this [unin-
telligible]and underlying [unintelligible]the K-theory of [unintelligible]. This is a
version of real K-theory in this context, ongoing with Thomas Nikolaus. It’s even
possible to equip this with an E∞ structure.
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3. March 19: Ben Ward: Feynman categories

It’s a pleasure to be here in Bonn for the first time. This is joint work with
Ralph Kaufmann, and the goal is to talk about operads, or work with them, and
their generalizations, using the language of category theory. I think it’s important
for me to say that this is one approach to this problem, so what are the advantages
of this approach? I can summarize the advantages from my perspective: “it’s just
category theory.” The basic tools are familiar to many mathematicians. Let me be
a bit more specific.

(1) We recover familiar constructions and extend them using basic category
theory.

(2) We get some new constructions that might not arise from other formalisms.
(3) Pedagogical advantage—if someone asks what an operad is, they don’t

know, then you don’t want to tell them that an operad is an algebra over
a certain colored operad.

Let me give encoding structure. I’ll define a category V whose objects are N and
with only automorphisms, Aut(n) = Sn. Then I’ll define another category F, a
symmetric monoidal category. The objects of F are lists from V, tensor generated
by obV. The morphisms are ⊗-generated by graphs formed out of rooted trees
assembled from the source.

So for example [pictures]. Morphisms compose by grafting trees.

Definition 3.1. An operad in a symmetric monoidal category C is a symmetric
monoidal functor F→ C.

That is you get for each n an object O(n) with a strict Sn action and then
operations O(T )→ O(n).

This is an example of a Feynman category. Now I’ll give a definition.

Definition 3.2. A Feynman category is a 3-tuple (V, i,F), where V is a groupoid,
i is a functor from V to F, and F is a symmetric monoidal category. This data
should satisfy the following requirements:

(1) The functor i⊗ ∶ V⊗ → Iso(F) is an equivalence of symmetric monoidal
categories

(2) Iso(F ↓ V)⊗ i⊗Ð→ Iso(F ↓ F) is an equivalence of symmetric monoidal cate-
gories.

To specify an F, I need a set of basic objects, which are the objects of V, call
them vi or “vertices.” Then I need objects of F, which are given up to isomorphism
by lists of objects of V. For my purposes today I’ll say it’s a list of vertices. I need
to specify morphisms of F. A basic morphism looks like v1 ⊗ vn → v0, this is like
a graph assembled from the list of vertices. There’s a close relationship to colored
operads, where vi represent the colors.

Definition 3.3. The category F − opsC (here C will be a symmetric monoidal
category with whatever properties I want) is monoidal functors from F to C. I’ll
call these “F-ops.” I can also let V- mod C by functors from V to C, or “V-mods.”

I’ve got some examples here [pictures] for an F such that F − opsC is the cate-
gory of operads, non-Σ operads, (non-Σ) cyclic operads, modular operads, genus
zero dioperads, props or properads depending on connectedness, 1

2
-props, wheeled
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prop(erads), and now you get back to point one, you define this category and take
functors if you don’t know what an operad is. We all maybe know operads but this
works for more esoteric structures.

Let me discuss two other very simple examples. For any groupoid V , I can just
take V⊗ as F. I can also, if V has just one object, then the data of an operad in sets
is the same thing (maybe up to equivalence) as triples with that V. Then algebras
over these operads are the same thing as F − opsC .

“The things we want to do are just category theory.” Let me say some of what
I mean.

(1) You want free or enveloping constructions. It turns out that all of these
guys can be obtained by Kan extensions.

(2) Another thing you’d like to do is to have model structures on the categories
of F−ops, and it turns out that a key argument here is that the requirements
for transfer are symmetric monoidal.

(3) We want natural operations, something along the lines of graph complexes.
Because these operads are functors I can take limits and colimits.

(4) Bar constructions or Feynman transforms, essentially equivalent to master
equations.

(5) W -construction (both of these are about getting cofibrant replacements)
(6) Because I have these Kan extensions, I get duality, dual extensions. That’s

a lot of structure, and I can exploit this by understanding intertwining or
preservation of Koszulity for these guys.

These first three things make no requirements on the initial Feynman category.
Starting with the fourth I need a notion of “edges.”

So first of all, free constructions or envelopes. The setting is we have a morphism
between two Feynman categories, exactly what you think it should be. Remember
that C is nice, it’s got colimits which commute with tensor in each variable, say

Cartesian closed. So given F1
πÐ→ F2 we get an adjunction F1 − opsC and F2 − opsC

and we have a left adjoint from the former to the latter, L. I can take a left
Kan extension, it’s a colimit over maps from π ↓ v, O ○ s, this is a pointwise Kan
extension. Some examples, for example if I go between V− mod and S− ops, this
is the free operad on an S-module.

Let me give an example with a nice property. Take F1 to be dioperads, directed
genus zero, and take the obvious morphism to F2, which is cyclic operads, I just
forget directions to get π. This gives us an adjunction, with left adjoint from
dioperads to cyclic operads. In this case, the category π ↓ v is a disjoint union
of filtered categories. I’m taking a colimit out of a category like this, then in an
Abelian category L is levelwise exact. That’s something, basically using a classical
fact from category theory, we get a little bit more.

While I’m erasing the board let me say a little bit about why 1
2
-props. This is

due to Markl and Voronov. They make a statement like this about 1
2
-props and

props.
Let me talk about model structures now.

Theorem 3.1. For nice C (differential graded vector spaces in characteristic zero,
simplicial sets, topological spaces), F − opsC is a model category where R creates
fibrations and weak equivalences.
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I don’t want to prove this but let me tell you what this involves (standard
techniques about transfer across adjunctions). These are between V − mod C and
F − opsC and between V − mod C and V − sequences, where all the conditions for
transfer can be pushed down to C. For example, I need a path object functor for
fibrant objects in F−opsC , but I will have this if I have a symmetric monoidal path
object in C. Berger–Moerdijk posit a cocommutative interval object. From this
perspective it makes sense, since Hom(I, ) is your path object.

You can use these to get Quillen adjunctions, and bar constructions or Feynman
transforms are cofibrant objects.

Now let me talk about natural operations. Maybe I’ll just do the general story.
The general story, starting with O in F− opsC , I get two natural objects associated
to O, namely the limit of O and the colimit of O. These will be algebras over some
operad, and the question is whether you can construct that operad. So colim(O) is
an algebra, I can take the limit over length n of the colimit over V of the morphism
sets Hom(i( )⊗n, i( )). This thing could be huge or it could be trivial, and
we’ll see it serves as a receptacle for operations that we know, expect, and want to
generalize, like brace operations for the differential in the bar construction which
in this guise play the role of the Lie bracket. It’s interesting to compute this after
twisting. If you do this for operads you get Lie, for non-symmetric operads a
solution for the Deligne conjecture, for cyclic operads you get a model for gravity.

This is what you can do for an arbitrary Feynman category. When the morphisms
have edges that can be contracted in every possible way, you can formulate it in an
even and odd way, you can make a W construction, and the intertwining is still in
progress. I’m out of time so let me stop there.

4. March 20: Alexander Voronov: Categorification of
Dijkgraaf–Witten theory

This is joint with Amit Sharma. I tood this picture of nameplates saying K. J.
Korteweg and A. E. M. de Vries. It was actually an office of lawyers. Somehow
those two guys come in this order.

Martin Markl told me that in every talk there should be something entertaining,
and this is the thing in my talk, even though it’s not related.

So I’ll be talking about a categorification of Dijkgraaf–Witten theory. That
might not be the right way to call it. It’s some kind of categorification, but what
Ralph Kaufmann did with [unintelligible]in 2009 is more like a real categorification.
So anyway, this is a TQFT coming from a gauge theory with finite gauge group
G. These days, even though it was created in 1990 in a paper of Dijkgraaf and
Witten, there’s renewed interest these days with extended topological quantum
field theories, even this kind of toy model. In relation to ambidexterity as well
there’s renewed interest.

In a sense this reminds me of a phrase I saw in the streets of Moscow in the Soviet
Union: “Marxist doctrine is omnipotent because it’s true.” This was a quote of
Lenin. So to me it feels like Dijkgraaf–Witten theory is omnipotent because it’s
true.

So you start with a finite group G and a free cohomology class α ∈H3(BG,U(1)),
where U(1) = R/Z (or I could take Q/Z). This is isomorphic to H4(BG,Z), but
you better work with a 3-cocycle. You create a 3-dimensional TQFT out of this
by assigning to a two dimensional manifold Y the vector space φ(Y ). To a 3
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dimensional (oriented) cobordism, you assign φ(X) from φ(∂−(X)) to φ(∂+(X)),
a linear map. The way they constructed it is mysterious, even though the formulas
are well-understood. The basic ingredients, though, were not quite well-understood.

The dimension of φ(Y ) is less than or equal to ∣Hom(π1(Y ),G)/G∣, this is finite,
quotiented by conjugation of G, this is isomorphism classes of principal G-bundles
over Y . It’s not quite equal. You might start wondering what the space is.

They do the typical physical trick. They assume that φ(Y ) is constructed and
then compute the dimension of φ(Y ) by taking the trace of the operator ϕ(Y ×S1).
You get an operator from C to C. [picture]

You want a map for each cobordism so you might want something more than
the dimension.

This they provide a formula for this, if X is a cobordism, then φ(X)(γ) is

1

∣G∣ ∑
γ′′∶γ′′∣∂−(X)=γ

W (γ′′)γ′′∣∂+(X)

where we consider γ′′ as something like a principalG bundle overX, or Hom(π1(X),G).
This assumes that the space is related to the characteristic variety of X or of ∂±X,
but not quite.

HereW (γ′′) is defined as ∫X(γ′′)∗(α), and now we think of γ′′ as a mapX → BG,
if you have a principal G-bundle you have such a map defined up to homotopy. You
pull back and then take the integral.

There are some limitations from this. It’s not clear how to identify φ(Y ) as a
vector space. Also Hom(π1(Y ),G)/G is identified with principal G-bundles over
Y , and this is in turn identified with [Y,BG]. We want to treat this as an orbifold
rather than just a set. The orbifold is finite, a finite set quotiented by a group on
the left, but then the principal G-bundles is infinite dimensional.

In 1993, Freed–Quinn answered all of these questions and constructed this field
theory, the space φ(Y ) and φ(X) as morphisms of vector spaces. They also gener-
alized it to n+ 1-dimensional field theories, and they used the following interesting
pairings between cocycles valued in U(1) on the n-dimensional manifold Y and the
n+ 1-dimensional cycles of Y with coefficients in Z to U(1). The same is true in X
the cobordism. This can’t be done naively because there are no n + 1-dimensional
classes.

Let me talk about how Lurie treated this in 2012. He worked with Map(Y,BG)
and considered α ∈Hn+1(BG,U(1)), resolved the problem of integration. He said,
let’s define, take the evaluation map Y n ×Map(Y,BG)→ BG. You want an n + 1-
dimensional field theory. He took the projection on the second factor and then direct
image of the inverse image of α, π∗ ev∗ α (integrating out the fiber Y ) and you get
an element in H1(Map(Y,BG), U(1)), and this is a flat Hermitian line bundle over
the mapping space Map(Y,BG), and for φ(Y ) you take H0 with coefficients in this
line bundle (a linear system on this space) H0(Map(Y,BG),LY ).

For (n+1)-dimensional objects, Lurie used ambidexterity to identifyH0(Map(Y ;BG),LY )
withH0(Map(Y,BG),LY ) and then given a cobordism you construct φ(X) ∶ φ(∂−(X))→
φ(∂+(X)); of course you have the span Map(∂−X,BG)←Map(X,BG)→Map(∂+X,BG),
these are restrictions of the map from the cobordism to its boundaries.

You define ϕ(X) as the pullback in cohomology of p− and then the pushfor-
ward in homology along p+. This map is in some sense p∗−A(p+)∗ where A is the
ambitexterity map.
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There’s a subtlety, LY is determined by π∗ ev∗ α only up to isomorphism, but
you need a natural vector space, this depends on the choice of the line bundle. You
want to have a genuine line bundle out of this construction but the construction
doesn’t give it to you.

In Lurie’s paper, he remarks that in order to cope with this problem, he uses a
cocycle instead of a cohomology class for α. Then you obtain an honest to goodness
cocycle, this isn’t the same as a line bundle (and again only determines it up to
isomorphism), and a line bundle just isn’t the same as a cocycle.

So we felt like there was a need for a more categorical construction and this is
what we’ve done. Also another reason why we wanted to categorify this construction
is to supply the extension to a field theory out of [unintelligible]data. The goal is to
construct an extended field theory that starts with a finite group and some cocycle
data on it. Before that we wanted to just do the Dijkgraaf–Witten theory the right
way. We wanted honest to goodness line bundles and vector spaces corresponding
to n-dimensional things, et cetera.

This is what I’ll describe in the remaining half of my talk.
So here’s the idea of our construction, which we posted a year ago on the arXiv.

The initial data is α in Hn(BG,L), with coefficients in the Picard groupoid of
Hermitian lines (I’ll tell you in a minute what this is) rather than Hn+1(BG,U(1)).

What is this L? It’s a groupoid, a Picard groupoid is a categorification of
an Abelian group. It’s a symmetric monoidal category in which every object is
invertible up to isomorphism with respect to the tensor product, which I will denote
+. The Picard groupoid of Hermitian lines has as objects Hermitian lines, one
dimensional complex vector spaces with a Hermitian form. These are the objects.

Morphisms between two lines are linear isometries Iso(L1, L2), a U(1) worth of
morphisms for each pair, but a U(1)-torsor because you don’t have a distinguished
isomorphism between them.

If A is a Picard groupoid, you can associate to it π0(A), the Abelian group of
connected components, and π1(A), the group of automorphisms of the 0 object,
which turns out to be an Abelian group because of the Eckmann–Hilton principle.

Further examples of Picard groupoids, you can associate two Picard groupoids
to any Abelian group, the discrete one A[0] and the one with one point A[1]. For
A[0] the objects are elements of A and the morphisms are the identity of a if a = b
and otherwise nothing. Another has a single object and the morphisms between
that object and itself is A.

A second example is L, the Picard groupoid of Hermitian lines.
Now I want to use cohomology with coefficients in the Picard groupoid. If you

have a simplicial set X or topological space, and Picard groupoid A, then you
associate Picard groupoids Hn(X,A). This theory was actually created by the
Spanish school, Carrasco and Martinez [unintelligible]in 2000. An n-cocycle is a

pair (c,α) where dc
αÐ→ 0, where the thing is, if you define a complex C∗(X⋅,A),

it’s a 2-complex 0 → AX0 → AX1 → AX2 → ⋯ and there are maps d, connecting
morphisms, but the morphism don’t square to zero, they only square to zero in a
2-categorical sense, there is a 2-morphism from d2 to 0.

I should say that π0H
n(X;A) is isomorphic to Hn+1(X,π1(A)). For example

if A is L then π0H
n(X,L) ≅ Hn+1(X,U(1)) so this is some kind of delooping at

the level of coefficients. This allows us to make the cohomology group smaller, the
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pairing of Zn+1 and Cn+1 becomes a pairing of [unintelligible]with the fundamental
class of Y .

We defined a cap product Hn(X,A)⊗Hk(X,Z[0])→Hk−n(X;A).
We define a Dijkgraaf–Witten theory. For f ∶ Y → BG, for a continuous map Y →

BG we can pull back α along f , and f∗(α), you cap it to Hn(Y ;Z[0]) and the result
will be in H0(Y,L), and inside Hn(Y ;Z[0]) is a subgroupoid CY of representatives
of the fundamental class [Y ]. You then have a functor CY → H0(Y,L), you take
the limit of this functor, you get a line bundle that you associate, just a second,
you get a line bundle, just a line so far, but it turns out to make up a line bundle
over the mapping space from Y to BG. Since we did it for each map F , we get a
functor LY ∶ π1(Map(Y,BG)) → L and then φ(Y ) = H0(Map(Y,BG),LY ). This
gives a vector space which is φ(Y ) and you also get φ(X), where X is a cobordism,
the idea is similar to Lurie’s suggestion.

The theorem is that this indeed gives a topological quantum field theory as
suggested.

5. March 21: Boris Tsygan: A microlocal category associated to a
symplectic manifold

So thank you very much for the invitation, I’m delighted to come here and give a
talk. So I will describe some construction, how to construct some sort of a category.
I will specify it, for a symplectic manifold, maybe with a topological condition.
Let me start by saying if you have (X,ω) then the category will be some sort of
“improved” modules over the deformation quantization algebra C∞(X)[[h̵]]. Let
me tsart by trying to explain this. What is the deformation quantization? Let me
be very brief here and say it’s definitely a sheaf of algebras over C[[h̵]] on X and it
will have the following property, locally in some Darboux coordinates (and maybe
one should take a little care with which coordinates),

f ∗W g = ∑
n≥0

(ih̵)n
n!

(∂ξ∂y − ∂η∂x)nf(x, ξ)g(y, η)∣x=y,ξ=η

Very important is that this is associative and f ∗ g − g ∗ f = ih̵{f, g}+ h̵2⋯ (and up
to h̵ it’s the ordinary commutative product). It’s important that ∗W is Sp(2n)-
equivariant. If you change coordinates linearly, it’s important that you get the same
algebra.

Naively one’s first guess (I heard it from Boris [unintelligible]thirty plus years
ago) is that one should consider the category of sheaves of modules over this sheaf
of algebras, and that has intriguing formal similarities with the Fukaya category.
One sees quickly (as Boris also did) that this is way too naive. So maybe there’s
an improvement to make this, not the Fukaya category, but let’s say closer to the
Fukaya category.

So we want to improve this along the lines of allowing not only f(x, ξ, h̵) but

also e
f(x,ξ)
ih̵ .

The first step is, it already has this flavor as Fedosov realized, but sort of artfully
avoided. Instead of my sheaf of algebras (let me call it A or AX), let me replace

it by Â = C∞(U)[[x̂, ξ̂, h̵]] for U open in X, and consider smooth expressions with
values in these formal functions. Equip it with the Weyl product with respect ot x̂

and ξ̂ and h̵. In x and ξ it’s just the ordinary product. This is a much much bigger
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thing, but there is a flat connection on it, let me write Â● = Ω● ⊗C∞ Â. So locally

Â●(U) = C∞(x, ξ)[[x̂, ξ̂, h̵]]⟨dx, dξ⟩
and it comes with this flat connection

∇A = ( ∂

∂x
− ∂

∂x̂
)dx + ( ∂

∂ξ
− ∂

∂ξ̂
)dξ

and the beauty of this flat connection is it cuts it down to size, the zero homology

is, maybe I should say, well f(x, ξ) embeds into this by f(x + x̂, ξ + ξ̂), and it’s

obviously flat, this is a quasiisomorphism A↪ Â●,∇A.
Fedosov showed that such a thing always exists, and so the second naive guess

is sheaves of differential graded modules (V●,∇V ) over (Â●,∇A). But still, include

e
f
ih̵ ? We want to include these. What I’h like to do is replace C[x̂, ξ̂, h̵] by something

bigger. Let me forget x and ξ for a second and just look at the formal variables at
an individual point and try to realize what we want to achieve.

So C[x̂, ξ̂, h̵], we want to expand this to A which includes e
f
ih̵ Let me notice that

there is a grading here where ∣x̂∣ = ∣ξ̂∣ = 1 and ∣h̵∣ = 2, this makes sense since [ξ̂j , x̂k] =
δjkih̵. Let me introduce denominators. Fedosov artfully avoids all denominators,
but I have to introduce them. So I consider

C{x̂, ξ̂, h̵} = { ∑
k∈Z
m,n≥0

m+n+2k→∞

amnkx̂
mξ̂nh̵k}

So monomials x̂mξ̂nˆ̵hk, wehre m,n ≥ 0 and k ∈ Z. The degree of this monomial is
m + n + 2k. I’ll consider countable sums ∑p aXpXp where the degree goes to ∞.

By this innocent completion, it’s still a ring, C{x̂, ξ̂, h̵} still has an action of

Sp(2n), and it contains e
f(x̂,ξ̂)
ih̵ if

f = ∑
n≥3

fn(x̂, x̂i).

So what remains? Costant, linear, and quadratic. So

K =
∞

∑
n=0
cn→∞

ane
cn
ih̵

this lets you add constant terms, you just add these by forcing. What about linear
and quadratic? Let’s start with quadratic. We should not take this one hundred
percent literally. What I would do is, I’d take K[S̃p(2n)] as a discrete group. We
take the semidirect product

A ∶= K[S̃p(2n)]⋉̂C{x̂, ξ̂, h̵}
and we need some mild condition with respect to the product, so just sort of
completed a little with respect to the same kind of thing.

The motivation is if we consider

sp(2n) ≅ {q(x̂, ξ̂)/ih̵∣q quadratic}
and this is the infinitesimal action. So these things in S̃p(2n) correspond to the
quadratic terms. So this is my algebra A.

Now A●X is A-valued forms on X. Locally there will be expressions

∑a⋯(x, ξ)e
ϕ⋯(x,ξ)
ih̵ [g⋯(x, ξ)]x̂mξ̂nh̵kdxIdξJ
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where I’ll say maybe ⋯ =mnk and several ϕ may correspond to one monomial.
Maybe what’s important to stress is that,

● it’s a perfectly well-defined sheaf of graded algebras,
● the differential extends naturally to a differential ∇A here, and
● this is not quasicoherent sheaves over C∞

X , [unintelligible]the good notion
of f∗ for f ∶X → Y .

Then a strange and important thing appears.
Again, there are maybe some minor topological conditions, it works better if c1

is zero. But the fact is that π1(X) acts on A● up to inner automorphisms.
First of all, what does it mean? Let’s say you have a groupoid g with objects X,

andA a sheaf of algebras on X. Then we say g acts onA up to inner automorphisms
if there is an action g × t∗A → s∗A where for local sections g, a ↦ Tga by algebra
isomorphisms for each g, but then Tg1Tg2 = Adc(g1g2)Tg1,g2 , to make it multiplicative
in g you eed an inner automorphism c(g1, g2) ∈ s∗A×.

But then c(g1, g2)c(g1g2, g3) = Tg1c(g2g3)c(g1, g2g3) in A×.
So the claim is that the fundamental groupoid acts in this way. Let me say a

few words. More generally, the package “up to inner automorphisms,” let me,

● A● is a graded algebra, ∇ ∈ Der+1(A●), and ∇2 = ad(R) for R ∈ A2 and
∇(R) = 0, this is due to Positselski, a curved dga, and then everything I
said, g acts onA● up to inner automorphisms, and Tg○∇○T −1

g = ∇+ad(β(g))
with β(g) in A1. Again there are natural consistency conditions.

We have π1(X) = g acting on (A●,∇A) up to inner automorphisms, and our
objects are (V●,∇V) with a compatible action of g and A●.

Those are my objects, and for them, given two objects V● and W●, let me just
view them as C●(V●,A●,W●), the standard bar complex for Ext●A(V,W). Then
from the basics of homological algebra, you know that inner automorphisms act
trivially on Ext functors. Then the second key fact is that π1(X), well, A∞-acts
on C●(V●,A●,W●), the discrepancies, it’s not multiplicative, but the discrepancy
is an inner automorphism which is trivial, there are higher homotopies. I have
to stop here, finally we’ve seen some higher structure, let me conclude by saying
that we can get objects from Lagrangian submanifolds in X, you get such a thing,
but the morphisms give an A∞-local system of K-modules. I should mention that
you probably get some higher category enriched with these, there is more subtle
structure, and when it comes to higher structures, well, I have to stop and we’re
not sure how to say it correctly.

6. Dmitry Tamarkin: On the microlocal category

Let me thank the organizers for their kind invitation. So of course my talk
should have som relation to Boris Tsygan’s talk, but this relation still has to be
studied. I probably won’t make any statement about equivalence or functor or
anything, but well roughly speaking one can make aparallel with Riemann–Hilbert
correspondence. If Boris Tsygan’s talk comes from D-modules and deformation
quantization, I’ll come from the other side, using sheaves of vector spaces, mostly
constructible. If there is a relation, it should be a generalization of the Riemann–
Hilbert correspondence.

The goal is the same, to construct a differential graded example as close to the
Fukaya category as possible. I can still conjecture that the Fukaya category should
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sit in what I’m going to introduce as a full subcategory (those objects whose support
is a Lagrangian). My construction is more complicated so I won’t be able to go into
all details. Maybe I’ll focus on those aspects that are related to this conference.
I don’t know how high my structures are but at least higher than some other
structures.

As in Boris Tsygan’s talk, I’ll start with M compact and symplectic. I’ll have
a more technical assumption, I want a prequantization bundle, so I’ll assume that
[ω] is an an integral cohomology class, maybe up to 2π, so we can realize it as
the Chern class of a bundle L over M . My first step is to consider a non-compact
but simpler example specifically T ∗X with its canonical symplectic structure. and
then we’ll associate with it a category. Well, so, here the idea, we can try to use
the Kashiwara–Schapira theory of sheaves (of vector spaces or Abelian groups) on
X. Of course it’s better to take the derived category of such, D(X,Z), and then
Kashiwara–Schapira teach us that we can get a conical subset SSF of T ∗X, and if
F is constructible this will be Lagrangian and in general it will be coisotropic.

The objects live over subsets of the cotangent bundle, this is the whole point of
microlocalization. The difference with the Fukaya category is that here you only
get conical Lagrangians. You need to modify it to get non-conical Lagrangians as
well. This can be done by a standard trick of homogenezation. If I have something
non-homogeneous, I can add a variable and make it homogeneous. [Picture]

You need to add extra dimensions, so you consider D(X × R,Z). Then the
singular support will be a conic subset in T ∗(X ×R) and if I have something non-
conic in T ∗X I can convert it to a conic subset here, and do this procedure, writing
it algebraically. I’ll refer to a point in T ∗(X ×R) as (x,ω, t, k), where x is the point
on the base, ω on the fiber, t in the R base, and k in the cotangent fiber T ∗t R, so
both t and k are just numbers. Then

cone(L) = {(x,ω, t, k)∣k > 0, (x, ω
k
) ∈ L}

Since all conifications live in the positive fiber plane, we’ll modify D(X ×R,Z) by
quotienting by all things whose singular support is in the complement

T ∗≤0(X ×R) = {(x,ω, t, k)∣k ≤ 0}

and this is what I usually call D>0(X × R), it turns out that this quotient is nice
so the embedding has a right and left adjoint, so this is a left orthogonal comple-
ment, and then objects here can be specified by a simple formula. All objects are
generated by sheaves, well, if f is lower continuous, then {(x, t)∣t ≥ f(x)} is in the
left orthogonal complement, and this is what everything will be built from.

This is more or less what happens in the cotangent bundle. By further quoti-
enting, you can build a category supported on any open set. If U is open, then
shU(X), you can build this, and from the construction you can see it’s not clear if it
uses the structure of the embedding of U into T ∗X. To get to a general symplectic
manifold we need to see that this only depends on U or [unintelligible], and then
you can try to glue them which has further issues.

So first of all, we can consider simply an open ball BR in T ∗Rn. If we believe
that our quotient only depends on the symplectic structure of BR, then I should
have a symplectic group action on my category. I’ll discuss only linear symplecto-
morphisms. The rest can be done by standard tricks, Alexander tricks and so on,
that let you reduce arbitrary to linear symplectomorphisms. The hard part is the



HIGHER STRUCTURES 17

action of Sp(2n) on the category. Then the next step is to glue. Somehow this
reduces to a deformation problem, you have a complete local ring like formal series,
and you have your construction [unintelligible]the maximal ideal and you want to
lift it. So at least I hope to discuss the symplectic group action.

Also I should say, you don’t have to do it for the ball, you can do it for the whole
cotangent bundle. So the next question will be how the symplectic group acts on
the category associated to Rn. Part of the problem is to choose a differential graded
model for your sheaf category. I’ll use recent work of Jacob Lurie, only a tiny piece
of this paper where he discusses topological obstructions to the Fukaya category,
and we’ll get exactly the same obstructions that he had, morally. There is also
work in progress of D. Treumann and J. Xin, this is not published but since Xin
is my neighbor and her office is next to mine, I know about it. For my approach I
only need the differential graded part of it, but it’s interesting to do it over spectra.
So far everything goes smoothly if you use spectra as your ground category.

How do I define the Sp(2n) action? Consider the category of sheaves on the
product Sp(2n) × Rn × Rn, any action should be given by a kernel, and then any
action will be given by convolution on Rn. This has a monoidal structure using
composition of kernels and convolution along the group. This has a symmetric
structure, and this F will be a monoid with respect to this monoidal structure. By
simple considerations, you can tell a priori what should be the singular support
of F . You can find a Lagrangian in T ∗(Sp(2n) × Rn × Rn) × T ∗R, and then we
can switch to only looking at things supported in this Lagrangian L. This is rigid;
for instance if this is the zero section this tells you your sheaves are local systems.
You can assign initial conditions, for example if you specify [unintelligible]then you
expect to get the identity kernel, so you can do stalks as well.

It turns out that what you can do, it’s hard to solve the problem simultaneously
over Sp(2n) but if I restrict to a contractible open in Sp(2n) then I can see that
the space of solutions is the same as the category of spectra, so then in general we’ll
multiply by a category of spectra. So we define a certain locally constant sheaf of
categories on Sp(2n) whose fiber is just the category of spectra.

Then of course there is heavy artillery that classifies such things. There is a
category of automorphisms of the category of spectra Pic(S), this is an infinity
groupoid in the category of spaces, and you can take the classifying space, and the
construction should lead to a map Sp(2n) → BPic(S). So the category we defined
should have a monoidal structure (because things stay in L) and this means we
should have a delooping, so I should get a map of topological spaces

BSp(2n)→ B2 Pic(S).
It would be great to be able to define this directly. You find a map with the
same target and source in Jacob Lurie’s paper, and likewise in Treumann–Xin,
and so they tell us, I can formulate a conjecture on what it should be, so first
of all, we know that the symplectic group is homotopy equivalent to the unitary
group, and then Bott periodicity, then BU(n) ≅ B2(Z × BU),a nd then they say
this is the j homomorphism Z × BU → Pic(S). I’ll leave this at that because I
just started thinking about this, but let me say, there’s some bad news that this
map is nontrivial, and so my sheaf of categories is nontrivial and I can never find
my solution F . So for me, I’m not working with spectra but in a dg setting, I
have Picard of type [unintelligible]. I can also work with the universal cover of
Sp(2n), and then I have no room for such a map. So switching to dg categories



18 GABRIEL C. DRUMMOND-COLE

the corresponding map is automatically trivial. Then you can think about what is
happening in spectra.

By doing certain tricks, without any higher structure you can solve the following
problem. Suppose you have a symplectic embedding F , then you’d like a functor
between the corresponding categories. We need to be careful because we lifted to
the universal cover of Sp(2n), and the functor is not defined canonically from F ,
to construct the functor unambiguously you need additional information, such as

dF ∈ Sp(2n), but you need to provide a lifting to S̃p(2n), you could do this in
one point or all simultaneously, this doesn’t matter. But if your base is not simply
connected this might not be possible globally.

This gives standard gluing procedures that we need. It turns out that it’s not
sufficient to solve the problem. You really need to, you need one more step. Why
this knowledge of how to embed one ball into another is insufficient to build a global
category on the symplectic ball is because, well, you have U in T ∗Rn, and you can
associate shU(Rn) by quotienting the things supported away from U . This is only
a pre-sheaf which (somewhat unusually) is good news because if it were a sheaf,
you could not hope for this to be the Fukaya category; that failure of sheafiness is
what leads to instantons and so on in the Fukaya category. While it’s not a sheaf, if
the intersection points are far away, the instantons, the holomorphic disks, should
have large area. So if I quotient by all disks with large area, then my interaction
is confined to a small region in space. Then I can hope to build my category from
just balls and embeddings of balls.

But to do something for symplectic manifolds, we need to find out how to do
this reduction. For the Fukaya category, you cut off large balls or take a quotient of
the Novikov ring, so how do we mimic this in our setting? Our F is in D>0(X ×R)
and we have translations Ta in the R direction, and so I have an endofunctor here
and now, let me remind that a typical object is Z{t≥f} and if I translate this, it
becames Z{t≥f+a} and this is smaller so I get a canonical map from a larger to
smaller closed set. Then for any positive shift, I get a natural map Id → Ta and
then I can modify my category structure (I want to define the classical limit), I
want to modify the Hom of my category. We define a new category, the “classical
reduction” or something like that, defined as follows. We let ε > 0 and I want to kill
areas larger than ε. My objects are the same as before, sh(X), but homε(F ,G) =
cone(hom(F , T−εG)→ hom(F ,G)). This ceases to be a triangulated category, it has
more maps and you need cones of these newly arisen maps. Morally it’s a quotient.

Then the point is that you still need to make rigorous, under this reduction you
can indeed globalize our local data for any non-even-necessarily closed manifold,
but you need a quantization bundle for certain reasons. If I have sheafs for each
set in my cover, you can try to glue together, maybe it looks different if you do
it technically, but this is what it is basically. If in the Fukaya category you kill
instantons it’s not interesting so eventually you want to include all the instantons.
This requires a quantization that relies on higher structures. The only hope is to
find a general theorem to provide the existence of a quantization, vanishing of a
homology or something verifiable. Maybe it’s not that motivated if I just formulate
the theorem, maybe I’ll try to do it in a meaningful way. Maybe I’ll abstract from
these details and try to formulate it generally.

As usual in quantization theory, you should have a local ring, I also forgot to say,
crucially, everything so far can be done over the integers, but here the quantization
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has torsion obstructions and so you need to switch to rational numbers. This was
reassuring because in the Fukaya category, your moduli spaces are orbifolds and
fundamental classes have rational coefficients because you need to quotient out by
finite groups.

So we work with Λ = Q[[q]] and all objects have additional structure, a grading
where q is in degree −1 and then as usual, suppose I have an object over Q, I
should get an object over the local ring, and it turns out that all in all if I try to
formulate the quantization, I have a monoidal category M over Λ and an alegbra
A in the reduced category M/(q), and the question is to lift it to M . The A
is the solution to the gluing problem modulo ε and you want to lift it to formal
series, and then I reformulate it in, I need to first laxify everything, and so my
lax version for a monoidal category will be an operad, a colored symmetric operad.
Any monoidal category M , if I have objects A1, . . . ,An, then I can always look
at hom(A1 ⊗ ⋯ ⊗ An,A), I get a symmetric colored operad colored by objects of
M . I think it suffices to restrict to the A that I already constructed, lifted to
the quantum level. So then I have O over Λ and I have the operad of associative
algebras mapping to O/q and then I want to lift this to the quantum level.

Like in physics, it’s useful to add some Batalin–Vilkovisky flavor to this, and
the category has additional structure, of a trace, you can categorify a trace, from
algebra with trace you can define a monoidal category with trace TR ∶ M → Λ −
mod (the ground category) and it should be a part of the structure that the trace
should be cyclicly invariant in the appropriate sense. The operadic analog is what
I called a circular operad, you have traces A1 ⊗⋯An, you can get something with
no outputs, only inputs. You can do this covariantly or contravariantly, and then
you have insertion maps where you can plug into each cog of this cogged wheel,
you have your usual operadic, this is part of modular operads. Then you can define
something, our algebra has a trace now, and for our algebra structure, you have a
map from TR(A) to the unit of the ground category, cyclicly invariant, and that’s
where you have a general theorem which provides for such a quantization.

Let me sketch where this comes from? What you can do with this cyclic operad
is what I call the c1-localization trick, you have the non-cyclic part of the operad,
Ononcyc, and the remaining structure is linear over the wheels, the remaining struc-
ture is a functor from a certain category whose objects are wheels, Boris calls it
U(Ononcyc), and you have it this extra bid, a module over U(Ononcyc). If I have
two fixed objects, I have product U(Ononcyc)(m,n)⊗N(m,n), tensored over cyclic
objects, and now if I take the constant cyclic object, this k will act neutrally, and
one endomorphisms I get is the map of degree 2 that you can call different ways
(say, the Chern class). Then given an object you can try to invert c1 and from the
original operad you can get a new one Oloc

cyc, and all the nontrivial action of the
noncyclic part vanishes. So this boils down to something very simple, and that’s
what allows, I’m running out of time, so I’ll just stop here, this is the major trick.
You solve your problem here in Oloc

cyc and if you compare deformation complexes
you see they are retracts of each other.

Thank you for your patience.
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7. Yuri Manin: Interaction of computability theory with
structures, categories, and higher structures

Thank you. I will first introduce the meaning, a minimalistic definition of the
object I want to think about. It is a category C whose objects are the positive
integers Z+ and also all initial intervals [n] = {1, . . . , n}. The morphisms, if you
have a couple of objects, then C(X,Y ) are (partially) computable maps from X to
Y . Right away I must say that I will define this more precisely later on in several
different ways. There is a challenge, to find homotopy alegbra relevant to C. We
know know in our era of brave new rings that all integers are embedded into ring
spectra and spherical ring spectra, and there are interesting non-trivial homotopy
questions behind all of it. So far, so far as I know, no one seriously tried to do
something like this fo maps.

So first of all, one remark, that as I said, morphisms are not necessarily every-
where defined computable functions. So f ∶X → Y is actually a pair (f,D(f) ⊂X)
and f ∶ D(f) → Y . So for composition of f and g, we take f−1(D(g) ∩ imf) as
D(g ○ f). It’s not a very convenient category, so people deal with not everywhere
defined maps by adding to each set one infinite or abstract element. Instead of
dealing with the category of sets with the usual maps, one can define in this way a
category of sets with partially defined morphisms, and one can define the category
which I will call PSets where objects are sets endowed with a specific element ∗ and
morphisms are restricted by the fact that ∗X → ∗Y , so they are everywhere defined
but with one restriction. There is a functor from ParSets to PSets by adding an
element and whenever a morphism is not defined send it to the infinity point. So
we can look at this embedding, everything will be everywhere defined. Here one
more useful construction emerges before passing to it in full generality, I will give
one definition of partially computable functions. This will not fit right away into
this framework. Here we will consider a finite alphabet A, and words in A, W (A),
these are finite words. Then Markov’s algorithms or semicomputable functions are
defined in the following way. You produce an “obviously computable” fixed com-

plete ordering of words Z+ ∼Ð→, for example a dictionary, you first consider all words
of length 1, of length 2, and so on, and inside by alphabetical ordering.

This is the list, and then one algorithm is numbered by a finite ordered list of
pairs of finite words, an element P in W (W 2(A)). Then the algorithm, if you take
an input word w ∈W (A), then in order to apply the algorithm P , you look at the
finite subwords of w, and look at the first list of P , and look at the first word in
the list? Is it somewhere in w as a subword? Take the first word and replace it
with the second. It may happen that after a finite number of steps you get a word
with no appearances of any word in the first half of P . Maybe for simplicity you
have one more word associated to the word stop, then you get a definition. It can
happen that you don’t find a word, then it is outside the domain of definition. It
might happen that you go to infinity, then you’re outside the domain of definition.

In a sense, Markov algorithms constitute one of multiple equivalent definitions of
computability, and you cannot do better. Turing machines do the same, partial re-
cursive functions do the same, you should invent how to translate one to the other,
but all that were invented do the same. Let me formulate it, a maximalistic defini-
tion of the category C, objects are now sets X together with one to one bijections
to Z+ or one of the integer sets {1, . . . , n}, and this bijection must be “intuitively
algorithmicly computable” along with its inverse. I leave a way for people to come
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up with new algorithms. Then morphisms are algorithmically computable on the
respective numerotations. I will formulate here what I call “categorical Church’s
thesis,” that any two categories defined in this way are equivalent. I call it an ex-
perimental fact in the world of ideas, it’s not a theorem, because you are including
intuitive notions. Whoever has managed to formalize the notion of algorithm has
always landed in the same universe. This lets me work in whatever version I want
to do now.

On the other hand, there exists now additional structure(s), namely this category
admits pretty obvious monoidal structures. There is a direct product X × Y and
X ∐ Y from the category ParSets, of course. What i want to say now is that the
problem of extending numerotation to these, whatever way you do this, they are
all equivalent to one another. As I said hte main challenge that I want to suggest
is how to introduce homotopical structures into this categorical context.

What is the problem? The problem is that the set of morphisms C(X,Y ) when
at least one object is infinite, this is not itself an object of the category. There
is not an internal Hom in this category. What is true is that for any X and Y
there is an object of C, say PX,Y and a morphism, again in C, from PX,Y ×X to
Y . You should imagine P as the set of descriptions of programs from X to Y .
Therefore for p in PX,Y , you can define a set theoretical map p̄ ∶ X → Y such that
x↦ p̄(x) = ev(p × x).

The relationship between morphisms and objects is not straightforward at all.
You have C(X,Y ) and also P (X,Y ), and in particular there are versal maps because
there may be very stupid programs, but there are programs that produce all maps.
The trouble is that you would like them if possible, you want P to be as close to C as
possible. The question is for p and q, when does p̄ = q̄ does not have a computable
answer. I want to tell you a lot of interesting mathematical problems are of this kind.
I’ll start with an old one, Lagrange’s theorem about the number of representations
of an integer as a sum of two squares, and it’s known that this number (assume N is
odd; the even case is also easy) is 8∑d∣N d. This is a nontrivial number theoretical
identity, and nowadays one says the left and right side are Fourier coefficients of the
same [unintelligible]function. This of course is not an elementary proof. Of course,
can you prove this in an elementary way? This means, the left hand side, a short
description, and the right hand side, also a program for calculation, why do they
produce all the one and the same answer? The proof would be a third program
that would be, if you rewrite it in one way, you get one, and in the other way you
get the other. The answer is known in this case. Let me give you a more recent
(and unknown) example, about Kontsevich–Zagier periods.

So periods are complex numbers, an imaginary part and a real part, both written
as an integral over a locally closed subset of Pn(R), and the forms you integrate are
products of rational functions of coordinates with coefficients in Q multiplied by
some volume form, in an obvious way also rational over Q. These are not integers
or words, but generally transcendental numbers, and the conjecture of Kontsevich
and Zagier says that if you have two integrals like that, then they produce one and
the same number if and only if you can pass from one such integral to the other by
doing a short list of standard identities between integrals, Stokes’ formula, variable
change, things like that.
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When I first read it in the well-known paper of Kontsevich–Zagier, I was incred-
ulous, it’s of the same type, you want in an elementary way to pass between one
way and another of the same map.

In this general categorical setting, when you ask about this as a question about
P (x, y), this problem becames algorithmically unsolveable. So whatever tricks you
invent to show that to pass from one to the other you calculate the same function,
you’ll never be able to understand this completely.

The conjecture is still unproved. The strongest argument for the conjecture
is that in some sense it follows from Grothendieck’s standard conjectures. I’m
wondering whether I should consider what I’m saying as an argument against the
standard conjectures.

There is one more detail that I failed to mention before. Now the two real
numbers are not rational or integer, so in what sense am I speaking about the
integral expressions as programs? What are they calculating? People who are doing
numerical analysis, they have such integrals which encode computable real numbers
where a computable real number is a number so that there exist an algorithm so
that for any n, it calculates some amount of digits of that number which is distance
no more than 1

n
to your number.

This is not the most natural definition of computability. It might happen that
what happens is that you can calculate any number of difficults, but you’re ignoring
how close you come to your number. Maybe you get 10 digits, and the 11th digit
comes much later with a correction to the 10th one.

More precisely, you’re approximating in a computable way not just objects of
C but also some morphisms in C. You have a morphism from Z+ to the space of
digits. So when you have chosen a program, and you want to calculate a com-
position, P (X,Y ) × Y ′(Y,Z) → P ′′(X,Z), you essentially deal with a problem as
described, you want objects constructible so they produce programs. In the best
case, this produces only a commutative diagram of partial sets which imitates the
usual product but it’s not computable in the good sense of the word. We are kind
of bound to go up in this categorical intuition. You get not maps but programs
to calculate maps. We must go one stage up and consider elements of programs
programming this composition.

It is clear that higher structures are there by necessity, but nobody yet studied
these seriously. I’m presenting you with a challenge. Now when I was thinking about
this, I was trying ot look at two homotopical structures, one a model structure on
such a category, and the other. The other is an imitation of spectra on this category.
As I said, I did not come up with any definitie definition, but I’ll just remind you
that in order to define a model structure, we must at least have sufficiently many
commutative diagrams in our categor so that for any commutative square you have
some lifts. Using versal programming you can get some of these lifts, but I was not
able to show that they satisfy the required compatibilitity.

Another challenge, another attempt to approach this challenge about spectra
was motivated by the fact that if one considers the category of PSets, and then
one asks how we transpose direct product and disjoint sum, then we find out that
this product X × Y / ∼ becaomes (X,∗X) × (Y,∗Y )/(∗X × Y ) × (X,∗Y ). This is of
course a very well-knonwn elementary construction at the beginning of homotopy
theory. So perhaps there is a natural analog of suspension of an object in C(X),
just a product in this category of Z+ ×X.
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What about Ω?? I never suggested my Ω. The description of the algorithm
contains Ω. You input something, and if you stop at stop you get the final thing.
The microdescription of algorithm has in addition a macro description, something
like a Feynman category. That’s so to speak, global, you consider graphs whose
output are previously constructed and when the output is the input of the next
thing.

When there is a real understanding, the model structure, suspension, loop struc-
ture should be joined together into the same package.

8. Nicoló Sibilla: a categorification of the Chern character

So I want to thank the organizers for inviting me to speak, and I’ll be talking
about joint work with Mark Hoyois and Sarah Scherotzke.

Let me start with an introduction to character theory. We’re probably either
thinking about X a manifold or algebraic variety and then a Chern character from
complex vector bundles on X to H∗

dR(X), which, to make things super explicit,

sends a line bundle L to the exponential of the first Chern class, ∑ c1(L)
m

m!
.

The other example, if G is a finite group, then we go from complex finite dimen-
sional G-representations to C(G) = O(G/G), and these two stories are both aspects
of a very general picture I’ll sketch next with the help of homological algebra and
a little bit of derived algebraic geometry.

Let X/k be a scheme, or a stack, then the Chern character is packaged in the
following diagram:

i0 Perf(X)

**

Tr //

��

HH∗(X) ∋HH∗(Perf(X))

k∗(X)
ch

// HH∗(X)S1

OO

This is a very classical story. I’ll write down three features that will be important
and then reformulate this in a different away.

(1) The Chern character is multiplicative,
(2) additive, and
(3) admits an S1-equivariant refinement.

This last is Connes and Tsygan, anyway, let me reformulate this. We’ll recover the
character theory of a finite group, I should say, by considreing X = [∗/G].

In order to reformulate the square, I want to consider the Hochschild homology
itself as a trace. I want to introduce some definitions that are familiar to most of
us about fully dualizable objects.

Definition 8.1. Let C be a symmetric monoidal category, sometimes an (∞,1)-
category with unit 1C , and X an object of C, then we say X is dualizable if there

is an object X∨ in C and maps 1C
coevÐÐ→ X ⊗X∨ evÐ→ 1C such that tensoring with

X in the appropriate way we recover the identity of X

X
1X

11
coev⊗ 1X // X ⊗X∨ ⊗X 1X⊗ev // X
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So ifX is dualizable and f ∶X →X is an endomorphism then Tr(f) ∈ Hom(1C ,1C) =∶
Ω(C)

1
Tr(f)

11// X ⊗X∨
f⊗1X∨ // X ⊗X∨ // 1C .

Then we define dim(X) as Tr(1X) and maybe I should say that we recover ordinary
dimension from this.

So now let me move into derived ∞-stacks over k. This includes ordinary schemes
and stacks, simplicial sets, and derived affine schemes over k, commutative differ-
ential graded algebras over k.

Now Cork is the following symmetric monoidal (∞,1)-category, the objects are
these guys, and then morphisms are correspondences

T1

~~   
X Y.

Composition of a correspondence is just given by the derived fiber product.

T1 ×Y T2

$$zz
T1

$$~~

T2

  zz
X Y Z

Something I learned from Ben-Zvi and Nadler is that in this category all objects
are dualizable (and self-dual), and the correspondences are given by

X

A

##~~

X

  

A

{{
pt X ×X pt

and now let’s compute what this correspondence is by taking the derived fiber
product.

What we obtain is that we have the following:

X ×X×X X

%%yy
X

A

%%~~

X

  

A

yy
pt X ×X pt

So then the dimension of X is then the derived loop stack of X. Again, for the
few people, the many people who haven’t seen this before, let me tell you why this
is the loop stack of X. This is LX = Maps(S1,X), and then this is X ×X×X X
because I can write S1 as ∐∗∐∗∗, this is a familiar observation from topology.

Then LX is the “universal trace” in some sense.
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Now we’ll define a sheaf theory from this category of correspondences.

Definition 8.2. A sheaf theory is a monoidal functor Cork → dgCatk, and again
for this we should assume some finiteness that I’ll suppress on the stacks that we
consider.

So the sheaf theory we want sends X to quasicoherent sheaves on X and sends
the correspondence

T
q

��

p

~~
X Y

to the map

QCoh(X) q∗p∗ÐÐ→ QCoh(Y ).

In setting this up, we can compute the trace of QCoh(X) in dgCatk in a very
simple way.

The trace of QCoh(X) as a dualizable object (I’m being vague about technical
details about dgCat) is given by global sections O(LX) of the loop stack, which is
clear immediately by considering the following diagram

QCoh(X)

''ww
QCoh(X)

''xx

QCoh(X)

&&ww
QCoh(pt) QCoh(X ×X) QCoh(pt).

Now I’ll give a different interpretation, armed with this, of the diagram defining
my Chern character.

i0 Perf(X)

))

//

��

O(LX)

k∗(X) // O(LX)S1

OO

Due to Toën and Vezzosi, this is the same as the diagram above. Here ι0 is the
maximal subgroupoid.

The intuition behind the existence of the circle action, this is a beautiful inter-
pretation of the Chern character by Toën and Vezzosi.

What are we doing here, we’re pulling back a bundle to LX but with our defi-
nition of loops, every bundle is locally constant, so the monodromy gives a natural
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automorphism, and the map we get is the trace of that automorphism.

p∗E

""
E

!!

LX

||
X

so E ↦ Tr(mon(p∗E)) ∈ O(LX).
This should exist in a more general context, so I’m going to write down a cate-

gorification of the Chern character.
So instead of a functor to dgCat, we should be able to consider a functor to an

(∞,3)-category of [unintelligible]. Let me write down a table.
ordinary categorified

Perf(X), the category of perfect
complexes on X

Catsat(X), the category of du-
alizable quasicoherent sheaves of
categories on X

O(LX), functions on the loop
space

Perf(LX), perfect [unintelligi-
ble]on the loop space

O(LX)S1

, negative cyclic homol-
ogy

Perf(LX)S1

algebraic K-theory of X, k∗(X) a category NMot(X) of non-
commutative motives over X (I’ll
explain this in just a minute).

Our main theorem is this diagram in the categorified setup.

Theorem 8.1. (H.–S.–S.)

i1 Catsat(X) //

��

Perf(LX)

NMotsat(X)
ch

// Perf(LX)

OO

Let me tell you some consequences of this diagram.

(1) The further restriction

i0 Catsat(X)→ kS
1

(Perf(LX))→ O(LLX)S
1
×S1

is the secondary Chern character of Toën and Vezzosi.
(2) the secondary K-theory

k2
0(X)→ π1O(LLX)S

1
×S1

(introduced by Toën and previously independently by Bondal–Larsen–Lunts
when X = Spec k), let me explain what this secondary K-theory looks like.

When X is the spectrum of a field, this is the free Abelian group on
smooth and proper triangulated dg categories over k, quotiented out by the
relation that when we have A↪ B↠ B/A, we say that [B] = [A]+ [B/A],
in complete parallel to the ordinary Grothendieck relation.



HIGHER STRUCTURES 27

Another observation which is very vague is that according to Ben-Zvi and Nadler,

Perf(LX)S1

should be related to a category of filtered D-modules over X, the
Chern character seems to incarnate the functor that sends to a motive its variation
of mixed Hodge structure.

In the last five minutes let me say a little bit about the category of non-
commutative motives over X and why it deserves to be called the K-theory of
this categorified thing.

So just for simplicity, let me assume that X is so-called 1-affine, which means
that this category of quasicoherent sheaves of categories over X can be expressed
more concretely as categories tensored over QCoh(X). Then we can characterize
our non commutative motives by saying that any functor to a presentable stable
(∞,1)-category that commutes with filtered colimits and sends A ↪ B ↠ C to
DΦ(A)→ Φ(B)→ Φ(C)

i1 Catsat(X) φ //

[unintelligible]

��

D

NMotsat(X)

66

So some version of this category was first constructed by Kontsevich as a certain
triangulated envelope, when X is Spec(k), in the following manner, the objects are
saturated dg categories and the morphisms from A to B are given by k∗(A⊗Bop).
This definition in Kontsevich becomes part of the theorem for us, and let me just
conclude with [unintelligible].

Theorem 8.2. (H.–S.–S.) If A and B are in Catsat(X), then

Mor([unintelligible](A), [unintelligible](B)) ≅ k∗(A⊗Perf(X) B
op).

and this [unintelligible]work of Tabuada and Blumberg–Gepner–Tabuada.
The multiplicativity we obtain is [unintelligible], but QCoh(X) has a lot of

interesting structure, there’s work in progress with Ralph in the case of point mod
G, where we want to twist the multiplicative structure. I’ll stop here.

9. Bertrand Toën: Motives and dg-categories

We heard in the last lecture, I’ll use very similar ideas, and before starting, this
is joint work in progress with Blanc, Robalo, and Vezzosi. I’ll talk about things
inspired by Blanc’s thesis, about topological K-theory on a non-commutative space
coming from dg categories, together with a Chern character in this context. I want
to use the same kind of ideas in a more arithmetic situation. The goal is to study
non-commutative spaces, which for me are dg categories in arithmetic situations,
and I want to work over any base A, a discrete valuation ring in any characteristic.

We want cohomology theories for non-commutative spaces, `-adic cohomology,
and this will be a variation of Blanc’s description of topological K-theory.

If you want a more specific motivation for what I will say, we want, for any dg
category T over A, we want to construct `-adic cohomology of T with Q` coefficients,
this is a Q`-adic complex over Spec(A), and we want trace formulas for these things.
If I have an endomorphism of the dg category, I want the trace of the induced
morphism on homology from invariants of T . I said this is in progress. We can
prove a trace formula but we have some examples where we have to check our
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conditions are satisfied. A future application is to try to prove a conjecture called
Bloch’s conductor formula out of this formalism. This is an incarnation of a trace
formula for a non-commutative space, and this is what I’ll try to explain near the
end of the talk.

(1) I’ll spend some time talking about motivic BU -modules (others call this
KGL but I’ll prefer BU)

(2) I want to talk about `-adic realizations, and then
(3) `-adic realization of matrix factorization.

You’ll see that we get pretty close to Bloch’s conductor formula.
This conference is about higher structures, so I should tell you about the relation

to higher structures. What are the aspects?

(1) First, it uses ∞-categories everywhere. It’s not so surprising, if you are
doing functorial homotopy things, you expect this, so that’s okay.

(2) We need some base rings that are topological in nature and they will be E2

rings. They come from algebraic geometry, not spectra, but still they are
E2 rings. We’ve heard about traces but what happens over an E2 ring is a
little more complicated. So there are also some aspects related to TQFT,
how do I call them, is Claudia here? Ah, twisted, so for me, twisted, defects,
boundaries, some kind of thing like this.

9.1. Motivic BU-modules. . So S is Spec(A) for A a commutative ring, which
will be nice when needed, maybe Noetherian, I don’t know, I won’t try to give the
most general statement.

Let me recall the stable homotopy theory of schemes. For me a stable homotopy
theory of schemes over S is a symmetric monoidal ∞-functor from schemes over S
to a target symmetric monoidal ∞-category, presentable, (D,⊗), satisfying some
conditions, such that

(1) X ×A1 →X gets inverted in D, the image of this map through this functor
is an equivalence in D

(2) You have [unintelligible]descent, when you have a [unintelligible]square, it
goes to a coCartesian diagram in D, and

(3) P1/∞ goes to a tensor-invertible object in D.

It’s a fact that there is a universal such theory given by Morel–Voevodsky from
smooth schemes over S to SHS .

We heard a similar construction in the last talk, there is a non-commutative
version, this was done by Tabuada (in a different way) and Robalo, who I’ll follow,
this is a slight modification of Tabuada.

I’ll start with some dg categories over S, by taking perfect complexes on the
scheme, and smooth goes to “finite type,” the non-commutative smooth condition,
not exactly, a little stronger than the smooth category,

Sm /S ↔ (dgCatft /S)0

Let’s do the same, A, B, and C, the same construction as before, but with (dgCatft /S)op,
and let me say what this means, so A1-invariance is easy. The descent is a little
more tricky, you should think that if I have a quotient of a dg category by a compact
object, it goes to a triangle, but then there are some technical details.
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Then the third one is obvious, implied by the second because P1 fits in an exact
sequence. So the last one is not necessary. The short exact sequences are like
Verdier’s quotient, right? These go to exact triangles.

So then you get this new thing, let’s call it SH non-commutative, the universal
such thing, (dgCatft /S)op → SHnc

S , and this is the dual of Tabuada’s construction
plus A1-invariance.

Now there is a natural symmetric monoidal ∞-functor, stable, that goes from
SHS → SHnc

S characterized by saying that it sends S′ → S to perfect complexes
on S′. I get this map, call it j, and now there is an important result here, which
has to do with the adjoint of j, the heart of the construction of [unintelligible]of dg
categories.

Theorem 9.1. (Tabuada, Robalo)

(1) j has a right adjoint ` ∶ SHnc
S → SH (now only lax monoidal)

(2) `(1) (automatically an E∞-monoid) is equivalent to BUS in SHS, where
BU is an E∞ motivic spectrum, let me focus on its K-theory, it presents
algebraic homotopy invariant K-theory. This is usually called KGL.

The important statement is the second point.
As a consequence I get a new monoidal adjunction between BUS − Mod and

SHnc
S . We are almost done, let me give you the definition of the motivic BU -module

associated to a category and then some examples and what the construction really
does. Intuitively it’s pretty clear what this is, I’ll give it to you in a moment,
but there are a lot of coherences to check. It’s one of these things, if you see the
statement you think it’s obvious but you have to write a proof, it turns out to be
a hundred page paper.

Definition 9.1. The motivic BUS-module associetd to T , a dg category, and I
don’t need finite type because I can write anything as a filtered [unintelligible]of
finite type ones, so I can just extend, is

MT ∶= `(T ∨)

where T ∨ ∈ SHnc
S .

I’m going to define MT from smooth schemes (op) to spectra, and this takes
Spec(A′ → S) to HK(T ⊗A A1), this is homotopy invariant K-theory, where H is
just something functorial to make it homotopy invariant. This is a module over
HK(A′), this is the intuition. It just comes with this extra structure that you need
some results to be sure that it exists.

This has some properties.
So some basic facts,

● T ↦MT is a lax monoidal ∞ functor.
● if X

pÐ→ S is a flat scheme, maybe a little bit more, and let T be perfect
complexes on X, then MT is p∗BUX = BUXS .

● T ↦MT sends short exact sequences to exact triangles, and finally

If we want to study algebraic K-theory of X, you can look at BUXS as a
BU -module. So this is like a compatibility between the commutative and non-
commutative.
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9.2. `-adic realizations. Now it’s kind of easy, we have an object in a category
of motives, an `-adic realization exists for motives, we need to keep track of the
BU -module structure. I can have exotic bases, like E∞ algebras, so the realization
should keep track of this base.

First of all by the universal property of SHS , whenever I have, well, there is
an `-adic realization functor r (here ` is invertible in A) from SHS → L(Set,Q`) =
ind−constructible Q` complexes on Set fitting in

SHS r // L(Set,Q`)

Sm /S

OO 99

where the diagonal map sends S′
pÐ→ S to something called p#(Q`), the Q`-homology

of S′ over S.
That’s a symmetric monoidal stable ∞-functor. This satisfies descent because

you have étale descent. It is A1-stable because [unintelligible]. Then by universal
properties, you get this.

So r goes from BUS−Mod to r(BUS)−Mod. NOte that r(BUS) ≅⊕Q`(i)[2i] =∶
Q`(β) = Q`[β,β−1].

Okay, and so I can apply r to T and get a module here. This is not strictly two-
periodic because when I shift by two I have to twist by 1. So these are Tate-twisted
two-periodic objects, E +E[2] = E(1).

Let me now add a base, an extension, and then I will [unintelligible]. Suppose
now that B is an E∞ A-algebra, in fact E2 is enough. Suppose that T is a B-linear
dg category. Then MT is a MB-module, so r(T ) is in r(B)−Mod I should say I’m
saying r to mean also r(MT ).

Let’s define now a realization functor. You can check that the `-adic [unintelligi-
ble], if you start with T being perfect complexes on a (maybe proper) scheme, then
the `-adic realization is the pushforward of [unintelligible], and this is, contrary to
the other case, where I got BUS , this is not easy, this uses a not-easy result by
[unintelligible]in a base not a field. The comparison with `-adic [unintelligible]of
schemes is not an easy result but it is true for proper schemes.

9.3. Matrix factorization. Let me just state the results and then that’s probably
the end. Is it factorisations or factorizations? British versus American? Which is
British [laughter]

Okay, so A is a discrete valuation ring, k = A/π is perfect, maybe I want it to

be Hanselian, and K = Fac(A), and X
pÐ→ S is Spec(A), and p is proper (flat),

XK is smooth over K, and X is regular. So we set T = MF (X,π), I’ll give you
a naive description of the objects, they are pairs E0,E1 of vector bundles on X

with maps E0
δÐ→ E1

δÐ→ E0, and δ2 = ×π. I don’t want this to be a category over A
alone because this is 2-periodic. So this is A[u,u−1]-linear, where u has degree 2,
and this is very important extra data. This sounds stupid, not very deep, but this
2-periodic structure has a lot to say.

I can take vanishing cycles in the `-adic cohomology of this map, I’ll take the
special fiber extended to the algebraic closure of K, and I want these to be invariant
with respect to the Galois [unintelligible], Op ∈ L(X̄0,Q`) with the action of GK
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Theorem 9.2. (Blanc–Robalo–Vezzosi–T.) There exists an equivalence r(T ) ≅Ð→
H●(X̄0,Op[−1])hI(β) as r(A[u,u−1])-modules, r(A[u,u−1]) = Q`(β)⊕Q`(β)(−1)[−1].

Here I is inertia, ker(Gk → Gk) (and h means homotopy invariant)

This plus the trace formula is the road to Bloch’s formula. I don’t claim we
know how to do it, but that’s the road.

10. March 22: Peter Teichner: twisted field theories from
factorization algebras

[Outline on slides]

10.1. Factorization algebras. This talk is about connecting two different ways of
mathematizing quantum field theory Factorization algebras is a way of formalizing
the observables, and the cool thing is that you start with a classical theory. So you
start with a classical BV theory. We fixe a space-time, a d-maniold You have fields
and antifields and there may be ghosts and antighosts and some classical action
functional S on the space of all these things. Out of all of that you produce what is
called the derived critical locus. In general this is a derived stack, but Critder(M,S)
is a cochain complex in the settings I have in mind. This models the derived critical
locus of the classical field theory. I’ll explain this in one example. This will be
called Obscl(M). Then there’s this cool machine, this book on renormalization and
effective field theory, this gives a way to give perturbative quantization into what
they call the quantum observables. I’ll show you this Obsq(M) in one example.
This factorization algebra axiomatizes the structure present here.

This is very vague so let me do one example carefully, and that’s the free boson.
In this book you find the quantization of Yang–Mills, several others, and this is a
strength of the approach, you get mathematical descriptions of these games with
Feynman diagrams that produce physics. So I should maybe say g is a geometry on
d-manifolds needed to define all these data. So g could be just an orientation or a
framing or something, then this is just a topological theory. It could be geometric,
conformal, complex, so g is a very general notion, the only thing I need is that
you can glue when you have two open sets. This is the key interest, the physically
relevant theories are geometric. The spacetime for us will be Riemannian.

The fields for the boson will be C∞ functions, and let me explain how you get
to the chain complex. You write down the antifields, the fields and antifields is
two copies of C∞(M) in degree 0 and degree 1, and you put the Laplacian plus
the mass operator ∆ +m2 as a differential between them, and this is the derived
version of the classical solutions. Let me call it E(M) You don’t just look at the
kernel but the whole complex. In this example, that’s what derived means.

Now classical observables Obscl(M) are functions on the classical solutions. Here
we have functions on the derived version. This is a linear space so you can talk
about polynomial functions. We’re taking Sym(E(M)∨). So we get distributions.
This is C∞(M) with its Frechet topology. There is a grading here. Sym2, for
example, is quadratic distributions, and maybe we should also take the completion,
formal power series.

There’s an important technical point that these don’t multiply, so really you take
the smeared distributions, you take Ŝym(ECS(M)), these are smeared distributions
in the symmetric algebra. Maybe I’ll spell this out in terms of the two blocks.
These are polyvector fields on C∞

CS(M).
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It turns out that in this chani complex, the classical action of a field is the usual
classical action, so we’re integrating

S(ϕ) = ∫
M

(∆ +m2)ϕ ⋅ ϕvolM

There’s a bunch of things to write down that I don’t have time to talk about,
this is symplectic (shifted symplectic) so functions on it has a Poisson bracket, and
the differential is {S, }.

So in words, think of the chain complex as a trivial Lie algebra, take a sort of
Heisenberg extension, and then take Chevalley–Eilenberg. So this is functorial. If
you add ϕ4 terms, if there are symmetries, you’ll have obstructions for quantiz-
ing. Your S satisfies the classical master equation but there will be a quantum
master equation you have to satisfy. As usual, obstruction theory, if you find one
deformation you’re finding more.

So they show, Costello–Gwilliam, that this stuff satisfies the axioms of a factor-
ization algebra. Before I show you them, this thing where I start with M and write
down the quantum or classical observables satisfying some natural properties, that

(1) you can always extend observables by 0 and
(2) you can compose observables on disjoint spacetimes.

One difference to quantizations that you may have seen, the classical observables ob-
viously form a commutative differential graded algebra. The quantum observables
don’t form an algebra. You can’t multiply observables (because of the uncertainty
principle), but you can do it if the regions are disjoint. What’s being deformed
is not the product, what’s being deformed is the differential. As a graded vector
space, it turns out at least in this case, the quantum observables are Obscl(M)[[h̵]],
but the differential is deformed.

Then out comes this mathematical definition.

Definition 10.1. A geometric factorization algebra is a symmetric monoidal func-
tor F ∶ (g −Man,∐)→ (Ch,⊗) such that

(1) a (Weiss)-cosheaf condition is satisfied

(2) F (M1)⊗ F (M2)
∼Ð→ F (M1 ∐M2)

Here my category of manifolds is open manifolds with isometric embeddings. The
chain complexes are also interesting with respect to some topological considerations,
that’s in the book.

So F (M) is something like classical or quantum observables. Functoriality is
extension, and then being symmetric monoidal means that you can multiply on
disjoint union but we want to say that this is really the same.

I won’t write the cosheaf condition explicitly, but if you know them on arbi-
trary small sets, then you can figure them out on big sets, this is a local to global
condition.

If you know nothing about BV theory or field theory or something, this is a
completely mathematical definition, and if you’ve ever worked with these things,
this is not a very hard definition.

Let me now remind you of a functorial field theory. I think Segal suggested
this when listening to a talk of Witten, and Atiyah picked it up and many others.
I want to do the geometric case, these are not just TQFTs but geometric field
theories. This is a (symmetric monoidal) functor from a bordism category to chain
complexes. In the original version we have vector spaces but now we have chain
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complexes. You take a space-slice Y d−1 and you associate to it a state space of the
quantum system on Y , and you take a time evolution, what mathematicians call a
bordism, and you think of it as a bordism, Σd ∶ Yin → Yout, and this is supposed to
give the time evolution of the state space.

This is very rough, and I should say where the geometry comes in. This is
strange, that you have the codimension one thing, if this is a complex thing, say,
the codimension one manifold doesn’t really make sense.

The other thing, imagine your favorite theory, if g is conformal and d = 2 you
get a conformal theory, you get a vector space for a circle and for a surface a linear
map, and for a closed surface, a torus say, you get a function from the empty set
to itself, and this is a function on the moduli space. In many examples you get not
just a modular function but a modular form.

So I want to talk about a twisted version, where you have a T functor into
dgCat with ⊠ instead of into chains. If I have a theory that’s supposed to give
a modular form, then here I get, for a surface a section of a line bundle over
the moduli space. So the way you formalize a lot of the anomalies is with this
twisted formalism. So then I should say a symmetric monoidal bifunctor T and a
bitransformation E from 1 to T . The unit, for each circle gives the category of
chain complexes. The “bi” of bifunctor, this is, the objects are the space slices.
The one-morphisms are the bordisms, and the two-morphisms are isometries. I’ll
explain this carefully rel boundary. The bordisms are in a natural way a 2-category
because you have manifolds, bordisms, and isometries. If I let T be 1 itself, then
a natural transformation is just a functor into chain complexes because Ch doesn’t
have interesting 2-morphisms. So this is really a generalization of what we had
before.

Let me make some of this more precise with my slides.
[slide section]

11. Chris Schommer-Pries: Higher Categorical Structures from 3D
Topological Field Theories

Thank you, so my main subject are extended field theories. When I was a young
topology grad students and I was first introduced to field theories, one motivation
was manifold invariants, from closed manifolds. They had better properties than
random manifold invariants, you could compute them by slicing into pieces.

We saw in Peter’s talk how the compositional rule about functors (composites of
cobordisms) is one way to express that locality of the invariants that you get. I’ll
talk about extended invariants, you’ll have a higher category of cobordisms. For
example you’ll have something like Bord(0,1,2), a symmetric monoidal 2-category
where the objects are 0-manifolds, the morphisms (1-morphisms) will be bordisms,
for example a pair of elbows between two points and two points. Then the 2-
morphisms will be diffeomorphisms between bordisms [picture]. An extended field
theory will then be a functor from this higher category to a target higher cate-
gory. An extended topological field theory is a symmetric monoidal functor. You
can change the target category as you see fit, but you can also change the bordism
category, go from d to d + k. You can also change the bordism category by adding
structure to the cobordisms, like orientations or spin structures or tangential fram-
ings or stable framings and so on. All of those are sort of tangential structures and
those are the ones I want to consider today.
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I want to focus not on the details of gluing, which I’ll sweep under the rug, or
on the manifold invariants, but rather on the connection to higher structures.

There’s been a rennaissance in classification relating higher structures to topo-
logical field theories in the last ten years. One type of classification result is the
cobordism hypothesis, where you’re looking at the fully local objects. We’ll move
to 3-dimensional theories and not fully local things in a few minutes, but first let’s
do some low dimensional example.

Here’s an example of the kind of structure that emerges when you look at these.

Theorem 11.1. (Lurie, Pstragowski) If you look at Bordfr
(0,1,2), this is free sym-

metric monoidal bicategory on a 2-dualizable object

So what does 2-dualizable mean? There’s a very general version, if you go from
points to n-manifolds then it’s on an n-dualizable object. In dimension 2 there’s
an easy way to state it. So first it is dualizable, so you have for x a dual ∗x, and
there’s a evaluation and a coevaluation map

x⊗ ∗x
evÐ→ 1

1
coevÐÐ→ ∗x⊗ x

so that these compositions are the identity [pictures].
Then I have another condition, that the evaluation morphism has both a left

and a right adjoint. These are morphisms in a 2-category so it makes sense to ask.
So functors from this guy to any other target are the same as the 2-groupoid of
2-dualizable objects.

Let me do a more concrete example, if I look at

Fun⊗(Bordfr
0,1,2,Lin Cat)

this is the same as the 2-groupoid of finite semisimple categories. The correspon-
dence takes the field theory Z to its evaluation on the point. This is the same as
the category of Kapranov–[unintelligible]2-vector spaces.

There’s also, these kind of semi-simple things appear, we’re looking more at
oriented theories, where we have a similar result, this is also, you could use Lurie’s
cobordism hypothesis or the presentation results in my dissertation, that, you can
get an oriented version of the category, where you get a slightly different answer.
There we get a functor (Bordor

0,1,2) into linear categories, and that’s equivalent to
the same thing, finite semisimple categories plus the data of a non-degenerate trace
which goes from Hochschild cohomology of the category to C. This is sometimes
called the center of the category, the [unintelligible]of the identity of C. This is
what you need to enhance to an oriented theory. Okay, so these are the sort of tools
you have, the things you start seeing in the fully local case.

I don’t want to talk about the fully local case, there are actually much older
classification results. This is an older folklore theorem. If you don’t go down to
points, you can do Bordor

(1,2), the ordinary category, and this is the free symmetric
monoidal category on a commutative Frobenius algebra object. It’s a beautiful
result, and it says that functors from this bordism category into Vect or wherever,
this is the same thing as the groupoid of commutative Frobenius algebras in a
classical sense.

Here this is implemented by taking your field theory and evaluating it on the
circle. The real theorem behind this is saying that Bordor

(1,2) has a presentation
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with a generating object, the circle, and it has generating morphisms, and you
only need four of them, cup, cap, pair of pants, and copants. [pictures]. Then you
have relations, here, and also reflections of them, [pictures], and these are exactly
the equations and relations that describe what it means to have a commutative
Frobenius algebra. The upside down pair of pants gives a map V ⊗V to V and this
picture gives associativity. The next equation says that the cap is a unit. Then you
get commutativity from this picture and here you get the Frobenius identity. This
tells us that this geometric object is deeply connected to this familiar algebraic
structure, this notion of commutative Frobenius algebra.

This persists.
I want to contemplate taking this and categorifying it, consider three-dimensional

theories that are 1,2,3-theories, valued in linear categories. What kind of structure
will we start to see in these kinds of field theories. Just as we saw here in dimension
2, well, it starts in the same way, it has a generating object, generating morphisms
like these, and then has generating 2-morphisms. So the relations will correspond to
certain cobordisms, and you can turn a diffeomorphism into a cobordism by crossing
a side with I and then using the diffeomorphism to parameterize the boundary. So
we get generating 2-morphisms.

[missed some]
There are non-invertible 2-morphisms, such as these ones [picture] which express

the fact that cap and cup are adjoint to one another.
So the theorem, which I’ll write right here, and this is joint with Bartlett, Dou-

glas, and Vicary, says that Bordor
(1,2,3) is the free symmetric monoidal bicategory

on an (anomoly-free) modular tensor object.
[slides]
What we learn as a corollary of this presentation is that functors, symmetric

monoidal functors from Bordor
(1,2,3) into linear categories is the same as the 2-

groupoid of anomaly-free modular tensor categories, a structure which has shown
up in other talks at the conference.

[question about the framed case]
Okay, so, maybe, I don’t know if I have enough time to talk about the fully local

case, but it’s interesting to compare, it’s an interesting question when these extend
to points. Since we’re short on time I’ll instead talk a little bit about how this is
proven. Let me go back even to the two-dimensional case.

How do you prove that Bordor
(1,2) is free on a commutative Frobenius algebra

object? The answer is to use Morse theory. Choose a Morse function on your
cobordism, and it has some critical points, which give you a way, a prescription,
for how to slice, and then in between the slices you have one critical point. Then
you know you have handle attachments and then any cobordism can be written as
a composite of these. To get the relations, you use a parameterized version of this.
You instead look at a generic family of maps to the real line. Then Cerf theory says
for any generic family, you’ll have a family of Morse functions except at a finite
number of times, when you’ll either have a cubic singularity, a birth death point,
or two critical points could exchange heights. In this family, you can trivialize
the family, for any two bordisms they will be related by a path which can be cut
into these piece where one such move is happening. Then there is diffeomorphism
information where these join up with each other.
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That’s one way to prove this result, use Morse theory and its fundamental the-
orem and Cerf theory and its fundamental theorem. That’s robust, that gives you
a presentation in any dimension.

Morse theory was good because it let us decompose in a linear way. When
we look at a two-category, we have a two-dimensional decomposition. The same
technique can be applied except instead of mapping to the real line you map to the
plane and get a singularity picture that is more complicated, so for example, you
get [picture], instead of having isolated critical points, you get lines, cusp points,
intersections, and that gives a two-dimensional way to isolate the places where
something interesting is happening. Then you look at a parameterized version of
this to get the relations. Looking at these elementary singularities tells you what
the generators would be. By looking at the geometric version of that, you get
[unintelligible]too.

With Douglas and Snyder we considered going from Bord0123 to the three-
category where objects are tensor categories, morphisms are bimodule categories,
2-morphisms are functors, and 3-morphsims are transformations. We show that
the three-dualizable objects are exactly the same as the fusion categories. We also
show that if you have a spherical fusion category, then that gives you an oriented
fully local three dimensional TFT. You can take that TFT and restrict it to just the
123 part. You can restrict it to this, it should give you a map from spherical fusion
categories to anomaly free modular tensor categories, which is exactly the Drinfeld
center. Then you can ask whether every 123 theory comes from a 0123 theory. We
saw earlier the obstruction group, this is the so-called Witt group of (anomoly-free)
modular tensor categories. You can see many examples of field theories can’t be
extended down to points.


