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1. Ezra Getzler: Chern-Weil theory for perfect complexes

Thank you very much. Actually I may not as it were get to that. As I was
preparing the talk, I realized I didn’t understand the formulas as well as I thought.
I want to give a survey of the perspective we are developing. A lot of the territory
I’ll cover will be similar to Dominic’s territory. He likes minimal resolutions; I’ll
take really big ones with hopes that there’s more room to move. Everything will
be in the context of categories of fibrant objects, which were introduced long ago in
K-theory. I’m a big fan of them now. An example is the fibrant objects in a closed
model category. The point is that there are much smaller examples. Closed model
categories have lots of limits and colimits. In differential geometry, we don’t have
coproducts, in particular. You want to strip down homotopy theory to its absolute
essence. I’ll have V the category of “spaces” which should have two subcategories,
that of weak equivalences W. This subcategory should satisfy the two out of three
axiom (or left and right cancellation) and should include all isomorophisms.

Then we have the fibrations F which are also a subcategory including all iso-
morphisms. Unlike in a closed model category, we don’t assume that all morphisms
have pullbacks. But fibrations have pullbacks and the pullback of a fibration is a
fibration.

There are two more axioms: there should be a terminal object e in V, so every
object has a unique morphism to e; that should always be a fibration.

Going back to model categories, we can factor every morphism into a trivial
cofibration followed by a fibration. We don’t have cofibrations but we can ask
for factorization into a weak equivalence followed by a fibration. Brown proved
something that you can call Brown’s lemma. With these axioms you can assume
that, well, let me first say, morphisms in F ∩W are trivial fibrations, and pullbacks
of trivial fibrations are trivial fibrations.

Brown’s lemma says that you can factorize a map X → Y into X → P → Y
where P → Y is a fibration and X → P is a section of a trivial fibration.

To give an example, if we have simplicial sets and fibrations are Kan fibrations
and weak equivalences weak equivalences. We take P to be the fibered quotient of
X with the path space of Y , X ×Y Map(∆1, Y ).

We want to do derived algebraic geometry bearing this in mind.
I should give some examples more relevant to derived algebraic geometry. I won’t

get to the real examples just yet. For now, let me take nilpotent L∞ algebras. Weak
equivalences are quasiisomorphisms and fibrations are surjective morphisms of L∞
algebras. Maybe if you’re not interested, you can spend the rest of the talk proving
this. These can be thought of as fibrant cocommutative coalgebras, but not all
fibrant cocommutative coalgebras.
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Now I’m going to define ∞-groupoids or higher stacks. I need a notion of a
topology. Some people say “admissible morphisms.” Here’s a set of axioms for a
topology on a category of fibrant objects. I mean something like a Grothiendieck
pretopology. When we take covers in algebraic geometry, we take sets of morphisms,
but I’ll take single morphisms to simplify things.

I have a subcategory of covers C. My covers will lie between, they will all
be fibrations and they’ll include all trivial fibrations. Now I have two axioms
remaining. The pullback of a cover sholud be a cover, that’s the main axiom of a
topology. An unexpected axiom that seems to hold for almost all Grothiendieck
pretopologies of interest but usually isn’t part of the definition—so I apologize for
calling it a topology—if gf and f are covers, then so is g.

For an example, take V to be schemes and F all morphisms, W isomorphisms.
This is a rather trivial example. Here I’m using that every morphism can be pulled
back for schemes, avoiding my reason for this formalism (that not every morphism
can be pulled back). Then take C to be surjective submersions. The point is that
this class of covers satisfies the extra axiom. There’s a chapter in the thousands-of-
pages stack book, there’s a chapter that just shows that this axiom holds for one
after another pretopology.

So I’m going to introduce a category of ∞-groupoids, a full subcategory of
the category of simplicial objects in V. Take s∞V, the full subcategory of ∞-
groupoids, and here I’m inspired by Duskin and Rezk, and this exact definition is
from Pridham. Duskin’s idea was to introduce the analogue of the Kan condition
for groupoids. Rezk gives an auxilliary condition, Reedy fibrancy. This is what I
mean when I say I’m taking a very big realization. The realizations will be fatter
than what one might first write down.

An ∞-groupoid, for each n I have an object Xn in V along with all the face
and degeneracy maps between objects. Since I’m calling objects in V spaces, this
is a simplicial space. Now the main condition is the following. This imitates the
Kan condition. We have a simplicial subset of the simplicial n-simplex, Λni ⊂ ∆n,
where we take the union of all but the i face. Then I’ll justify this in a moment,
we can take all the maps from the horn to X. This is a finite limit that might not
exist, later I’ll give an additional axiom. Then I have a map from Xn to this, to
Map(Λni , X), which is restriction, and then the axiom is that this is a cover for
n > 0 and 0 ≤ i ≤ n.

This won’t make sense without Reedy fibrancy. In the context of ∞-categories,
it’s was introduced in (88?). It’s hard to show that it holds.

The condition is that Xn → Map(∂∆n, X) is a fibration for all n ≥ 0. If this
condition holds up to n − 1, then we can define the space of maps from the horn.
It’s established in a number of papers, Dugger et al. It’s already visible in Verdier’s
seminar. Since this is assumed, the other axiom makes sense, we have the horns as
finite limits.

I have to define fibrations and weak equivalences. The fibrations are defined a
lot like the horn thing. When is X → Y a fibration? The condition is that the map
from X to

Map(Λni , X)×Map(Λni ,Y ) Yn

is a cover plus the Reedy fibrancy condition, that the following is a fibration:

Xn →Map(∂∆n, X)×Map(∂∆n,Y ) Yn
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At the bottom, X1 → X0, both of the maps are covers. You want to think that
the source and target are covers if you think of these as Lie groupoids. The whole
point is to find the right extension of Ehressman (in the 50s) to higher n.

The first new thing you get is that the product of source and target is a fibration.
In the scheme world this won’t be a condition but in manifolds this won’t be
possible. This leaves Lie groupoids out but you can do some analytic things. You
can work in loci, which are the completion of manifolds, if you wanted to work with
Lie groupoids.

The weak equivalences, it’s hard to say what that is. If you presume in addi-
tion fibrancy, then there’s a simple closed diagnositc for when a map is a weak
equivalence. The weak equivalences are, if you take the fibered product Xn ×Yn
Yn+1 where the map Yn+1 → Yn is the last face map. We can map this to
Map(∂∆n, X)×Map(∂∆n,Y ) Map(Λn+1

n+1Y ).
The idea is that I have a horn taking values in Y , and I lift the boundary of the

last face to X. Anyway, this map should be a cover for all n ≥ 0. In sets, this is
the statement that the relevant homotopy groups vanish.

This is, it turns out, a lift of that condition in our world.

Theorem 1.1. The category s∞V is a category of fibrant objects.

The proposal is that derived stacks should just fit into this language. Looking
at Toën Vezzosi, they have some more structure and I’m throwing some of it away
and trying to work internally.

Oh geez, that’s the first page of my notes. I should say that once you have Reedy
fibrancy, if K is a finite simplicial complex and X is an ∞-groupoid, then we can
form an∞-groupoid of maps from K to X whose n-simplices are Map(K×∆n, X).
You can form loop spaces and so on. This uses Reedy fibrancy.

So I want to give some examples. How do you get Reedy fibrancy in practice? Let
me assume I have a finite dimensional differential graded algebra A (I’m actually
interested in differential graded Banach algebras). I want a derived stack of the
invertible elements of A. This may relate in some way to the talk on Friday as well
as derived quot. I want to show a technical trick that gives Reedy fibrancy.

Your first guess might be to take as n-simplices, let me introduce MC(A), which
will be a curved L∞ algebra. Take A1 → A2 → · · · and I take A2[1], I want to
take the stupid truncation in degree 2 and higher, shifted down by one. I have
A1 parameterizing a family of curved L∞ structures on this thing. This I want to
think of as derived Maurer Cartan. Think of the Dolbeault resolution of End(E)
where E is a holomorphic vector bundle. That’s the example I have. I want to
abstract it. I have a differential graded algebra. Forget commutativity. The point
is, if I have a curved L∞ algebra. The places where the curvature is 0 is the usual
Maurer Cartan locus, solutions to dω + ω2 = 0 where ω ∈ A1.

Your first guess is to take the Maurer Cartan locus of C∗(∆n) ⊗ A. I want
normalized cochains to make this finite. For n = 0 you get Maurer Cartan things,
and for n = 1 intertwiners. This is a complete Segal category although I haven’t
introduced those.

But that’s not the answer. The answer is that I want to take Maurer Cartan
solutions in something like this but with a replacement ∆̃ for ∆. So ∆n is the nerve
of [n] but ∆̃ is a groupoid, has morphisms going up and down. This is the same
thing, it’s an infinite dimensional simplicial complex but still contractible and with
plenty of nice property. Joyal calls ∆̃1 the groupoid interval.
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I haven’t defined the category of fibrant objects. The fibrations are affine maps of
these guys which are surjective. This is a very strong condition. There are very few
fibrations. The covers require in addition that we go to a point in the classical locus
and get a complex, and we get cohomology, that should be an isomorphism. On
loci it should be a surjective submersion. [Missed weak equivalences]. The theorem
is that this is an ∞-groupoid. The source and target maps from N1A → N0A
should be a cover. Incidentally, this is the condition in Segal spaces that makes
them complete Segal spaces. Everything else in this theorem is soft. This is the
only place you have to think. Everything else is a universal formal consequence. I
have three minutes because I started late. Five, thank you.

I have two topics to cover in the last five minutes, negative five minutes. I want
to mention one thing which I like a lot. What about the image of NnA in NnA?
In sets, it’s Joyal’s notion and above it Rezk’s. You get a fibration. When does
this hold? Actually let me not do this. The main point is the other way to ensure
Reedy fibrancy. We can use complex manifolds as derived stacks for this. That’s a
lot harder. If you think about it, a complex manifold is some pseudoconvex charts
glued together, that’s a groupoid, the atlas. The task is to produce a Reedy fibrant
resolution. Even for a chart it’s not so straightforward. Take U ⊂ Cn pseudoconvex
(or convex in the real world). How do I make this a derived stack? I need to find a
Reedy fibrant guy. I need PnU which satisfies P0U = U , P1U → U × U should be
a fibration. I don’t have many fibrations. It’s going to be a little tricky to arrange
this. I didn’t say anything about Chern-Weil, so finding an explicit resolution is a
matter of imitating some work I did on infinity groupoids a few years ago, using the
Dupont gauge and essentially if you have a nilpotent L∞ algebra then L⊗C∗(∆n) is
again a nilpotent L∞ algebra. You extend to the curved case by the same formulas
and need a parameterized version. The explicit and very complicated formulas. For
n = 1 you get Bernoulli numbers. You glue, again, using the fact that you have
a category of fibrant objects. Once you’ve done it once, you never have to do it
again. It changes the notions of what presentations of manifolds you work with,
but it’s very explicit.

What I want to finally suggest is, for example, let’s look at the special case of the
n×n matrices. I already have one; I get Maurer Cartan solutions in n×n matrices
with values in the thickened n-simplex. I think of this as a simplicial differential
graded algebra and then focus on its noncommutative forms. The first Chern class
is the determinant, which is a complicated subject in itself. I’d better stop there.

2. Philip Boalch: Natural flat connections and wild mapping class
groups

I’d like to thank the organizers for asking me to speak here. Most of what I’m
talking about won’t be so derived. Let me start by talking about nonabelian Hodge
moduli spaces. The simplest case starts by taking a smooth compact algebraic
curve. Then you want to attach to that a connected reductive group G with a
maximal torus T . So we have H1(Σ, G). There are various ways to think about
what this set is. This is pairs (in the de Rham perspective) consisting of a principal
G bundle P over our curve Σ and an algebraic connection on P . There’s the Betti
picture, representations of π1(Σ) in Σ modulo conjugation.

People here would probably prefer to say we have an analytic isomorphism of al-
gebraic stacks. If you put in a stability condition, you have another perspective, that
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means that you can make a solution to Hitchin’s equations. That’s a hyperKähler
manifold. Then these perspectives become different algebraic structures on the
same underlying manifold. The de Rham picture is due to Donaldson-Corlette,
and there’s another complex perspective, the Dolbeault, where you have a Higgs
field instead. Then there is the Kobayashi Hitchin correspondence for Higgs pairs.
That makes this into a hyperKähler manifold. The correspondence to de Rham is
nonabelian Hodge.

I want to think about what happens when you vary the curves. It’s possible
to integrate in the Betti setting. The mapping class group acts there. There’s an
algebraic connection on bundles of bases, a nonabelian Gauss-Manin connection, in
de Rham.

So there are various extensions of this picture.
There’s this construction problem. This says “does there exist a projective vari-

ety X so that the the de Rham moduli space of X is not equivalent to the moduli
space of some curve Σ?” As far as I know, there are no examples.

We can look at non-compact Σ, let’s give points a1, . . . , an. Then you’re looking
at the fundamental group of the punctured thing. We could be viewed as fixing
conjugacy classes of monodromy around local punctures. This is still not quite, we
fix the real part of the eigenvalues and the imaginary part. We want a quaternionic
triple, so we need to fix a weight. This is the third in the triple that go to the real
and imaginary part of the eigenvalues. Then we need to look at the class of the
centralizer in Gm of the weight φ. We want to look at first order poles in all three
pictures.

These aren’t the most general solutions to Hitchin’s equations that appear. There
might be higher order poles in the wild picture. This goes, we need to fix at each
pole elements Q in, t((z))/t[[z]]. The coordinate independent perspective is to
say this is t(K)/t(O). We can change the moduli problem we have and look at
connections that look like dQ plus irst order poles.

[At this point I stopped taking notes.]

3. Andrei Caldararu: The de Rham complex from the point of view
of twisted derived intersections

Thank you very much for the opportunity to be here today. This is joint work
with Arinkin and my student Hablicsek. The paper is on the arXiv:1311.2629.

Let me explain the main object of study. You have some variety X, affine or
maybe some open subset in a projective variety. You have a function f : X → C
and you want to study the critical locus of f . One thing you want to study is the
twisted de Rham cohomology of X, which I will denote Ω•X,d+∧df . This goes from

Ω0 → · · · via d+ ∧df which you can easily check squares to zero.
These appear naturally, if you study matrix factorizations of this f , that’s a

model for singularity categories of the singular fibers of f . These cohomology
groups compute the cyclic cohomology of the category of matrix factorization. It’s
the same role de Rham cohomology plays for the usual variety of X.

A particularly simple example is, if f = 0, then this computes the usual de Rham
cohomology of X. Then if X were compact, we’d have a very useful way of com-
puting it. We’d have the Hodge theorem that this was the same as

⊕
Hp(X,Ωq).

My goal for today is to generalize this theorem in the case of twisted de Rham
cohomology.
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Now one way you could rephrase this theorem is that we have actually two
complexes, Ω•X,d and Ω•X,0, and the statement is that these two have the same
hypercohomology. Somehow the point is that you can get rid of the d and at the
level of hypercohomology you’re not losing it. Here X must be compact, otherwise
this fails. For the twisted case there is a result that was announced by Barannikov
and Kontsevich and then proved by Sabbah, that says in the twisted case, we need
to assume that the critical locus of f is compact. Then these two vector spaces
RΓ(Ω•X,d+∧df ) and RΓ(Ω•X,∧df ). Of course, it’s much easier to compute on the right
hand side.

The result says that the function X → C with proper critical locus over your
base, you get the same hypercohomology groups. The piece that’s missing is you’d
like some explicit calculation similar to the Hodge decomposition. It replaces a
calculation of homology of some complicated complex to doing it for some kind of
sheaves. You always have a Hodge to de Rham spectral sequence but it degenerates
here.

So first of all can we find an algebraic proof of the Sabbah theorem and can
we find one where we get a calculation like the Hodge decomposition. There is an
algebraic proof of [missed] but I will give a particular case, with an extra assumption
you will get the cohomology of a bunch of sheaves that you can compute.

Now I want to say that for the original result there’s a nice algebraic proof using
characteristic p methods going back to Deligne and Illusie, I think 1988. You have
a complex of sheaves which is not a complex of OX modules. On the other hand
you have a much nicer category. If X is over a field k of characteristic p > dim X,
perfect, we can use the Frobenius morphism, which, the relative Frobenius is from
X to X ×k k, this is twisted to be made k-linear. Then here’s what Deligne and
Illusie proved. They proved that if you take the de Rham complex of X with
the non-linear differential d and push it forward to X ′, (since the field is perfect
the map is an isomorphism, just not k-linear), you get something OX′ -linear. If
X lifts to W2(k), (this is a ring, no longer a field) which is easy to satisfy, then
F∗(Ω

•
X,d)

∼=
⊕

i ΩiX′ [−i].
This is the heart of their result, it gives the Hodge theorem immediately. You

say that the de Rham cohomology of X is the global sections RΓ(X,Ω•X,d) which

is RΓ(X ′, F∗Ω
•
X,d)

∼= RΓ(X ′,Ω•X′,0) and here we’re not k linear and you get

RΓ(X,Ω•X,0)
Vanishing for arbitrary characteristic sufficiently large gives a characteristic zero

calculation.
Since many people aren’t familiar with characteristic p methods, I thought it

might be good to give an explicit example.
If X is A1 which is not proper, but let’s ignore that, OX is k[x], and F :

X → X ′ goes by k[xp] ⊂ k[x], with OoX′ = k[xp]. We have f 7→ f ′dx and

look at 0 → k[x] → k[x]dx → 0. You want to compare this to 0 → k[xp]
0→

k[xp]dxp → 0. There’s an obvious map on the left but on the right you ctake
gd(xp) to gxp−1dx. We’re choosing explicit representatives, like choosing harmonic
representatives. Finding this is only possible under the extra assumption. This will
always be satisfied for any variety coming from characteristic zero.

Now let’s move on to the, there’s a more geometric way in terms of derived
geometry to try to understand this result, namely I’d like to realize these two
complexes that I’m trying to compare, the statement I’ll make is the following. If
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I try to understand X ′, I have two complexes, Ω•X′,0. This can be understood in

terms of the self intersection of X ′ inside its cotangent bundle. This intersection
gives you a complex that is essentially the dual to this one, via a standard Koszul
resolution. The one side is dual to the structure sheaf of the other side. Now this
is no news. The more interesting news is that the Frobenius pushwordward of the
de Rham complex on X can be related to the structure sheaf of a slightly different
gadget, which is the cotangent bundle twisted by D.

In characteristic p the sheaf of differential operators D on X has lots of elements
in the center. In particular, the center can be identified with OT∗X′ . This naturally
lives on this bigger space, T ∗X ′. Moreover, this D is an Azumaya algebra, in the
sense that it is over T ∗X ′ and it’s always nontrivial. This natural twisting is there
staring at you and is not there in characteristic zero. Twisted spaces behave almost
exactly like regular spaces. The point is that if we do the derived intersection inside
the tangent bundle, without the twisting we get one complex and with the twisting
we get the other. So computing the two derived intersections is the same, this is
one way of understanding Deligne and Illusie’s statement.

Morally, why is that true? The reason it’s true is the following. When you
compute the derived intersection of something with itself, you only need to know
something about the infinitesimal neighborhood of X ′. If you know that d is 0
on some formal neighborhood of X ′, you’re done. That’s not true, but Ogus and
Vologodsky proved that D restricted to X ′(1) is trivial as an Azumaya algebra if and
only if X lifts to W2. This says to first order the Azumaya algebra is trivial around
the zero section and for reasons that will become obvious later, the computation
only cares about the first order neighborhood of the zero section.

I would like to do the same exact story in the twisted de Rham case. I need
to somehow put my function f into this picture. It’s fairly easy to generalize the
geometric picture. My function f gives rise to a section, Xf is the graph of df
contained inside T ∗X, and then do the Frobenius twist and you get X ′f contained

inside T ∗X ′. The picture is kind of like this. Before I had the cotangent bundle
of X ′ and I was doing the intersection of two Lagrangians, both the zero section.
Now I’m just intersecting with a different Lagrangian. If I compute ΩX′,∧df ′ , this
is related to the intersection of X ′ and X ′f in T ∗X ′, these two Lagrangian sections,
the structure sheaf is the dual of this Ω. If I twist things as I was doing before
where I replace O with D, then we get the Frobenius pushforward of ΩX,d+∧f . The
cotangent bundle of X ′ has a quantization going from OX to D. I look at what
happens under the deformation, under the quantization. It is just adding the extra
d. The problem is, you want to show that these are quasiisomorphic. We saw one
example. What is the corresponding story in the twisted case?

Now we have a very concrete abstract problem. Namely, here’s the abstract
problem. We have a space S inside which we’re doing intersections and we can
compute the derived intersection of X with Y inside S. Or we could instead, we
have an Azumaya algebra on S. Call it A. Let’s assume, I don’t want to ask, this
gives us Azumaya algebras on X and Y by restriction. I could compute the derived
fiber product of this but that’s not very interesting. What happens if A is trivial
along X, so we have (X,OX) and (Y,OY ). I’m trying to intersect the same things
as before but in S,A instead of S.

The question is to compare the derived intersection W in S with the derived
intersection W̄ in (S,A). The point somehow is that it’s fairly easy to see, let me
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say it this way. I can take the fiber product restricted to X and to Y . The fiber
product would be the old W with the twisting from A. Because it was already
trivial on X or on Y it would pull back as trivial on W . However, the point is
that the two trivializations need not agree on the intersection. The picture is that I
have the two subvarieties. If I restrict my Azumaya algebra to either one it’s trivial
but on the intersection they may not agree. Any two differ by a line bundle of the
ambient space. The difference of the two trivializations of A|W is a line bundle
on W . This tells me whenever I have a problem of this sort, I have a natural line
bundle on the intersection of X and Y . In the problem we’re interested in, the
line bundle is trivial in the classical sense. If we think of the classical intersection
it’s trivial. In the derived sense the line bundle may be non-trivial. This will be
essentially the Deligne Illusie story.

What I wanted to emphasize, when we think of line bundles in the usual setting,
that may be misleading. If we think OW is · · · ⊕ ∧2E ⊕ E ⊕ OW 0 . What is the
Picard group of W? It’s H1(W 0,O∗W ) which contains H2(W 0, E). The complex
has the same cohomology sheaves as all these sheaves but it stops being a formal
complex. One thing you can do is tensor with a line bundle. You can also take a
complex which stops being formal. H2 is a way to amalgamate the two terms of
the structure complex.

So now we would want a theorem that says that the line bundle is trivial some-
times. Here’s the theorem. It’s a formality theorem.

Theorem 3.1. Let W be the derived intersection in S with W 0 the classical inter-
section. If:

a. W 0 is scheme-theoretic smooth,
b. X → S is split to first order,
c. the sequence 0→ NW 0/Y → NX/Z |W 0 → E → 0 splits, and
d. the two trivializations of A on the classical intersection are the same.

then the derived intersection over S is the total space of E[−1].

The point is that inside, S can be either ordinary or twisted. So the whole point
is that the result of the calculation does not care about whether your scheme is
twisted at all. The third condition is nontrivial and must be checked. The second
condition needs to be understood in the appropriate category in the sense that if
X → S is a map of ordinary schemes, it means the ordinary thing, but if these are
Azumaya schemes (X and Y are not twisted, by the way) then I need to consider
X and Y in this setting. The derived intersection, the point is, doesn’t care about
the twisting. It only cares about the intersection of X and Y in the ordinary case.

One other way to say this is that the line bundle is trivial.
I had two different derived schemes. One had a twisting. The difference is a line

bundle. The statement is that the bundle is trivial.
Putting all of this together, apply this to the setup where S is the cotangent

bundle of X ′ with either O or D. Now X ′ is X ′ and Y is the graph X ′f , the graph

of df . Now W 0 is the critical locus of f . Now W is the derived critical locus.
The conditions, well, condition d. is automatically true. The sheaf of differential
operators always becomes trivial on zero sections and the graph of a one-form. My
assumptions are

a. Crit f is smooth,
b. X lifts to W2(k), and
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c. Crit f inside X is split to first order.

Then RΓ(X,Ω•d+∧df ) ∼= RΓ(X,Ω•∧df ) ∼=
⊕
Hp(Crit f,ΩqCrit f ). Thank you.

4. Behrang Noohi: Introduction to topological stacks

Thank you very much for the invitation. Those of you who have looked at the
abstract will have realized that this was supposed to be a short course. I hope this
is not too disappointing. The content is easy. I condensed some easy material to
make it look like a research talk.

Here’s what I want to talk about. Homotopy types of topological stacks, I don’t
know if that’s the title I gave.

The outline is to start with some setup, then talk about some old ideas, then
the classifying space of a topological stack, and then the singular chains. This part
is joint in progress with Tom Coyne. The last part is higher stacks, really just a
question.

Okay, so let me fixe the setup. I’m going to use an unorthodox approach to
stacks. I’ll take a stack to be a presheaf of groupoids on the category of topological
spaces with the descent condition. For me it’s a one-stack. There’s no infinity
going on. I work on the site of topological spaces or compactly generated Hausdorff
spaces, whatever. I’ll work in presheaves rather than things fibered in groupoids.
The gadgets I’m interested in are topological stacks. A topological stack comes
from a topological groupoid, associated to a topological groupoid. I will make an
assumption. I’ll assume that R → X is a local Serre fibration, using either the
source or the target. For every y in R there are neighborhoods of y and its image
in R and X such that if I restrict my map to V → U I get a Serre fibration. A lot
of the things I want will still be true but let’s assume it so I don’t have to say it.

Some standard properties of topological stacks. First of all, they form a 2-
category. 2-products exist. Of course, the famous Yoneda lemma, every topological
space gives a topological stack. This is a fully faithful embedding.

What I want to do is extend ideas to the other side of this. If I have a group
acting on X then I get the quotient stack X/G. I want to be able to get equivariant
information about X captured by this theory.

That’s what I want to do. I’ll tell you a few different ways to think about this
problem.

These were known before stacks were defined. Already a few decades ago people
more or less knew about these. Let me give you some examples of homotopy
invariants you can associate with these guys. So now X will be a topological stack.
I can use Yoneda to think of Sn as a topological stack and look at maps Sn → X .
You can easily talk about homotopy and pointed homotopy and talk about and
define πn which satisfies the ordinary expected properties. You could try to define
homology or cohomology. You can look at cohomology by looking at the simplicial
space associated to your stack. SUppose you have these quotient stacks. Then you
can get the simplicial space X• where Xn = R×X R×X · · ·R and to this (I learned
this from Kai) that you can construct a bicomplex, taking the chains, and take the
Tot and get homology and cohomology. This is something that has been known for
a long time, maybe not phrased in the language of stacks.

Instead of taking the bicomplex, you could take the geometric realization of X•
and get an honest space and homotopy invariants of |X•| should be regarded as the
homotopy invariants of X . That’s how you make sense of homotopy invariants for



10 GABRIEL C. DRUMMOND-COLE

topological stacks. This is not very satisfactory, for a couple of reasons at least.
One reason it’s not satisfactory is functoriality. To get the right theory you’d need
functoriality with respect to Morita morphisms. Some people call these bimodules.
Not every morphism of stacks comes from a morphism of groupoids. You need to
check functoriality. It can be done, of course, but it’s not convenient, and if you
want to do something fancy it gets quite complicated.

How do you go back and forth between |X•| and X itself? You could define the
homotopy groups this way or take the homotopy groups of |X•|. You expect them
to be the same, but you really have to work at it. A map from Sn → X does not
come from a map of groupoids.

So you want a more functorial approach that tells you how X and |X•| are related
in a concrete way. Working on a project with Kai and Ping Xu and Greg Ginot, it
turned out this wasn’t really the right way, to use these ad hoc approaches. This
question came up in Kai’s office eight years ago. Is it true that for every topological
stack there exists a topological space X with a map X → X such that the map is
a trivial Serre fibration? I keep changing my mind as to whether the answer is yes
or no. I don’t know the answer to this question. What I do know is the following.

Theorem 4.1. There is a natural map from ||X•|| → X where || || is the fat
realization where we keep degeneracies such that for all paracompact spaces T and
every map T → X we get that the space of lifts is contactible

||X•||

φ

��
T

<<

// X

.

This theorem was an attempt to answer the question (call the question *). A
corollary of this which is easy is that

Corollary 4.1. φ is a universal weak equivalence.

The meaning of that is that ||X•|| → X , the fiber product over a map S → X ,
the pullback is a weak equivalence of topological spaces. In particular, all the fibers
are contractible. It looks like what you need to be a trivial Serre fibration. It’s
somewhat satisfactory.

Corollary 4.2. φ is a trivial weak Serre fibration

What does this mean?
A

CW inclusion

��

// X

��
B

??

// Y
when the square 2-commutes, the bottom triangle commutes and the upper trian-
gle homotopy commutes fiberwise. The only problem is that I have the homotopy.
We’re almost there but I don’t know how to get rid of the H. That’s a bit unfor-
tunate.

I’m not going to prove this, I’ll just give you the ingredients of the proof. The
proof of the theorem, the main two ingredients of the proof are the ideas of Haefliger
on ||X•|| and Dold’s paper on partitions of unity, an annals paper from the 50s.
These are old ideas, my only observation was that you get this map which has this
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property. The proof turned out to be quite technical. Elementary but you have to
use 15th century—I mean 50s mathematics. Okay so that’s the classifying space,
what it does for us. Let me make a definition here. If I have a universal weak
equivalence φ : X → X with X a space, then I call (X,φ) a classifying space for
X . Let me tell you how this could be used to prove things. I’ll show you a couple
of simple examples. It’s easy to see using what I’ve erased that πn(X) → πn(X )
is an isomorphism. Another application and this was one of our motivations, we
wanted a Thom isomorphism for stacks. Suppose you have a vector bundle E over
X . You could define homology with the bicomplex, and you could formulate the
Thom isomorphism. Showing it though, I don’t think it will be that easy. Once
you have a classifying space, it’s almost trivial. Take a classifying space of X and
take the pullback. So the homology is the same, the complement of the zero section
as well. Then the Thom isomorphism on the pullback gives the Thom isomorphism
on the stacks.

This gives you a bit more functoriality. That’s why I like it. Let me say a few
words about “functoriality.” I put it in quotes because it’s not exactly what I want.
If I choose classifying spaces for X and Y with a map f : X → Y, can I get a map
lifting it? I take the fiber product, take a classifying space for the fiber product,
and then for that choice I can lift the map upstairs. If you manage to do the lift,
then two lifts are the same in the homotopy category. They are not homotopic, you
may need to invert some quasiisomorphism to make them equal. The homotopy
(respecting the diagram) is unique up to higher homotopy and so on. So taking the
classifying space from topological stacks to the homotopy category of topological
spaces is a functor. But I need to pass to the homotopy category.

Let me make a few remarks about this functor. It’s the right adjoint to the
inclusion of Top into TopSt. It’s not right to say it’s the right adjoint because the
category Top is incorrect. It’s true after some localization. That was my attempt
at making this an honest functor. That’s all I can say. I can say that φ is the counit
of the adjunction. There’s also a diagram version. If you start with a diagram D,
you need a condition, maybe locally finite, then you can do this uniformly and find
a diagram of classifying spaces.

I was desperate to make this functorial. At the end of the day I don’t have
enough functoriality.

You could do some stuff using these classifying spaces. They do make your life
somewhat easier. They are not quite satisfactory because as I said, they are not
functorial enough.

(finde)
Now I want to present a different approach which is more functorial. This is

singular chains on topological stacks, which is joint with Tom Coyne. It’s very
easy. I have a topological stack X and I want to define singular chains. So what
I do, I think of X as a functor from topological spaces to groupoids and get a
simplicial groupoid, looking at ∆op in Topop. This captures the homotopy type
of X . You want to be very classical and work with simplicial spaces. You can
really construct a simplicial space. Take the nerve N(X|∆op) which is a simplicial
set and take the diagonal. That’s the singular chains on X . It takes morphisms
to morphisms and two-morphisms to homotopies. This is the most obvious thing
you could do and you could hope that it gives you the right homotopy types. This
agrees with the usual simplicial set associated to a space, S(X) when X is a space
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X. It does extend the ordinary defnition. But you have to make sure it has the
right properties. Here’s the list you want it to satisfy.

(1) Does S(X ) have the same weak homotopy type as the classifying space?
(2) If I have a weak equivalence of topological stacks X → Y, is the induced

map on simplicial sets a weak equivalence?
(3) Is S(X ) a Kan complex? It’s always a Kan complex when X is a space.
(4) More generally, if X → Y is a (weak) Serre fibration, is S(X ) → S(Y) a

(weak) Kan fibration?
(5) Is there a natural weak equivalence |S(X )| → X ?

Let me make some observations. First of all, two implies one, by taking X to be
the classifying space of Y. Four implies three by taking Y to be a point. Four also
implies two. Maybe I should say a few words about why. I can always come up with
a square above a morphism of stacks where above each stack I have a classifying
space with a weak Serre fibration. If I apply the singular functor I get a square

X //

φX

��

Y

φY

��

S(X)

��

// S(Y )

��
X // Y S(X ) // S(Y)

So then S preserves the fiber. You have to be careful with this because the original
square is two commutative so you get a homotopy, but eliding that, you get the
fibers to be contractible and move back and forth. So all I need to do is prove four.
I’m surprised no one has noticed this. Four is not true. Everything pretty much
breaks down. I have just a few minutes to fix that. I’ll have to speed up a little.

Definition 4.1. A morphism of topological stacks is a Reedy fibration if when I
restrict it to ∆op I get a Reedy fibration of simplicial groupoids. These make sense
for simplicial objects in any simplicial category. It’s the definition Ezra gave this
morning in terms of matching spaces. Copy the definition Ezra gave except now
we’re in groupoids.

You only have to check it up to two. You only need to check the lifting for paths.
Maybe to two simplices. Anyway, the theorem is that if f : X → Y is a Reedy
fibration and a (weak) Serre fibration then the induced map on singular complexes
is a (weak) Kan fibration. So the answer is yes if you also have Reedy.

So now the arguments I gave could be modified but you get the same statements,
roughly. You need for three to have X be Reedy fibrant in order to have S(X ) Kan.

Let me say one word about five. For five, unfortunately I need a condition. The
answer is yes if X admits a classifying space which is a Serre fibration. Then we
know how to prove five. Then, though, instead of using the ordinary realization,
you use the fat one.

I guess I should stop. I wanted to say a few words about infinity stacks. You
can make sense in higher stacks as well. You could do the same thing. What I
have proved so far, I just indicated that you have a good definition. To formulate
one last question. The generalization, I wanted to know the answer. If I find the
answer I’ll be happy. Question: is this true for ∞-topological stacks, meaning the
noes coming from simplicial spaces?
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5. Alice Rizzardo: Representability of cohomological functors over
extension fields

So thanks to the organizers for giving me the opportunity to speak. For the
duration of this talk, X and Y will be smooth projective and Db(X) will be derived
category of coherent sheaves. We’ll talk about Db(X) → Db(Y ). If this functor
F is fully faithful, it’s isomorpyhic to a [missed]-transform. If p1 and p2 are the
projections from X × Y to X and Y , then ΦE = Rρi∗E ⊗ p∗i (). You don’t need all
the hypotheses. Most of what I’m saying is joint with [missed]. One nice theorem
is that for X a projective scheme such that OX has no zero dimensional torsion
and Y quasicompact and separated, then every fully faithful functor Perf(X) →
DQCoh(Y ) is isomorphic to the restriction of a Formier-Mukai functor associated
to an object in the derived category of quasicoherent sheaves on X × Y . This is all
I’m going to say about relaxing hypotheses on X ×Y . You could also keep smooth
projective and relax fully faithful. In the original paper of Orlov, he thought it was
still true. He’s changed his mind since then maybe. Some other people relaxed to
a slightly weaker case than asking X to be full. I’ll give you a counterexample in
the case where our functor is not fully faithful.

Let me begin with F from Db(X)→ Db(Y ), an exact functor, and I’m going to
pull back Db(η) where η is a generic point of y. I’ll go to function fields and dualize
for technical reasons. That total functor is H and a question I can ask is whether
H is representable. Why do I care? If yes, I get Ẽ in Db(XK(Y )) such that H(C)

is [missed]j∗C, Ẽ where j is base change.
Then we can lift to E in Db(X × Y ) and then Y and ΦE are isomorphic after

pulling back to η.
This would be nice but I haven’t told you whetherH is representable. The answer

is sometimes. I’ll state the theorem in this precise situation. H is representable
for the degree K(Y ) ≤ 1 or K(Y ) = [missed] so Y is a curve or a rational surface.
The idea of the proof is as follows. I have my functor Db(X) → modK(Y ). If this
were just to K then this is representable. I’m going to a bigger field. But I can
take this to ModK (Big M means not necessarily finitely generated). The proof
still goes through and I get A ∈ Db(QCoh(X)) but also because I was actually
going to modules over K(Y ) I also get an action of K(Y ). This isn’t quite what
I wanted, I wanted something in Db(QCoh(X)K(Y )). There’s a functor from the
latter to the former. Is it essentially surjective? I was able to prove it at the time
with the conditions on the field above that put you in the curve or rational surface
setting. I thought maybe there was a better way.

It turns out that you can do better but not that much better. There’s an
obstruction to lifting in Hochschild cohomology. Our theorem says, take C to be
a K-linear Grothiendieck category and B a K-algebra. I have this functor forget
from Db(CB) to Db(C)B . If B has Hochschild dimension less than or equal to two,
then forget is essentially surjective. Less than or equal to one, you get full, and
zero you get an equivalence of categories. In particular, you could get this in more
generality, but in particular, the Hochschild dimension is just Chern Simons degree.
I could substitute this with Chern Simons degree less than or equal to two and with
higher degree you get an obstruction.

So for M ∈ D(C)B , I’ll lift at the A∞ level. So an object in D(CB) can be
thought of as an object in D∞(B,C) (I’ve inverted quasiisomorphisms) and the
inclusion is an equivalence of categories. So start with fibrant M ∈ C(C) and
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then B → HomC(C)(M,M) is compatible with multiplication up to homotopy.
What does it mean to put an A∞ structure on M? It’s the same as having an
A∞ morphism B → Hom(M,M). We can do this step by step, starting with
the one we have already and at each step we get an obstruction which lives in
HHn(B,Ext∗C(M,M))−n−2. In particular this will be true if B has Hochschild
dimension less than or equal to two.

Now you can ask what happens for higher Chern Simons degree. Things really
do go wrong.

Theorem 5.1. Take Y smooth projective over K, not a point, P1, or an elliptic
curve. There exists a finitely generated field extension L/K of degree three on an
object Z ∈ Db(QCoh(Y )) which does not lift to Db(QCoh(Y )L).

What can we do with this? Take X smooth projective with function field L, and
then start with Perf(X), pull back to a generic point, this goes to D(L), and then
take, to the derived category of quasicoherent sheaves over Y , by taking L to Z
which is enough to define my functor since Y has global dimension zero. Now this
functor is not the restriction of an FM transform in the non-fully faithful case.

Let me see how much I can proove of this.
First of all, let me start with part two, showing that the composite functor is

not a transform. I’ll forget that I defined it on Perf, I’ll take it on quasicoherent,
so what happens if I compose Φv ◦ η∗(L)? This si the same as Φ(iη×id)∗L and that
base lives in DQCoh(SpecL × Y ) which is D(QCoh(Y )L). But on the other side
you get Ψ (the functor) composed with [missed] which is Z and this is something
I said you couldn’t do.

For part one I’ll do proof by example because maybe it’ll be more interesting.
My example will be X = Y = P 3. So L = k(x, y, z). I’ll consider OX ⊕OX(1). I’ll
go to Mod(kQ), where Q is the quiver with four arrows.

I’ll take the following representations where the arrows are 1, x, y, and z from
L to L. Now Z = R⊕R[1] in Db(Mod(kQ)).

Now I get

L→ EndDb(Mod(kQ))(Z) =

(
End R 0

Ext1(R,R) EndR)

)
My map is

(
φ11 0
φ21 φ22

)
.

You need φ21 to be a derivation and Z lifts to Db(Mod(kQ)L) to φ22 and inner
derivation. So you look at HH1(L,Ext1kQ(R,R)) which is HH3(L,HomkQ(R,R) =

HH3(L,L) which is nonzero by the Hochschild-Kostant-Rosenberg theorem.

6. Jesse Wolfson: The Index Map in Algebraic K-Theory

Thank you, and I want to thank the organizers for letting me speak even after
snowfall prevented me last week. I’m talking today about part of an ongoing
project. With some luck in short succession a few more papers will show up after
the first one later this week.

So R will be a ring. and the basic objects I want to consider are R((t)) with the
t-adic topology. This is working in the category of Tate modules, and a countable
Tate module is a topological direct summand of the Laurent series. This is the
background, and let me get a few definitions up on the board. The first definition
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is that a lattice is a submodule L ⊂ R((t)) such that the quotient is a discrete
projective R-module, and we require that L is isomorphic to the topological dual of
another projective module. For example, the topological dual k[t]∨ is the module
k[[t]]. This is the type of thing. The basic lattice we’ll consider is the submodule
R[[t]] of formal power series. There’s an unfortunate thing all the things called
Tate modules. If you’ve seen a different notion put it out of your mind for todays
talk. The main object of study is the Sato Grassmanian, which I’ll define to be
Gr(R((t))) which is the set of lattices.

The key fact about lattices is that if L ⊂ L′ are lattices, then the quotient L′/L
is a finitely generated projective R-module. This motivates the following definition,
if L and L′ are a pair of lattices, then L−L′ we’ll define this to be N/L−N/L′ as
a point in the K-theory of R where N is a lattice containing both.

There’s a canonical map from the classifying space classifying R-modules into
K-theory. This is an infinite loop space so I can add and subtract things.

The goal of this talk is to show that L 7→ R[[t]] − L gives a natural map from
Gr(R((t)))) to KR.

Why is this interesting and why do I care? This Grassmanian is very rich and
interesting in geometry. This is the set of R points of an Ind-scheme. You can
think of this as being a good place to study the KP and the [missed] hierarchies.
This object also plays an important role in the representation theory of loop groups.
There’s also something important in index theory. Today I’ll talk something about
index theory and give a perspective on how that map looks from that perspective.

Okay, so I’ll take a brief detour into Hilbert space. H will be a complex separable
Hilbert space. Recall that a bounded operator A onH is Fredholm if the dimensions
of its kernel and cokernel are both finite. We’ll write Fred(H) for the space of
Fredholm operators. The clasical theorem of Atiyah and Janich is that there exsits
a map from the space of operators to Ktop

C . This is sort of my guide for how to think
about this area. If we think of a polarized Hilbert space, for example L2(S1,C)
with polarization from L2(D2,C), then we can think of the automorphisms in H
whose projections onto the polarization is Fredholm and the projection onto the
complement is H.S. There’s also a version of the Grassmanian due to Segal-Wilson.

An easy corollary of the Atiyah-Janich theorem is that there’s a homotopy com-
muting square

CLres(H,H+)
g 7→gH+ //

g 7→πH+
gπH+

��

Gr(H,H+)

L7→H+−L
��

Fred(H+)
index

// Ktop
C

All these maps are equivalences.
The theorem that tells you how to think about this is that for R there is a

homotopy commuting square

Aut(R(H))
j 7→jR[[t]]//

��

Gr(R((t)))

��
ΩKTaterindex �� KR

So this is a more general version of the previous square.
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Theorem 6.1. (Saito)
Index is an equivalence.

Proposition 6.1.

Ω(BGL+
res)
∼= Fred(H)

Proposition 6.2. ΩBAut(R((t))+) ∼= ΩKTate(R)

These are the propreties I want this map to have. [Missed some discussion]
I’ll come up with a map to K-theory. I’ll avoid homotopy theory by using a

convenient model. This construction showed up in a couple of talks, Waldhausen’s
construction of K-theory. If X is a simplicial set, then Dec(X) is a simplicial set
whose n simplices are the n+ 1-simplices of X. The face maps shift up by one, di
is di+1. We have to have a starting and ending point. So we also have an endpoint,
so on nsimplices we have Xs+1 → Xn and δ1 : DecX → X0 via dn+1

1 . This S is a
deformation retract.

Let me recall Waldhausen’s construction. Think of C being finitely generated
projecive R-modules. Now sC is diagrams, a sequence of inclusion admissible, see,
just kernels, inclusions of direct summands. Then we’ll choose quotients for all
these inclusions just as a way of sort of canonically fixing the data. You have a
nested sequence of subobjects. The ith face map equals forgetting the ith row and
the ith column counting from the top. The theorem, this is the amazing thing,
due to Waldhausen, is that if we geometrically realize this simplicial set, it’s an
infinite loop space, so that’s quite strong, and two, the loop space of the geometric
realization is the K-theory of our exact categories.

This gives us a way to get maps into K-theory. If X is a simplicial set, then a
homotopy commuting square

|X|

��

// |Decs.C|

��
? // |s.C|

determines a map |X| → Ω|s.C|.
Now I’ll build a map and then I’ll be done.
So I have to write down a nasty definition. I wrote down a definition of a

difference of two lattices. I want to make a choice that includes all choices and it’ll
even out in the wash. This will be technical, I’m sorry, it’ll go fast. So L will be a

subset of Dec2s.Tate(R)×S0,S0

Decs.Tate(R)Dec
2s.Tate(R). The subset will be [missed].

Once you have this definition, the map to K-theory follows formally. The key fact
is the quotient of lattices by sublattices, you’ll get a map into Decs.P(R)2 and if
we apply [missed] on both factors we can get down to s.C. So key is that both
factors are equal. We geometrically realize and this is an infinite loop space so we
have a contractible space of contraction maps and if we compose that with these
maps, because the two factors are equal, we have a homotopy commuting square
of the desired form

|L|

��

// |Decs.C|2

��
? // |s.C|
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The fact then is that any two lattices admit a common envelope.
If I forget all the chains of common enveloping lattices, this gives me a map from

L to the Grassmannian of my Tate module. So I get things that break up in terms
of nerves of posets so the fibers are contractible. So I get this map to the K-theory
space. If you run through the definitions up on the board, you’ll see that this comes
from taking a lattice, taking a common enveloping lattice, and taking the quotient,
and the construction ensures that our choices give canonically equivalent answers.
That’s the map, that’s a little bit of K-theory and index theory in this context,
and thank you for listening to my talk.


