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1. Alistair Hamilton Pretalk: Moduli Spaces, noncommutative
geometry, and characteristic classes

I’ll try to keep the material fairly elementary. The topics I hope to cover, I’ll
explain a theorem from Kontsevich about moduli spaces of rings. There’s a theorem

Theorem 1.1. (Kontsevich)
The disjoint union of the moduli spaces of Riemann surfaces (with negative Euler
characteristic), its homology, or rather the homology of the one point compactifica-
tion, is the homology of a Lie algebra g. This is supposed to be a non-commutative
analog of some vector fields.

I’ll discuss this theorem, define the Chevalley-Eilenberg homology of a Lie alge-
bra, talk about the Maurer-Cartan moduli space, and we’ll use exponentiation to
produce classes in the one point compactification of the moduli spaces.

I’ll also discuss some super integral, what happens when you have an algebra of
super functions, and then I’ll discuss some elementary aspects of the BV formalism
in finite dimensions.

To explain this theorem, I’ll talk about the orbicell decomposition of this moduli
space, due to Mumford, Penner, Thurston, Harer.

I’ll talk about ribbon graphs. I can decompose this moduli space into orbicells
which are ribbon graphs. I’ll need the definiton of a metric ribbon graph, it’s an
ordinary graph with extra information, a cyclic ordering of the edges at each vertex
and a positive real number attached to each edge.

[picture]
Given a ribbon graph like this, you can construct a surface with marked points.

To each edge I associate a complex strip of width ti and height ±∞. I glue these
complex strips onto these edges. If I do that, I get something like this.

[picture]
At my vertices, I get some cyclic ordering. I glue these edges according to the

cyclic ordering. I end up with something like this:
[picture] I get marked points at the infinities. At a vertex, I can define charts by

looking at branches of z2/n. I choose some branches in order to make some charts
in the neighborhood, since each of the edges is 180◦.

At a marked point, in a neighborhood, I have a picture that looks like this. The
horizontal lines become angles around a central marked point. Now I can label
these points by the perimeter.

If I have two isomorphic metric ribbon graphs, they give me the same surface.
So I have some map from RE(Γ)

+ → Mg,n ×∆n−1, using the simplex to record the
numbers. If I don’t care whether my automorphisms preserve these numbers, then
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I get a map modulo the automorphisms of Γ, giving the orbicells of the moduli
space.

Let me now show that every Riemann surface is constructed from a graph.
Let me explain the Jenkins-Strebel theory in order to go back, using quadratic

differentials.
This is a meromorphic section of the second tensor square of the complex cotan-

gent bundle. A horizontal trajectory is a curve on the Riemann surface on which
the quadratic differential is described by a positive function, pulling it back to this
curve.

Likewise, we have the notion of a vertical trajectory, where the pullback is a
negative function. To get a graph from the Riemann surface, we need a result that
says, I have a Riemann surface with marked points labeled by positive real numbers,
and now I invoke the result that says, there is a unique quadratic differential on
the Riemann surface with the following properties:

(1) it has double poles at the marked points with residue −
(

pI

2π

)2

(2) the closed horizontal trajectories are dense in the Riemann surface.
The horizontal trajectories form rings around the marked points, which carve out
disks, and where they meet we’ll get a graph. The vertices correspond to zeros
of the quadratic differential. A vertex of valence n + 2 is a zero of order n. The
orientation gives us a cyclic ordering and the quadratic differential gives us a metric
so we can decorate each edge with its length in this metric.

If I cut this on its vertical trajectories, these are rays coming out of these points,
which will connect to the vertices. I’ll end up if I cut on this with a bunch of
complex strips. You can fill in the details, but you can see that the Riemann
surface is obtained by gluing the strips as I said in the beginning of the lecture.

We have this theorem, Harer, Mumford, Penner, and Thurston,

Theorem 1.2. If I take the disjoint union of Mg,n×∆o
n−1, the one point compact-

ification i an orbicell complex.

Let’s see what happens near the boundary. As an edge length becomes zero,
I contract that edge. The differential is ∂Γ =

∑
Γ/e, where I don’t contract

loops. Why not? If I contract a loop on a Riemann surface, I’ll pinch it. In this
compactification, that’s all my compactified point, so I’m sending this to zero.

Now I want to connect the homology of this thing to the homology of a Lie
algebra.

The Lie algebra is h[V ] where V is a symplectic vector space. How is it defined?
It’s T (V )/[, ], so that’s

⊕
V ⊗i/Ci, and I extend the inner product on V using the

Leibniz rule, so

{x1, . . . , xm, y1, . . . , ym} =
∑

〈xi, yi〉xi+1 · · ·xn · · ·xi−1yj+1 · · · ym · · · yj−1

Then in this is g[V ] a Lie subalgebra, whose quadratic part corresponds to linear
symplectic vector fields. g[V ] just starts the summation with V ⊗2 instead of V ⊗0.

Now the theorem is about the Chevalley-Eilenberg homology of this thing, so let
me define that.

Let (`, [ , ], d) be a differential graded Lie agebra with a bracket of degree one,
so in particular it is symmetric. Take as my complex the symmetric algebra on it
(S∗(`), ∂) where the differential contracts with my Lie bracket:

∂(`1, · · · , `n) =
∑

±[`i, `j ]`1 · · · ˆ̀i · · · ˆ̀
j · · · `n?

∑
±d`i`1 · · · ˆ̀i · · · `n



GEOMETRY/PHYSICS SEMINAR, SPRING 2012 3

I actually want relative Chevalley-Eilenberg homology, where I want to look at the
coinvariants S∗(`/k)k, with the differential induced.

Theorem 1.3. (Kontsevich) H∗(tMpt
g,n) ∼= H(g), but on the right I need to take

direct limit and the relative Chevalley Eilenberg homology.

So now I want a map from graphs to tensors in my Chevalley-Eilenberg complex.
If I write my symplectic vector space in coordinates xi and ξi, dual, then I put xi

on one end of and edge and xi on the other end. For each one of the vertices, I’ll
get something in g, I put them in an order using the cyclic ordering.

I need to explain wwhy the differentials correspond. What is the differential
for a ribbon graph? I contract the edges. But if I do that, I get a graph where I
eliminate those two markings but concatenate the other markings, and bracket the
dual variables.

Invariant theory tells me that this is an isomorphism.
[What about loops?] Well I only contract when I have two different tensors.
I need the definition of the Maurer Cartan moduli space. I take g, a pronilpotent

graded Lie algebra. I form the Maurer-Cartan set, the set of elements of degree 1
so that dx + 1

2{x, x} = 0. The part in degree zero g0 acts on this thing:

exp(y)(x) = x +
∞∑
0

1
n + 1)!

[ad y]n(dy + [y, x])

Now d
dtexp(ty)x = dy + ad y(exp(ty)x). So I’m just twisting by y a little bit.

The quotient by this action is the Maurer Cartan moduli space M̃C(g).
The Maurer Cartan moduli space are the cyclic A∞ structures on [missed]. I

don’t have time to discuss that.
Now I’ll talk about classes.
Take MC(g), there’s a map ch to C∗(g), which takes x to exp(x) = 1+x+ 1

2x2 +
· · · , so really it’s the completed Chevalley-Eilenberg complex. This is a cycle be-
cause ∂(exp(x) = (dx+ 1

2 [x, x])exp(x). We have an equivalence relation and Maurer-
Cartan equivalent elements produce homologous classes. Suppose x′ = exp(y)x. I
can consider γy on C∗(g) which takes g1, . . . gk to dyg1 . . . gk+

∑
[y, gi]g1 . . . ĝi . . . gk.

This map is nullhomotopic, id = (γy, s), with homotopy s which sends g1 . . . gk to
yg1 . . . gk. Why do equivalent elements produce homologous classes. Let the first
one be ch(exp(ty)x) and the second exp(tγy)ch(x). These are both solutions to the
initial value problem dc

dt = γy(c(t)) and c(0) = ch(x). One of these is obvious and I
did the other one earlier.

They both agree at 1, then, and so ch(exp(y)(x)) = exp(γy)ch(x), and since this
is nullhomotopic, this is homologous to ch(x).

I’ll say just a bit more about this in the main talk.
Let me say a few words about super integrals and the BV formalism.
Suppose I have σ a quadratic even super function on Rn|2m. Say I take some

polynomial superfunction f(x, ξ) on this super space V . I want to make sense of
integrals over V : ∫

V

fe−σdxdξ

I’ll be picking out the term corresponding to the top dimensional thing. I don’t
have enough time to explain more fully than that. I can make sens of these integrals
even if these things are not positive definite, using the Wick rotation.
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Now I can describe the BV formalism in finite dimensions.
I have this symplectic vector space with an odd symplectic form. I define pσ[V ]

to be functions of the form f(x, ξ)e−σ with f a polynomial super function. A
Lagrangian subspace is an isotropic subspace (the symplectic form vanishes) of
maximum dimension (half the dimension of the original space).

The Batalin-Vilkovisky Laplacian is
∑

∂xi∂ξi , which has the property that ∆2 =
0. What is this machinery doing? We can see it as a reformulation of the normal
exterior differential calculus. If I set M = Rn, the “body” of V , then I can define a
map d : p[V ] → Ω∗(M) which takes f(x)ξi1 · · · ξik

to f(x)dx1 · · · ˆdxi1 · · · ˆdxik
· · · dxn

I can check that D∆ = dD.
Let me formulate the main theorems about this:

Theorem 1.4.
∫

L
fe−σdxdξ =

∫
M

D(fe−σ)

In particular, integrating −dxdξ is a ∆-cocycle and two Lagrangian subspaces
produce cohomologous cycles.

2. Alistair Hamilton: Main talk

In this talk, I’m going to describe some analogue of a theorem of Kontsevich, and
as I explained, it allows us to recover the homology of the one point compactification
of tMg,n×∆n−1 (of negative Euler characteristic) as the homology of a certain Lie
algebra, a noncommutative analogue of the Hamiltonian vector fields. I’ll construct
a differential graded Lie algebra whose Chevalley Eilenberg homology gives the
homology of a certain compactification.

Kontsevich gave a construction to give classes in the moduli space. The initial
data was a cyclic A∞ algebra. In this talk, I’ll use this theorem, the analogue, to
produce some classes in a compactification. Here I should mention the recent work
of Barannikov, who also describes a construction to give classes in the compactifi-
cation. Our perspective will differ in that we’ll use a different construction. This
has some equivalence relation, so that equivalent elements give homologous classes.
The classes we produce will live in a larger compactification.

We have this problem about constructing classes in the compactification. Ex-
tending classes can be described in terms of deformation theory.

It’s quite familiar for anyone who knows about producing solutions to the quan-
tum master equation in the BV formalism. I’ll also describe a construction produc-
ing cohomology classes. The ideas go back to Kontsevich. Careful treatment was
given in terms of modular operads by Chuang and Lazarev. The perspective I’ll
give today is by modifying a construction of Costello.

Now the question is, I have cohomology classes and homology classes, what
happens when I pair the classes. I’ll describe how this pairing can be described in
terms of evaluating functional integrals over some finite dimensional space. This
gives a way to test whether the classes we’re producing are trivial or not. This
perspective goes back to Kontsevich’s original papers, but has never been carried
out before. Today I hope I will have time to get to some examples where I check
that what I get is non-trivial.

So my first job is to describe this analogue of Kontsevich’s theorem. For this I
need to talk about stable ribbon graphs, which will give an orbicell decomposition
of the compactifications. There’s a construction that takes a metric ribbon graph
and produces a Riemann surface with marked points. The way that we go back
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to a metric ribbon graph is by using Jenkins-Strebel theory. This presents us with
some problems if we want to apply this to nodal curves. If I have a nodal curve
with marked points like this: [picture]

To use Jenkins-Strebel theory, I need marked points. I get a ribbon graph that
looks something like this, I can’t do something on this component with no marked
points. Instead I just remember its topological type. These topological surfaces
become the new vertices in my graph. Where the ribbon graph meets my surface
I put boundary components, and then I put the half edges as the pairing of the
boundary components. The graph that I get looks like this picture: The vertices
are these topological surfaces.

Now like I said, since we can’t recover the homolorphic structure of this compo-
nent, we introduce a quotient of the Deligne-Mumford compactification, where we
forget the holomorphic structure of the components with no marked points. This
thing, I have KM̄g,n ×∆0

n−1. The one point compactification of this is an orbicell
complex.

There’s a slightly larger compactification we can consider. We’re recording the
perimeters associated to these marked points. I can let these perimeters tend to 0.
If I have a component all of whose perimeters are 0, I can’t apply Jenkins-Strebel
theory. I can get the complex structure if I have at least one positive value.

So this is the Looijenga compactification, I forget the complex structure when
all perimeters are zero in a component. I’ll denote this by Lg,n and the Kontsevich
one by Kg,n.

What’s a differential in this orbicell complex? What happens when I let a length
tend to 0? Let’s look at the stable ribbon graph. It looks like this picture. What
happens when I let the loop bounding a meridian of this torus to shrink? I get
a surface that looks like this picture. The ribbon graph associated to it, I have
a pinch point corresponding to different boundary components, and I get a loop
between them. So contracting edges is given by replacing the edges with topological
strips.

Now I have this compactification, an orbicell complex, and that’s what the dif-
ferential applied to an orbicell looks like. A sum over replacing edges with strips.

Now I’m ready to describe the analogue of Kontsevich’s theorem.
How do I define the Lie algebra? Take a symplectic vector space V , define h[V ]

to be
∞∑
0

V ⊗i/Ci

modding out by cyclic permutations, and I extend the symplectic form to a Lie
bracket using the Leibniz rule:

{x1 · · ·xn, y1 · · · ym} =
∑
i,j

〈xi, yj〉(xi+1 · · ·xi−1)(yj+1 · · · yj−1)

This is a Lie bialgebra. It has a cobracket ∇ : h[V ] → h[V ] ⊗ h[V ], I apply it to
x1 . . . xn and it’s the sum∑

i,j

〈xi, xj〉xi+1 · · ·xj−1 ⊗ xj+1 · · ·xi−1

Then ∇ extends to the Chevalley Eilenberg chains ` using the Leibniz rule. I
multiply by a formal parameter γ, taking k[γ]⊗ ` and get d = γ∂ +∇. Then d2 = 0
is equivalent to having a Lie bialgebra structure. Since ` is the symmetric algebra
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on h, this is k[γ]⊗S(k)⊗Sh≥1 so I can think of this as having two parameters. By
specifying that the other parameter (ν) is zero I get another Lie algebra Λγ [V ]. I
get a diagram

Λγ,ν [V ] → Λγ [V ] → h[V ]
What’s the analgoue of Kontsevich’s theorem in this case? Glossing some technical,
stuff, here’s the diagram.

H∗(tLg,n)

��

H∗(Λγ,ν [V ])

��
H∗(tKg,n)

��

H∗(Λγ [V ])

��
H∗(tMg,n ×∆o

n−1)
∞ H∗(h[V ])

I want to give an isomorphism. Let me tell you how to get from graphs to tensors.
Suppose I have a graph like this. I want to give a tensor in the Chevalley Eilenberg
complex. Each vertex will give me a tensor in the Chevalley Eilenberg complex.

[picture]
I get something like

(γgenusνboundary components(xi1ξi2 · · · )(· · · ))(· · · )
where I move over vertex surfaces and then their marked points.

Let me explain some applications. There’s a way to produce classes in the
Chevalley Eilenberg homology from elements in the Maurer-Cartan moduli space.
I can use what’s called the characteristic class construction. I have the same com-
mutative diagram with those.

[Some discussion about the Maurer Cartan set]
I have the Maurer Cartan set, x ∈ g[1] so that dx + 1

2 [x, x] = 0, then I can
exponentiate this to get 1+x+ 1

2x2 + · · · Equivalent elements will give homologous
cycles.

So suppose I want to lift a class from M̃C(h[V ]) in the homology of the one-point
compactification that I want to lift to a class in the Looijenga space. One way is
that I could try to lift a Maurer Cartan solution to Λγ,ν . Let me filter this, so that
γgνnh1 . . . hk has degree 2g + n + k − 1. Kontsevich’s thing sits there in filtration
degree 0. Suppose I start with a Maurer-Cartan element h0. If I want to extend
it, I write it as h0 + h1 + · · · , and I have to fill these other elements out. This
filtration is compatible with the differential graded Lie structure in the sense that
[Fp, Fq] ⊂ Fp+q and dFp ⊂ Fp+1. So if I compute dh+ 1

2 [h, h] up to order one, I get
dh0 + [h0, h1] + O(2). The first obstruction to extending this is that dh0 (which is
a cycle) should be a coboundary, using the differential [h0, ].

You can build an obstruction theory for this, and the cohomology is the cyclic
Hochschild cohomology of my A∞ structure. The Maurer-Cartan space of h[V ] are
the cyclic A∞ structures on V . I call these liftings quantum A∞ structures.

The cohomology of the complex Λγ,ν with [h0, ].
Let’s look at some examples. There is a family of cyclic A∞ structures on a one

dimensional space, due to Kontsevich. Look at the suspension of the groupnd field,
then h[Σk] , there’s a family of structures x =

∑
ait

2i+1 where I allow ai to vary



GEOMETRY/PHYSICS SEMINAR, SPRING 2012 7

over k. It’s a solution {x, x} = 0. The higher structurs are anything they like. The
even ones vanish for degree reasons (sign reasons).

One thing that is known about these is that when you produce classes, these give
the κ classes in the moduli space, claimed by Kontsevich and proven by Modello
and Igusa.

Let’s look at the cyclic Hochschild cohomology. This coincides with the cyclic
Hochschild cohomology of the field in the usual case, generated by t2i+1. It’s easy
to compute that, the differentials become zero. I start here and want to extend
this to a quantum A∞ structure. I need to apply ∇(x) to this thing. So ∇(t2i+1

is (2i + 1)νt2i−1. This is what you get. This thing here is a non-vanishing class
in Hochschild cohomology. This is obstructed to extending. If I set ν = 0, then
this becomes zero. So it’s obstructed to lift to Λγ,ν but in Λγ it extends trivially,
without adding anything.

Let me formulate some results.
[Some discussion of grading]
If I take as data a contractible differential graded Frobenius algebra. I could

take � a, 1 � with da = 1 and a2 = 1 Then∫
R

e−(
P

ait
2i+1− 1

2 t2)/

∫
R

e−
1
2 t2


