
GEOMETRY AND PHYSICS SEMINAR

GABRIEL C. DRUMMOND-COLE

1. I

’m going to start this talk from a very low base, and give you an idea even if you
have very little idea about symplectic geometry. So to start off with, we’ll be looking
at Kähler manifolds (X,ω). So X is a complex manifold, its transition functions
are holomorphic, and ω a compatible symplectic form, a closed non-degenerate
two-form, with a certain condition for compatibility that I won’t get into.

The invariants that we will mostly be concerned with are “holomorphic curves”
u : Σ → X, which are maps from a Riemann surface Σ, possibly with boundary,
into X, which are holomorphic, respecting the complex structure on both sides.

We can study the moduli space of such maps, and such things always appear
in finite dimensional families in symplectic manifolds. This means, in particular,
the zero dimensional component is isolated maps, a collection of points, and we
can count these to give us an invariant. These counts are called, very roughly, are
called Gromov-Witten invariants.

Let’s compute our first examples. For example, what is the number of degree
one curves u : CP

1 → CP
n through two points. This number is one. This is, if

you had not computed any until today, you just computed your first one. The
number of degree 2 curves u : CP

1 → CP
2 through five points is also 1. Now

a more interesting one. The number of degree 1 curves on a cubic surface is 27.
Now let’s get even crazier. What about degree 1 curves on a quintic three-fold?
This is X = {

∑

z5
j = 0} ⊂ CP

4. This is a smooth degree five hypersurface.
The number is 2875. This has been known since the mid twentieth century, if I
understand it correctly. But what about the number of degree two curves on X?
There are 609250. The number of degree three curves is 317206375. There, our
knowledge of Gromov-Witten invariants on the quintic three-fold stopped in 1990.
Then physicists changed that, remarkably.

1.1. Mirror Symmetry version 1.0. String theory, about which I know nothing,
studies propagation of strings on Calabi-Yau Kähler manifolds (X,ω,Ω). Calabi-
Yau-ness means you also have a holomorphic volume form, something that looks
like dz1 ∧ · · · ∧ dzn. The important feature as far as I’m concerned is that there is
this nonzero section of Ωn,0(X). The quintic three-fold is an example of this.

There are two models for closed-string invariants on X. This means strings
that look like circles moving in X as I understand it. These are the A-model, the
Gromov-Witten invariants of (X,ω), and the B-model, built out of the periods of
Ω. Taking 3-cycles and integrating Ω over them.

We have two kinds of invariants: the Gromov-Witten invariants (A-model) and
the periods of Ω, the B-model. The Gromov-Witten invariants depend on the
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symplectic structure and the B-model depends on the complex structure, the holo-
morphic volume form. This should look a little strange, saying that counting these
should depend on the symplectic structure. In fact, the definition of Gromov-
Witten invariants uses only an almost-complex structure. All you really need is
compatibility with the symplectic form.

Physicists studied these and noticed that there are lots of pairs of manifolds
(X,ω,Ω) ! (X∨, ω∨,Ω∨), so that these models of string theory are reversed. The
A-model of (X,ω,Ω) and the B-model of (X∨, ω∨,Ω∨) are in some sense equivalent,
and vice versa. This was the observation. this is realy, this is the picture of what
mirror symmetry is. There is some Kähler object, not necessarily a manifold, and
a mirror object, and there are A and B things depending on the symplectic and
complex structures with this kind of equivalence.

You recall, my story finished with degree three with Gromov-Witten invariants
of the quintic three-fold. In 1991, string theorists had the ingeneous idea construct
the mirrror X∨ to the quintic three-fold. I won’t describe that mirror, it’s easy to
write down, there is a mirror. They computed the B-model on X∨, computed the
volume form and integrated explicitly. The theory of periods can be assembled into
generating functions satisfying Picard-Fuchs differential equations. They used this
to predict the A-model of X would be same as the B-model of X∨. They predicted
how this would continue. They predicted that it had a very interesting structure.
This was extremely unexpected. Mathematicians set about proving it. In 1996,
Givental proved this mathematically. Indeed the Gromov-Witten invariants have
this structure and are equal to these numbers in all degrees.

This was a very interesting interaction of maths with physics. But mirror sym-
metry wasn’t done. Oh no.

1.2. Homological mirror symmetry. Although in 1996 Givental proved this for
all Calabi-Yau and Fano intersections in toric varieties, this wasn’t good enough.
In 1994, Kontsevich conjectured that this picture of mirror symmetry should be
a reflection of a categorified version of mirror symmetry. The A-model of X was
supposed to be the Fukaya category F(X), which I’ll spend the rest of the talk
explaining. The B-model should be the category of bounded derived category of
coherent sheaves on X.

And so X and X∨ are mirror if DbF(X) ∼= DbCoh(X∨) and vice versa. This
should be an equivalence of triangulated categories. One question is why this
is stronger than version 1.0. We can recover that version by taking Hochschild
cohomology. HH∗(F(X)) should be the Gromov-Witten invariants of X, and
HH∗(Coh(X)) should be the previous B-model. Making this explicit is still, Kont-
sevich gave us a lot of work and is doing it. This is what he left us, that these
categories encode the structure.

My plan for the rest is to explain what the Fukaya category is. Let me say a word
about coherent sheaves. Since we’re taking the bounded derived category, think of
them as holomorphic vector bundles. The objects are F and the morphisms are
Ext∗(F ,G), and composition is composition. Build a model from Cech cohomology,
build this as a differential graded category.

1.3. Fukaya category. So, let’s start with (X,ω) a symplectic manifold. Then
the Fukaya category F(X) is an invariant which we associate to it. The objects of
the category are Lagrangian submanifolds L ⊂ X. Lagrangian means ω|L = 0 and
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L is half-dimensional. For the morphisms, first define

CF ∗(L0, L1) :=
⊕

x∈L0∩L1

Cx

Generically, these intersect in a finite number of points. These are supposed to span
a vector space. We’ll build the morphism space as the homology of some differential
on this vector space. Define δ : CF ∗(L0, L1) → CF ∗(L0, L1) by

δ(x) :=
∑

y∈L0∩L1

〈δ(x), y〉y

where the coefficients 〈δ(x), y〉 are the counts of holomorphic disks in X from X
to Y bounded by L0 and L1, with corners mapped to x and y. Such families
come in finite components. Then Hom(L0, L1) := H∗(CF ∗(L0, L1), δ). Why does
δ square to zero? That’s the first question. The differential does square to zero
and you can define composition, given x and y, you have 〈x ◦ y, z〉 is the count of
holomorphic triangles, and then the category has well-defined composition, and so
on, and I should wrap up by saying that in my talk this afternoon, I’ll give a proof
of holomorphic mirror symmetry of the quintic three-fold.

2. Thomas Willwacher pretalk, deformation quantization

This is just a pretalk, so I’ll talk about basic stuff. Even advanced graduate
students won’t have much to gain from the talk. The main talk later today will
be situated in deformation quantization, what is that about? It was devised in
the late 70s by several people as some mathematical formulation of what it means
to quantize a physical system. When things are bigger than ~, things behave
classically. But if we start with a classical system, can we always find a quantum
system that behaves that way classically.

Let me say what I mean by a classical system. For me this is a smooth manifold
M with a Poisson structure π. This gives you the Lie bracket on the space of
smooth functions {·, ·}. In local coordinates, if your manifold is R

n+n with the
standard symplectic structure, with coordinates p and q, then

{f, g} =
∂f

∂pj

∂g

∂qj
−

∂g

∂pj

∂f

∂qj

and dynamically we should have a Hamiltonian H ∈ C∞(M).
A quantum system is a Hilbert space H and a space of observables L(H), linear

operators on H. What is quantization? It is a map from the algebra of observables
to the algebra of observables that to lowest order reduces to the standard structure.
That is, it is a map Quant~ : C∞(M) → L(H). We don’t have that this is a
Lie algebra morphism to the operator bracket, but it should be modulo ~

2. So
Quant~({f, g}) = [Quant~(f), Quant~(g) +O(~2).

The idea of deformation quantization is that most of the information is contained
in the product structure on L(H). So we don’t need H itself. In principle, we can
take the product and pull it back. The idea of deformation quantization is to put
the star product on C∞(M) related to this product on L(H). So the idea is to
study associative (not generally commutative) products on C∞(M).

Definition 2.1. A star product ⋆ on M is an associative product on C∞(M)[[ǫ]].
Morally you could think that ǫ is ~

i
, but I don’t want to get them confused. This

formal power series is because analytic properties are hard. This should satisfy:
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• ⋆ is ǫ-bilinear
• f⋆g = fg+ǫm1(f, g)+ǫ

2m2(f, g)+· · · , and mi are bidifferential operators,
depending only on the derivatives.

There is one natural problem. If you started with a classical physical system.
Given such a structure, can you always produce such a star product so that modulo
~

2, the star product is compatible with the Poisson structure. So, given π a Poisson
structure, can we find a star product so that

[f, g]⋆ = ǫ{f, g} +O(ǫ2)?

If the answer is yes, then classify all such star products.
Both questions were answered by Kontsevich in 1997. The answer is encoded in

the so-called formality theorem.
If you have, I need some notation, but once you have it, you can answer both

questions in a positive manner. You can always compute such a star product. Any
star product arises in this form. You add these higher pieces ǫπ1, ǫ

2π2, and then
plugging into Kontsevich’s machine will generate everything.

There is one caveat, this looks like a physics problem, but physicists aren’t
interested these days in deformation quantization. It’s possible but hard to do it in
this framework. Even the hydrogen atom is hard. From a mathematical viewpoint,
the answer is beautiful, the answer is maybe more interesting than the question.

So in general, in mathematics, how do we solve this kind of deformation problem?
How do we study deformation problems? There is general machinery to do that.
You give me some such structure, then I can produce for you a deformation context
for this structure. This will be a differential graded Lie algebra g, with a differential,
the bracket, and the differential is a derivation with respect to this bracket. The
deformations you want, deformations of your algebraic structure, are in one to one
correspondence with Maurer-Cartan elements in your Lie algebra, µ ∈ g1 so that
dµ+ 1

2 [µ, µ] = 0. The ordinary Lie algebra g0 acts on the Maurer-Cartan elements,
as x ·µ = dx+ [x, µ]. This gives you a natural equivalence, two guys are equivalent
if they’re in the same orbit. So we write MC(g)/gauge.

For associative algebras, the correct deformation complex is the so-called Hochschild
complex, Cn(A) = Hom(A⊗n, A). On C∗−1 there is a a Lie bracket, the Gersten-
haber bracket. Then for degreem and n elements, we can evaluate [ψ, φ](a1, . . . , am+n−1) =
ψ(φ(a1, . . . , an), . . . , an+m−1)±ψ(a1, φ(a2, . . . , an+1), an+2, . . . , am+n−1)+ · · · until
you are all the way at the end, and then you symmetrize that. This is in fact a
Lie bracket. Before I give the differential, let me make one comment. If we have
m ∈ C2(A), a map A ⊗ A → A, then this is an associative product if and only if
[m,m] = 0. In particular, when we have a product on A, we get such an element.
It follows from this equation that dH = [m, ·] is a differential that is compatible
with the Lie algebra structure. The Hochschild complex is this space with this
differential and the Gerstenhaber bracket.

We should restrict to the maps that are differential operators in each slot, poly-
differential operators. We consider Dpoly ⊂ C(A). How do we express the defor-
mations we wanted to find? We have ⋆ = m0 + ǫ · · · , so we want to find things
that start with ǫ. We want to look at the differential graded Lie algebra ǫDpoly[[ǫ]],
and Maurer-Cartan elements here will be in one to one correspondence with ⋆

products. Gauge equivalence gives a notion of equivalence on the right. We want
to say that this is equal to a classical object, a similar object we can make from



GEOMETRY AND PHYSICS SEMINAR 5

Poisson structures. The relevant differential graded Lie algebra is polyvector fields
T ·

poly = Γ(M,∧·TM), so for example π ∈ T 2
poly. Here you also have a Lie bracket,

the Schouten bracket. Here for elements of degree m and n, we have [γ, ν], insert-
ing ν into any slot of γ and subtracting the reverse, and this gives a well-defined
product independent of coordinates. I’ll leave the check to you, because we have to
hurry a bit to get to the end.

In terms of this bracket, you can express the condition for π to be a Poisson
structure. It is one if and only if [π, π] vanishes. This is the same as saying for all
f, g, h in C∞(M), the Jacobi identity is satisfied for {·, ·}. We can make a similar
Lie algebra out of Tpoly, and this will be ǫT ·+1

poly[[ǫ]], and there is a natural gauge
transformation here induced by the degree zero part, which will just be vector
fields. The theorem by Kontsevich is that this set is isomorphic to the Maurer-
Cartan elements of ǫDpoly[[ǫ]] up to gauge transformation. A star product comes
from a Poisson structure, and every Poisson structure gives a star product.

Kontsveich proved that this statement follows from a more general statement,
his formality theorem. Let us step back before I say it. We want to say that two
Lie algebras have the same Maurer-Cartan set modulo equivalence. If these were
isomorphic, that would follow. They are not isomorphic, as you can easily check.
You might guess, it may be enough that they have the same cohomology. This
turns out to be too weak. You could consider the cohomology is a Lie algebra, but
this forgets something about the Lie bracket on the original algebra. You want to
find a way to remember the parts it forgets. The right notion, an enlargement of
Lie algebra that remembers the correct part, is an L∞ algebra. The Kontsevich
formality theorem states that:

Theorem 2.1. (Kontsevich)
There is an L∞ quasi-isomorphism between Tpoly → Dpoly.

Theorem 2.2. If g and h are differential graded Lie algebras and there is an L∞

quasi-isomorphism g → h then their Maurer-Cartan sets are isomorphic.

We won’t discuss this. This is in Kontsevich’s paper. It’s not that hard. I should
give you a rough idea of what that means, that there’s an L∞ quasiisomorphism,
and then I want to state how Kontsevich proved this theorem.

Let’s say that g is a dg Lie algebra. Then you can build the Chevalley complex of
this algebra, this is S+(g[1]), the symmetric tensor product on the shifted complex.
The + means that you don’t include 1. You can use the Lie structure on g to get a
differential on this complex. This also has a Hopf [sic?] algebra structure, this is a
differential graded coalgebra. Then an L∞ morphism is a map of differential graded
coalgebras S+(g[1]) → S+(h[1]). So the target is cofree, and it is determined by
maps un : (g[1])⊗n → h[1]. This is a quasiisomorphism if u1 is a quasiisomorphism
of complexes.

Kontsevich wrote down an explicit formula, that had only one problem, it was
local, M = R

n. In this business. The local case is hard, but there is a general
machinery to glue to get a global morphism. This goes under the name of formal
geometry. The globalization step I will not give you. So this should give me a
polydifferential operator, that eats functions and spits out another function. Each
of the γn is a gadget with n slots that can act on functions to take derivatives. You
make a graph where for each arrow in any polyvector field, you designate either a
function or a polyvector field on which to act. So this will be a sum over Kontsevich
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graphs Γ.

un(γ1, . . . , γn)(a1, . . . , am) =
∑

Γ

(

∫

Cn,m

ωΓ

)

DΓ(γ1, . . . , am)

The constant is the hard part, Cn,m is configurations of n points in the upper half
space and m points in the real line, modulo translation and scaling, compactified.

The second thing is ωΓ. This is ∧(i,j)
dϕ(zi,zj)

2πi
, over edges. Use the hyperbolic

geometry, and ϕ is the angle between the ray from zi to ∞ and from zi to zj . This
gives an explicit formula.

That is the end of my talk.

3. Thomas Willwacher, Deformation Quantization

Thanks for the invitation, I’m very glad to be here. What will this talk be about?
Deformation quantization. This is interesting, maybe, because it’s a meeting point
for techniques coming from quantum field theory and homological algebra. Within
this realm you try to understand how these two players interact. What I want
to talk about today is the formality theorem of Kontsevich. There have been two
proofs. One is using physics methods, which was found by Kontsevich, and the
physics explanation has been given by Cattaneo and Felder. There is a proof from
homological algebra coming from Dima Tamarkin. There is one more point here.
Kontsevich constructed one formality morphism, Tamarkin gave infinitely many
that depend on a choice of Drinfel’d associator. You can ask, for which parameter
values are these the same, and ask how to change the parameters on the other side.

Before I start, I’d like to introduce some notation. Here is a recollection. The
main players are polyvector fields and polydifferential operators. Polyvector fields
are Γ(M,∧∗TM), and for us, most of the time, M will be R

n. This, called Tpoly, is
a Gerstenhaber algebra with the wedge product as commutative product and the
Schouten bracket as Lie bracket. The other player is the polydifferential operators
Dpoly, special Hochschild cochains of C∞(M), given by polydifferential operators.
In each slot this is a polydifferential operator. There are also operations correspond-
ing to the product and the bracket, the Gerstenhaber bracket, and the Hochschild
differential is given by bracketing with multiplication. There is an analogous ver-
sion of the product, but to be precise, only on cohomology, and this is the cup
product. More generally, there is a brace algebra structure on Dpoly, you can get
operations c{c1, . . . , cn}, where you take c and insert c1 up to cn. You sum this
with appropriate signs. In particular cases, you might take m for your c. If we have
an algebra, these will vanish when there are more than two inputs, there aren’t
enough slots in m.

What is the formality theorem that we want to study? This says that these two
objects are quasiisomorphic as L∞ algebras. There exists such a quasiisomorphism
Tpoly → Dpoly. In particular the complexes are quasiisomorphic, which is the
Hochschild Kostant Rosenberg theorem. The original proof by Kontsevich, he gave
an explicit solution to this problem, writing formulas in the following form,

un(γ1, γn) =
∑

Γ

(

∫

Cn,m

ωΓ

)

DΓ(γ1, . . . , γn)

where the sum is over directed graphs with two kinds of vertices, type I and type II.
There are precisely n type one vertices, and to each such graph you can associate
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an operator DΓ(γ1, . . . , γn). You get ωΓ by wedging one-forms over the edges (i, j),

the one-forms
dϕ(zi,zj)

2πi
, where ϕ is the hyperbolic angle between the geodesics from

i to ∞ and from i to j.
This is only an L∞ quasiisomorphism, it doesn’t know anything about the wedge

or the cup. I should add that Cattaneo and Felder have given an interpretation of
these as expectation values in the Poisson σ-model.

Later, there was a conceptually very different proof by Dima Tamarkin. He real-
ized that this problem is easier to prove if you solve a more difficult problem, finding
a quasiisomorphism that preserves more structure, a G∞ quasiisomorphism. You
have a problem, because on the right hand side there is no obvious G∞ structure.
To put this structure on Dpoly has been known as the Deligne conjecture. You want
it to reduce to the standard structure on cohomology. You could always do this by
transfer, but you want the L∞ part to be the usual Lie structure. It turns out that
this problem can be solved. There are several different solutions. These depend
on a choice of a complicated algebraic object, a Drinfel’d associator. I don’t want
to decribe what these are, but I will give a conjectural answer to what this space
looks like, which is that it is a torsor for the exponentional group of the free lie
algebra on generators σ3, σ5, . . .. If we have solved this, we can state the problem
of constructing a G∞ morphism. The second step is done for us by homological
algebra. Rigidity of Tpoly says this. The G∞ structure cannot be deformed, at least
not in a GLn-invariant way. So by the “usual” homotopy transfer, you can put
some G∞ structure on Tpoly, and since Tpoly is rigid, there is a map Tpoly → T ′

poly,
the weird structure.

There are natural questions you can ask.

(1) You have two L∞ quasiisomorphisms, are they the same or not? Of course,
Dima’s morphism is parameterized by an infinite dimensional space, so you
could ask, for which Drinfel’d associator? There are multiple solutions to
the Deligne conjecture. The one for which I can give an answer is by using
the formality of the little disks operad.

(2) Not unrelated, of course, can Kontsevich’s morphism be extended to a G∞

morphism, using similar combinatorics?
(3) Above you had an infinite dimensional choice of parameters. Different

angle forms in the Kontsevich formalism wouldn’t change things. How do
you change the Kontsevich morphism?

The results that I am going to talk about are:

(1) Yes. I know only three associators explicitly, fortunately it’s one of those,
the AT associator.

(2) If you look at the picture Tpoly → Dpoly, you have a natural action of the
Gerstenhaber operad on the left and the brace operad on the right. It’s
simpler to construct an unnatural action of the Br∞ operad on the left than
the G∞ operad on the right. I mean ΩBBr∞. If we change the question in
this way, the answer is yes. This is a bigger operad, you have many opera-
tions. The operations are labelled by operations in the bar construction of
the Brace operad, which can be identified with configurations of points. So
uo(γ1, . . . , γn) =

∑
∫

c(o)
ωΓDΓ(· · · ). So we only integrate over a subchain

given to us by o.
(3) I will talk about this a little bit later, but there are explicit actions by

the ogroup that is essentially the same as the Grothiendieck-Teichmueller
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group. You have an explicit action with explicit formulas by the graph
complex. The 0th cohomology contains this Grothiendieck-Teichmueller
algebra, which acts on the set of Drinfeld associators. In particular, we
know how to write this action explicitly.

Let me talk about how to show that, how to construct that.
What do we want? I will have to show you three things. I will focus on point

number two, because then you can make a G∞ morphism and show point one by
using a result I showed two years ago with Paolo Severa about the formality of the
little disks operad.

[Ezra: how does this relate to the almost-brace operator on vector fields?] [An-
swer too quick]

So on Dpoly you have an action of Br, and you can make a colored operad
hom Br∞ that governs a brace algebra, a Br∞ algebra, and a map of Br∞ algebras
from the second to the first. I keep tiptoing around the word colored. The space
of operation has m inputs of the first color and n inputs of the second color, and I
consider for Br∞ just those that have all their inputs in the second color,, likewise
forBr and the firts, and the part that is internal is generated only by operations that
have inputs in the second color. We have the configuration space of points in R

2 up
to translation, scaling, and compactification, and for hom Br∞ the configurations
of points in the upper half-plane, modulo translation, scaling, and compactification.
You have a natural right module structure, inserting configurations, this is part of
the swiss cheese operad, and you have a left action of the braces operad. Believe
this, I won’t have time.

The map Br∞ → C(FM2) was constructed by Kontsevich and Soibelman. If I
showed you, you’d ask why there wasn’t an explicit formula.

[Isn’t this the Deligne conjecture?] I was hoping to get away with this. Any
operad quasiisomorphic to the little disks operad acts on Dpoly, yeah, I bent the
terminology a little bit for the sake of show effect. In fact you can more or less
copy the proof to get an almost natural map hom Br∞ to C(Cn,0). This is all
the top layer. Then there is the Feynman graphs stage. In the Br∞ case it is
the operad Gra, given by linear combinations of undirected graphs. There is an
operad structure that I will ignore. This naturally acts on Tpoly. There’s an explicit

formula. Why? You can write this as a C∞ structure on R
n|n. There is a symplectic

structure. An edge is an action of the Poisson structure. You have an explic
map C(FM2) → Gra. You can associate to a grop a differential form. Put a

differential form on each edge. Between 1 and 2 will be d Arg(z1−z2)
2π

. In particular
the composition gives an action of Br∞ on Tpoly, almost explicit. On the hom Br∞
part, you get Kontsevich graphs, KGra, graphs that have two kinds of vertices and
are directed, and these form a bimodule over the two operads. Using Kontsevich’s
construction, you can get a differential form that acts on a chain. This basically
completes the picture.

The construction is more or less explicit. There are no inversions. In a way, if
you make the right definitions, the checks go smoothly. The main problem is that
of signs. There are some tricks to handle those signs. I will maybe talk about one
or two points of interest. You have configurations of points in the upper half-plane.
Kevin asked, usually you would think that the Swiss Cheese operad plays a role.
You’d normally consider configurations on the real line as well, the structure comes
from the left action of braces. In particular, note the following. Say you have P,
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an operad. You can make
∏

n P into a braces algebra. If you have p{p1, . . . , pn}
then you sum up all ways of putting pi into p. This endows the space with a
brace structure. Similarly, if you consider the piece of the swiss cheese operad,
configurations in R

2, and then the swiss chees operad is an operad in modules over
FM2. So you get a right FM2-module with an action of the braces operad. You
should think of chains of Cn,0 as taking the sum over all m ≥ 0 of putting m points
on the line and letting them move arbitrarily. This gives a new chain in the total
space of the Swiss cheese operad. By this construction, you can essentially get the
braces action. This draws on the operadic composition in the Swiss cheese operad,
implicitly encoded.

My time is up, this is a good place to stop.

4. David Ayala pretalk, November 10

I only have three pages, usually I have a lot more. I’m going to try to take my
time. I’m going to talk about how to think of homology of a space via configurations
with labels. I’ll try to indicate how you can think of Poincaré duality along thes
lines.

Fix A a commutative group and let X be a locally compact Hausdorff space.
For this whole talk I’ll be talking about the space of configurations Cnc

A (X). I
want nc to mean the words noncompact and I’ll leave that out from now on. This
is the space of finite unordered configurations of points in X with labels in A. I
could say that this is a free A-algebra on X but as a definition, I’ll say it’s a space
whose underlying set will be finite subsets Z of X along with maps ℓ : Z → A.
As I’ve said, I didn’t use that A is an algebra. I’ll topologize this in a second, so
that points can run together and when that happens I add the labels. I want it
to be commutative so that when they run together things multiply. I’ll describe a
neighborhood of (Z, ℓ). Take a compact subset K and z in an open set V , then
UK,V will be the pairs (z′, ℓ′) such that z ∩ K ⊂ V ∩ K and, well, we can define
a map V → A, I’ll call it ℓ̄, by assigning to any component the sum of the labels
on points in that component. So that said, ℓ′ on Z ′ ∩K should make the diagram
commute:

Z ′ ∩K
ℓ′

##G

G

G

G

G

G

G

G

G

��

V ∩K
ℓ̄

// A

When points run together, I add labels. I can view two points a and b as sitting
inside V inside a large compact set, this should be in the neighborhood of a single
point labelled by a+ b.

Another feature of this topology is that points can disappear at ∞, that’s the role
of the compact set K. If K is the compact subset, another element, a configuration
in the neighborhood described by this compact subset, I just erase all of these.
Points that fall outside of any compact subset disappear. If X is R, here’s a loop.
I can see a point come in from −∞ to ∞ and at the basepoint the configuration is
empty.

[Is this the symmetric product? This receives a map from SP∞, but there you
can’t see points run off to ∞.]

Points can also disappear when they’re labeled by the identity in A.
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Let’s see an example, with X = R, and A = Z. Then CZ(R) has a map to
the circle (R ∪ ∞), where (z, ℓ) maps to

∑

ℓ(z)z ∈ R ⊂ S1. I claim that this is
continuous. What happens when a point runs to ∞, it disappears, and that means
it becomes the identity in S

1, so it doesn’t matter.

Fact 4.1. Thi map CZ(R) → S1 is an equivalence. [What about when A has
a topology?] Well, you see BZ right here, but I’m not going to talk about the
topological setting.

There’s a map R×CA(X) → CA(R×X) sending (t, (z, ℓ)) 7→ ({t}×z, ℓ). If I have
a bunch of dots on S1 with labels, you just put this in the cylinder at coordinate t.

Here’s the observation. This map factors through suspension, R × CA(X) →
ΣCA(X) → CA(R × X). As t → ∞, this circle goes outside any compact set
and you have the empty configuration. There’s an adjoint to this map, CA(X) →
ΩCA(R×X). I’ll appeal to one fact, this is the same fact, more generally, that this
is an equivalence.

For example, if we take X to be R
n−1. Then A = CA(∗) is eqiivalent to

ΩnCA(Rn). So CA(Rn) is a K(A,n).
Another example, if we take X = R

2 and A = Z, then there’s an interpretation
of, CZ(R2), these are configurations in R

2 labeled by integers, and I can build a
rational function from that configuration, declaring the marked points as roots and
poles, and you can see in this way that I won’t get into that you get CP

∞.
We’ve seen that this is defined and seen examples. Let’s see functoriality. A first

functoriality property is, if we have a map X → Y , do we get a map of configuration
spaces? The answer is no, not generally. If we have a label running off the edge,
it doesn’t work. What if we say there is a map of one point compactifications
X∗ → Y ∗, then this induces a map CA(X) → CA(Y ). This is where I want spaces
that are locally compact. It sends (z, ℓ) to (f(z), z′) 7→

∑

f−1(z′) ℓ(z). This sum

will always be finite.
This is one functoriality property. Here’s another. If we take I × X, then

(I ×X)∗ = I ×X∗ [sic] and so we get a map I × CA(X) → CA(I ×X) → CA(Y ),
so this does nice things with homotopies.

Another thing it does is CA(X
∐

Y ) ∼= CA(X) × CA(Y ).
More interesting, if X →֒ Y is an open embedding, then there is an induced map

in the other direction CA(Y ) → CA(X), taking (z, ℓ) 7→ (f−1z, ℓ|). The points may
disappear, but that’s allowed in this topology.

We get these restriction maps but even better, CA( ) form a sheaf, so that
given an open cover {Uα} of X, then CA(X) is the equalizer of the diagram

∏

αβ

CA(Uα ∩ Uβ) ⇇
∏

α

CA(Uα)

The functoriality with respect to open embeddings gives us the following important
observation. If W ⊂ X is closed, then we get a restriction to the complement
CA(X) → CA(X\W ), what goes to the basepoint? The fiber (not homotopy fiber)
is CA(W ). Here is the fact that is the hardest part of today, an application of
Quillen’s Theorem B, this is actually a homotopy fiber sequence. Putting all these
facts about these noncompact configuration spaces together tells us that π∗CA( )
is a homology theory. Disjoint union goes to product, it’s homotopy invariant, and
this is the hard one, the requisite excision. This is not just any homology, but to
know any homology theory, we test what it does to a point. This is A when ∗ = 0
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and 0 otherwise. This is singular homology. So π∗CA( ) is H(X∗, A), locally finite
homology.

For some reason I had this written, that CA(Rn) is a model for K(A,n). I wrote
that there for a good reason. This is an end of one half of the story. This is a
non-compact version of Dold-Thom theory, where like what was mentioned they do
CA(X)c, the compactly supported one, a subspace of CA(X), points can’t go off to
∞, and you can topologize this as infinite symmetric products, and the hard work
there is showing that an analogous sequence is a fiber sequence. They invented
quasifibrations and went from there. We have two interesting things set up now.
We know that the non-compact configuration space forms a sheaf. The compact
one is not a sheaf. To know the global sections amounts to knowing it on local
pieces.

So let’s look at this on things made up out of R
n pieces, so n-manifolds. For

simplicity I want a framing, so that these are locally canonically R
n. These are

not necessarily compact. Let’s say that we’re in as nice a situation as possible.
We have a metric, a convex open cover. Let U be an open cover of M by copies
of R

n, agreeing with the framing, so that each pairwise intersection is also R
n.

This isn’t required but it makes things easier. Then we see that CA(M) maps
isomorphically to the limit over U of CA(U). Take U to be saturated, so it contains
finite intersections. Up to homotopy, this is isomorphic to the limit of CA(Rn),
which are K(A,n) spaces, so this is (maybe, I’ll talk about it in a second) the
limit of K(A,n)’s. The inclusions of the finite intersections into the larger pieces,
all of the maps in this diagram are all equivalences. So this is (maybe) the space
of maps from M into K(A,n), not compactly supported maps or anything. The
first maybe amounts to our hard fact from before. In general if you have a functor
from a category into spaces sending all morphisms to equivalences, then it’s easy
to compute the limet of that diagram, it’s the space of sections of the colimit of
the diagram to a total space that you build in a canonical fashion. The fiber in the
total space will be the value of the functor. The value of everything is K(A,n), and
this is a fibration with these fibers, and since this was a framed n-manifold, this is
a trivial fibration, and the colimit is M . The space of sections of a trivial bundle
is maps from the base (M) to the fiber.

You’ve just witnessed Poincaré duality. You’ve seen that the homotopy groups
are homology, π∗CA(M) is H(M∗, A), and its’ also π∗Map(M,K(A,n)), which is
Hn−∗(M,A). When M is compact, one point compactification is an additional
basepoint and then you get the regular Poincaré duality statements.

That’s Poincaré duality using these noncompact configuration spaces. This sheaf
property is key as far as I could tell. In what time remains, let me show that this
functor from eTopop → Top (the morphisms on the left are only open embeddings)
remembers A, because you apply it to a point, you get the underlying set A, if you
apply this to R you get K(A, 1), and loops of that are A, a more direct way, if you
look at compactly supported sections of the sheaf, CA(R)c, these are configurations
of points on R with labels and if points are labeled by 0, they go away, but points
can’t run off to ∞. There’s a map to A by adding everything together, this is an
equivalence. This map didn’t exist before, but it’s here for compactly supported
guys. Now given an open embedding of two Euclidean spaces into one, and given
dots on either of them, in the compactly supported situation, I always get dots
with the same labels, now I don’t run into the problem when dots run off to the
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left or right. I get a map CA(R)c ×CA(R)c → CA(R)c, which is a map A×A→ A.
This is an associative object in spaces, in the weak sense, which is the most we
could have hoped for. If we play the same game in R

2, you get, the picture, I
get the multiplication of A again, which tells me that I’m recovering A as sort of a
commutative object in a weak sense. You could replace 2 by a larger n and see more
commutativity. I was moderately prepared to show you this hard fact. I’ll indicate
how it would go and then we’ll call it a day. Let’s have X sit inside X × (−∞,∞],
a closed embedding, and the complement is X × R. The fiber sequence looked like
CA(X) → CA(X × (−∞,∞]) → CA(X × R), and we wanted to see that it was a
homotopy fiber sequence. Because of the R there. Well, I think I’m going to bail.
You can think of the third space as a category, an algebra, and then the middle
thing comes up as a Grothiendieck construction, a Borel construction, and that sets
you up to use the Quillen theorem. If you wanted to hear more details I could go
into it but maybe I’ll stop there.

5. David Ayala, Geometry Physics Seminar, November 10, Weak

n-categories of sheaves

I’m glad for this chance to be here, it seems like a well-informed audience. I’ll
be talking about joint work with Nick Roznblyum, a project to finding a resolution
to there being so many situations where you have something like a category or
n-category coming from geometry. I’m going to guide us there rather than take the
shortest route. Let me do a really quick recap of Dold-Thom. They start with a
based space (X, ∗) and a commutative monoid A, and produce from this Sp∞(X,A),
which is a disjoint union over pairs (X×A)k/Σk, unordered configurations of points,
up to some equivalence relations, (x, 0) ∼ ∅, I can just forget those, (∗, a) ∼ ∅ and
(x, a), (x, b) ∼ (x, a + b). The first of these I will leave as a variable, I can either
have it or not.

Here are some highlights about the topology. Points can collide and you add
their labels. Points labeled by 0 disappear, and if they run into the basepoint, they
also can be forgotten.

The main theorem of Dold-Thom, or I don’t know if it’s the main one, say A is
discrete and a group, then π∗Sp

∞(X,A) is the reduced homology H(X,A). You
saw a variant of this if you went to the pretalk. This implies in particular that if
you run this on R

n ∪ ∞, with basepoint ∞, then SP∞ of this space is K(A,n),
which I may write BnA.

Here is a question. What if A can only be delooped once? What if A is an
associative monoid in topological spaces? We can’t do the same thing because
we’ve added things, so I don’t know what order to add if A is not commutative.
We definitely can’t carry out this construction in general, but let’s take X = R, a
linearly ordered topological space, and any finite subset inherits a linear order. In

this way, any map z
ℓ
→ A, well, we know how to do multiplication, go to

∏

ℓ(z).
So Conf(R, A) is finite subsets Z of R and a map Z → A. Salient features of the
topology: points can collide and “add” labels, I know what order to collide in, and
points with the identity label can disappear (or not, if there is no unit in A).

The real line wasn’t the only space for which we can do this. If P is locally
canonically linearly ordered space, we could do this. So let’s take P , a large supply
of such spaces are framed one-manifolds. Then we can form Conf(P,A). I don’t
need to be able to multiply on the circle, I just need to know that just before
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they collide there’s a linear order. This construction is nice and functorial in P in
the sense that an embedding P →֒ Q of framed one-manifolds induces a map of
configuration spaces Conf(P,A) →֒ Conf(Q,A).

So Conf( , A) is a functor from the category of framed 1-manifolds with em-
beddings to Top which takes disjoint union to product, and takes R to A by multi-
plying, and this map on R is an equivalence. In fact, we remember the structure of
A as well by looking at the map R

∐

R → R, which induces a map of configuration
spaces Conf(R, A) × Conf(R, A) → Conf(R, A). So this functor remembers (in
a weak sense) the product on A. Your very own John Francis has a theorem that
says all such functors that satisfy a certain condition (excisive) come from weakly
associative monoids.

I think this is a very cool theorem because an associative monoid is something I
think of as algebraic data, manifolds are geometric, and this interpolates. How far
can this go? This was the kind of question that Nick and I, or I was interested in,
I can’t speak for him.

Think of a monoid A as a category with one object and the morphisms A, using
the multiplication in A to define composition. Can you do this when you replace A
by a category? It’s not too hard to guess what you might do, Conf(R, C) consists of
configurations where you mark points with morphisms and the gaps with objects.
So this is finite subsets of R with labelling data. You can topologize this space in
the way that you would guess, too, but you lose an important functoriality that
you had when you were talking about an associative monoid.

Can we have a theorem like John’s that characterizes categories in terms of
manifolds? Does Conf( , •) characterize categories in terms of manifolds? This
isn’t functorial in embeddings of framed one-manifolds. An embedding e does not
give a map of configuration spaces in any kind of good way. I can draw a picture
for the problem. The tails of P are labeled by objects and they might not agree,
if the ends of Q connect, well, we’d only get a map if the beginning source and
end target are the same, but then you’d be talking about the underlying algebra.
You can remedy this, but it does seem like you get a map going the other way, a
restriction map. The picture, if I had points in Q, I can just restrict that labeling
data. That’s great. You get that map on underlying sets, but it’s not continuous.
Say a point runs off to the right, then in the restriction the point runs off to the
end.

Retopologize the configuration space, and if you were in the pretalk, you have a
pretty good idea of how you might do that. I’ll call it Confnc(P, C), for noncompact.
I won’t define this, but let me highlight some features. When points collide you
compose morphisms. Points can disappear at ∞, that’s the new part, and then the
last part is that points with identity label can be forgotten. This is again optional,
if your category is nonunital. If P is compact, it’s the same as before.

I can draw a continuous loop
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t = 0

t = 1
3

m

o

o′ o
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So its enough to check it on R, and Confnc(R, C) ∼= |C|. If C = A, then
we get BA. It looks like we forgot information, we have only remembered the
classifying space. The classifying space of the category is only up to homotopy
equivalence. This particular point-set space remembers more than just the ho-
motopy type. I can look Confnc(R ⋔ {0}). That’s configurations that look like

om m′

You can make a deformation retract to forget the morphisms by pushing everything
out to ∞. You can do similar pictures transverse to two points. These give mor-
phisms and then restrict nicely to the other pieces. So you can build these into a
simplicial space C̃ : ∆op → Top which takes [p] to {(a0 < · · · < ap), (Z, ℓ)|Z ⋔ a}. It

turns out that C̃ is a Segal space (weak category). I find units confusing. I haven’t
worked it out completely, but I don’t see conceptual obstructions. Specializing to
non-unital guys, completeness is not an issue. I only get monomorphisms, I don’t
get a full simplicial space. Those equivalences follow through to show that C̃ has
a map to C regarded as a Segal space, which is an equivalence of weak categories.
We keep this transversality, that’s essential. I’ll write a sequence of theorems.

Theorem 5.1. (A.-Roznblyum)(n=1,nonunital)
There is an adjunction between sheaves on framed 1-manifolds with a notion of
transversality and non-unital weak categories, which is an equivalence.

Besides being a nice thing to know, this has a large supply of categories coming
from geometry, and you have a sheaf on 1-manifolds, and you know when sheaves are
transversal to submanifolds. Transversality means, I’ll say this much, a consistent
way to decide when g ∈ Ψ(M) is transverse to a submanifold W . Going from
non-unital weak categories is chiral or factorization homology. You get sheaves on
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all framed one-manifolds, can take sections, and then you get invariants. I would
say we know most things we want to know about one-manifolds.

Theorem 5.2. (n = n, non-unital)
There is an adjunction and equivalence between non-unital θn-Segal spaces and
sheaves on Manfr

n with transversality

Take from this that we have on the left a model category, a model for weak
n-categories, I learned it from Charles Rezk. This adjunction is an equivalence,
that’s the statement. I need to tell you what [unintelligible].

I’m running on the vague intuition about what an n-category is. I’m running
on something precise. One feature of an n-category is that you have a hierarchy.
So we would expect, in the geometry, to see a hierarchy. An object of Manfr

n is

submersions Mn → Mn−1 → · · · → M0 that looks like R
n → R

n−1. An open
cover is an open cover of each piece compatibly. I only need to know what it
means to be transverse to points. It amounts to, a sequence of maps of finite sets
Zn → Zn−1 → · · · , and I want to know when a sheaf is transverse to such subsets.
For instance, if I take R

2 projecting to R
1, well, let me cut some things out and

tell you theorem 80, we’re 80 percent of the way

Theorem 5.3. (n=n,nonunital)
Non-unital weak n-categories with adjoints, there’s an adjunction which is an equiv-
alence of model categories between that and sheaves on framed n-manifolds with
transversality.

This is a geometric setting familiar to geometers. This gives a way to construct
weak n-categories with adjoints. A weak n-category has adjoints if for every k
strictly between 0 and n, a k-morphism has an adjoint. In the two-category of
categories, where k = 1, you know what it means. There’s a lot that goes into how
you might define this precisely. Going the other direction, a large class of examples
of weak n-categories with adjoints are En algebras in topological spaces, and this
is a categorical version of factorization homology.

Given a sheaf we get an n-category with adjoints. Given a weak n-category with
adjoints, we get invariants by looking at sections of sheaves. This basically gives
all of them.

Let me give some examples of sheaves that have a natural notion of transversality.
A sheaf is a functor satisfying a sheaf property. So there’s the one that assigns

to Pn all proper maps Wn → Pn. The weak n-category you get is the bordism
category Bordn.

I decided to put this one in last minute, you could put inW d ⊂ Pn, submanifolds,
nothing has boundary, proper embeddings, I mean, and this gives an interesting
n-category. If d = 0, I get the configurations we had before. If I say manifolds with
some structure, then this gives En algebras when d = 0. I think that when d = 2
and n = 4 there is a relationship to Khovanov homology. It might remind you of
knots in 3-manifolds and cobordisms of those. One last example is, it assigns to Pn

the mapping space XP or the space of, a stratification C ⊂ P , together with a map
P → X that respects subcomplexes. There are lots of variants of this. You get the
3-category of conformal nets, speculatively, and it’s probably time for me to stop.
To finish, I gave three theorems. The stuff that Nick and I are working out, we’re
trying to do it as well as possible so that all of thesoe theorems happen at once.
There’s not much you need to input to get this flavor of theorem. It’ll, the types of
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theorems that will come out are that sheaves on some kind of locally defined spaces
with some kind of transversality is equivalent to some kind of algebraic data. These
types of theorems. Say I consider topological spaces that are locally canonically R

or R with a dot, then the structure you get on the other side is a nonunital category
and a covariant functor.


