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1. August 28, 2018: Lecture I

I want to talk about virtual fundamental chains and Floer homology. I’ve been
working on this for twenty years but maybe I never made this kind of lecture on
this topic. At first I was afraid it was too technical. I believe after three or four
rewrites it’s more usual. Five lectures are not enough, I think with a half-year
course I could do it. But I can do maybe, give the statements and an idea of the
proof. So the idea is as follows.

(1) Moduli space of holomorphic curves and its compactification.
(2) Kuranishi structures and orbifolds, which we’ll need.
(3) (tomorrow) How to define the virtual fundamental chain. This is something

like de Rham theory. These second and third lecture are similar to manifold
theory. You define manifolds, differential forms, integration, and prove
Stokes’ theorem

(4) How to construct the Kuranishi structure on the moduli space of holomor-
phic curves

(5) Applications, some examples where Floer theory in this generality is useful
in symplectic geometry.

Let me start with some basic things, about this moduli space. We have a sym-
plectic manifold (X2n, ω), a compact symplectic manifold. So ω is a 2-form and
dω = 0 and ωn never vanishes.

The thing considered by Gromov is this automorphism J of the tangent bundle
of X, with J2 = −1 and ω(Jv, Jw) = ω(v,w) and ω(v, Jv) ≥ c∣∣v∣∣2. This is a
“compatible almost complex structure” and then g(v,w) = ω(v, Jw) is a Riemannian
metric.

We fix J and then there are many maps Σ2 uÐ→ X such that JDu = DuJ where
Σ is a Riemann surface.

On a non-integrable complex manifold, you usually can’t expect any holomor-
phic maps from X to anything. So this is unusual, that there are many of these.
So Gromov tried to use this to describe information about symplectic geometry.
Various people recently think that this contains all the nontrivial global symplectic
geometry, maps from Riemann surfaces.

You have flexibility and h-principle results and people thought at first that there
were many things in between, and these are getting closer and closer. So people
think that eventually we’ll see that everything global comes from these holomorphic
curves.
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In a sense we expect, we know that this story is at least very rich. So, before
going to the case, consider g = 0,1,2, . . . and ` = 0,1,2, . . . and α ∈H2(X,Z) and we
consider M̊g,`(α) which is the set of (Σ, z⃗, u) satisfying some conditions up to an
equivalence relation. So Σ will be a genus g Riemann surface, z⃗ = (z1, . . . , z`) are
distinct points in Σ and u is a holomorphic map Σ→X (i.e., Jdu = duJ ) with the
homology class of α: u∗([Σ]) = α. We say that (Σ, z⃗, u) is equivalent to (Σ′, z⃗′, u′)
if and only if there is a biholomorphic map v ∶ Σ → Σ′ such that u′ ○ v = u and
v(zi) = z′i.

This is not compact and without a compactification this might be too wild. But
there is a compactification which I’ll explain in some cases later, which I’ll call
Mg,`(α) which I’ll call the moduli of stable map. The compactification is due to
Kontsevich and can be used in almost all cases.

Then we have a map Mg,`(α)
(ev,fg)ÐÐÐÐ→ X` ×Mg,`, an evaluation and forgetful

map. The evaluation map takes (Σ, z⃗, u) to (u(z1), . . . , u(z`)). The forgetful map is
more delicate. You take (Σ, z⃗, u) to (Σ, z⃗) but then you have to shrink. I’ll explain
this process later on. This Mg,` is something called the moduli space of stable
curves, introduced by Deligne and Mumford. If Σ is non-singular this is honestly
(Σ, z⃗) but in the compactification you have to do some things.

The idea, I think from Gromov, is to take (ev, fg)∗([Mg,`(α)]), and this is a
class in H∗(X`×Mg,`), a Gromov–Witten invariant, where the degree is 6g−6+2`+
2c1(X) ∩ α + 2n (or something like that, sorry). This space is singular, but people
assume things about X so that Mg,`(α) is good enough to have a fundamental
class. Now they’ve done this algebraically and symplectically in some generality.

I want to talk about something a bit more difficult than this. This story I’ve
told is more or less like a closed manifold. Even from the very early days people
also studied the case when the Riemann surface had a boundary. In the case we’ve
discussed, this is already difficult because it’s singular, but at the end of the day
you can define this class, which has applications. But now let’s take Σ = D2 a
disk. Suppose you have a disk. You take a map from (D2, ∂) to (X,L). The
Fredholm theory needs good boundary conditions on the target, so L should be a
Lagrangian submanifold and the real dimension of L is half the dimension of X and
the symplectic form vanishes on X.

Maybe I should explain why this is good. Suppose we consider this moduli of
u taking (D2, ∂) to (X,L). This is a good moduli problem. But for other kinds
of L, not Lagrangians, this is not good. For example, taking a very simple case,
take X = C2 and L = C, so this is not a Lagrangian (which would be R2). Then
consider holomorphic disks u ∶ (D,∂) → (C2,C). But this means u1 and u2 are
both holomorphic. Then u1 has no boundary conditions and u2 has zero at the
boundary, so the first map is arbitrary and the second one is constant. Then the
moduli space is infinite dimensional and this is not good. So C and R2 are both
two dimensional but one is not very good.

If you naively do this with coisotropics, this will be too big, infinite dimensional.
You need to do something clever. People have tried to do it but no one has suc-
ceeded. In the case of just half-dimensional with no isotropic condition, it’s just a
bad idea, on the other hand.

Weinstein is the person who promoted symplectic geometry for a long time, and
he says that it’s the study of symplectic geometry and its Lagrangian submanifolds.
Something you don’t see so much in Kähler geometry is Lagrangian submanifolds.
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So I want to define a similar moduli space using this disk. So I’ll define M̊k+1,`(β)
with β ∈ H2(X,L,Z). So this will be the set of (D2, z⃗, z⃗, u). So u is a holomorphic
map from (D2, ∂) to (X,L), so JDu = DuJ (people write ∂̄u = 0. Its relative
homology class is β.

Then z⃗ = (z0, . . . , zk) are counterclockwise arranged distinct points on the bound-
ary of the disk. Then z⃗ is again similar things, (z1, . . . , z`) in the interior of the
disk, distinct points, and we say that

(D2, z⃗, z⃗, u) ∼ (D2, z⃗′, z⃗′, u′)

if there is biholomorphic v ∶ (D2, ∂) → (D2, ∂) such that u′ ○ v = u and v(zi) = z′i
and v(zi) = z′i.

So there’s a compactification I’ll explain soon,Mk+1,`(β) and you have an eval-
uation mapMk+1,`(β) → Lk+1 ×X` using u(zi) for the first coordinates and u(zi)
for the last coordinates.

You might try to take ev∗([Mk+1,`(β)]), this is the naive thing, in H∗(Lk+1 ×
X`,Q) but in the very best case, Mmk+1,`(β) is a manifold with boundary and you
don’t expect to have a fundamental class.

So for X and L a point and β = 0, this is M4,0(0), this is the disk with four
points given. It’s a famous fact that you, you can change this by an automorphism
of the disk so that z0 is 1 and z1 is

√
−1 and z2 is −1. Then z3 could be anywhere

in the arc between −1 and 1.
Then M̊4,0(0) is an arc, and if you compactify it, it’s a closed arc. So as such this

naive idea does not work. If you try to get an invariant, try to take the fundamental
class, it fails, and you have to do something. So the idea goes back to Floer, and it’s
to use these spacesMk+1,`(β) to obtain structure on H(X) and H(L). You can’t
construct the homology element but you can use it to get some structure on this
homology group. So then e.g., you get an A∞ algebra on H(X) if H(L) vanishes.
This is basically what the Floer homology is doing. It’s a bit more complicated
thing than usual Gromov–Witten theory. So in Gromov–Witten theory you get a
kind of number. So you need to cook up a chain and prove some equality among
chains in this case. So then transversality issues become bigger issues. I’ll talk
about that tomorrow but today I want to talk about this space in more detail.

This was an overview and now I want to start more serious work. I’ll start by say-
ing something about how to compactify—then later I’ll talk about the fundamental
chain of this space.

So first I want to talk about Mk+1,`, this is the pure moduli space of genus
zero curves with 1 boundary component with k + 1 boundary marked points and `
interior marked points. So there are no handles, and there is only one boundary
component, and we also have k+1 points on the boundary and ` in the interior, we
only do not have X. So what is thisM?

Its elements are something like (Σ, z⃗, z⃗), where Σ is a union of D2s and S2s, I
want to do this a little informally. So you have a tree of disks [picture]—this is a
tree-like union. It has no fundamental class, homotopy equivalent to a tree, and
only double points. So it’s forbidden to have three disks intersecting at one point.
Then you add spheres [pictures], so trees of spheres attached to interior points of
some disks. You are not allowed to attach these spheres at boundaries or double
points. The spheres are also tree-like, so that loops in the configuration of trees are
forbidden. Again you have only double points.
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If you want rigorous definitions, you attach the usual Deligne–Mumford genus
zero thing and then [unintelligible]. But it’s easier to draw the picture.

Then zi lies on the boundary of one of the D2
a, these are the irreducible compo-

nents. I require that z0, . . . , zk respect the counterclockwise order. [Picture]
In a sense, if you take this as a topological space, you may think this has no

orientation, so you put this in a plane preserving the complex structure of each
component. The boundary marked points should respect this order.

The zi are in the S2 or D2, but in the D2 its in the interior interior and it’s not
on a singular point, and all are distinct.

Now I want to say something about isomorphism and stability conditions. To
be a semi-stable disk with marked points, I’ll want to talk about that. So v will
be an isomorphism between (Σ, z⃗, z⃗) if and only if it’s a homeomorphism which is
biholomorphic on each irreducible component, and then of course you expect that
v(zi) = z′i and v(zi) = z′i.

So we call (Σ, z⃗, z⃗) stable if its automorphisms are finite.
Maybe I can explain what is not stable. [Picture] This is not stable, this is in

the case k + 1 = 2 and ` = 0. This part, this is something like D2 with one point,
and all biholomorphic maps of D2 which preserve this point, these are affine trans-
formations of the upper half-plane, this is z ↦ az+b, these are biholomorphic maps
preserving ∞, so this is unstable. Another case is that if you have a component like
this [picture]. This picture is inM4,2, and the components have no automorphisms
except this one irreducible component is S2 with 2 points. So z ↦ αz preserves
0 and ∞. The conditions are then that disk components should have, let a be
the boundary marked or singular points, and b be the interior marked or singular
points, then this stability is that a + 2b ≥ 3. In the case of S2, this is, let a be the
number of marked or singular poinds, then a should be at least 3.

Now we consider thisMk+1,`, this is the set of (Σ, z⃗, z⃗) divided by isomorphisms,
and this is a manifold with corners, and the dimension is k + 1 + 2` − 3. Then a
representative (Σ, z⃗, z⃗) is a codimension m corner if and only if Σ has m + 1 disk
components.

For example, in the case of M4,0, you have your limiting configurations as like
boundary of a family. But for interior nodes, you have a symmetry of rotations, so
this is like parameterized by [0,∞) × S1 and when you add ∞ it’s a disk. So the
first case it’s a boundary point and in the second place it’s an interior point.

In general, in higher genus, it will be an orbifold with corners. So M0,`, this
has different issues. So M0,` is not compact. The typical non-compact element
looks like this [picture]. This is unstable, it has S1, so finite automorphisms, this is
unstable, but this is a limiting configuration. If you want to make it compact, you
have to include it, it’s not very bad because S1 is compact. So this is why I write
k + 1 because one boundary component makes it stable.

Next I want to include the holomorphic maps and then introduce the stable
map homology. So I want to define Mk+1,`(β) where β is in H2(X,L,Z). So the
points here are (Σ, z⃗, z⃗, u) where (Σ, z⃗, z⃗) is semi-stable meaning they are tree-like
configurations but I don’t assume stability. So u is a continuous map Σ→X which
takes the boundary to L which is holomorphic (∂̄u = 0) on each component and the
relative class is β. For stability you need to consider the maps.
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So (Σ, z⃗, z⃗, u) and (Σ′, z⃗′, z⃗′, u′) are isomorphic via v if v ∶ Σ→ Σ′ is a homeomor-
phism, biholomorphic on each component, preserving all the marked points and the
map (as before).

The stability of this is as you expect, (Σ, z⃗, z⃗, u) is stable if the set of automor-
phisms v is finite.

Then the case, if you forget the map, it might be unstable, the configuration
(Σ, z⃗, z⃗), but with u it’s stable. What’s an example? Such an example is typically
as follows. [picture]. If u is non-trivial on an unstable component. Then the map
kills the automorphisms and makes it stable. The Riemann surface itself is unstable
but after including the map it’s stable. Many difficulties in handling this moduli
space are related to this.

So I want to define a topology onMk+1,`(β). The theorem says that it’s compact
and Hausdorff. Actually, Gromov never wrote down the precise topology, and the
papers don’t make it precise which topology they use. The difference in topology
is big. If you want a function space, but the source is moving, you first need
to identify, trivialize, the source. The source has non-compact automorphisms,
so how to do that is a problem. This kind of topology is probably known to
algebraic geometers. To define the topology first I want to define the forgetful map
Mk+1,`+1(β)→Mk+1,`(β). This means we have k+1 boundary marked points and
` + 1 interior marked points. So we have (Σ, z⃗, (z1, . . . , z`+1), u) and you want to
omit z`+1. But the problem is that you might end up with an unstable thing.

That is, the issue is that (Σ, z⃗, (z1, . . . , z`), u) might be unstable. Suppose you
have this kind of thing [picture]. This is an element, and if you forget this marked
point, then this component becomes unstable. If the map is nontrivial then it’s okay
but if the map is constant then it’s unstable. So first we start with (Σ, z⃗, z⃗+, u) where
z⃗+ = (z1, . . . , z`+1) and you start by going to (Σ, z⃗, z⃗, u) where z⃗ is (z1, . . . , z`), and
then you shrink all unstable components.

I want to talk about universal families. So you have over Mk+1,` a universal
family Ck+1,`, where the fiber over (Σ, z⃗, z⃗) is Σ. So for Mg,`, in the Gromov–
Witten case, the universal family isMg,`+1 and this is the forgetful map. This in
fact turns out to be a universal family. So for g = 1 and ` = 2, you get this picture
[picture]. Then this point in Mg,`+1, you have an element like this in M1,3, and
if you forget this marked point this is unstable so you shrink it, so this element
corresponds to this singular point.

You may think that this Mk+1,`+1 → Mk+1,` is the universal family. This is
almost true, but it’s a bit different. This is a bit different so I want to mention it,
so suppose you have something like this [picture]. You have a point M4,1 sitting
aboveM4,0, and if you forget a marked point in the interior of a disk with two nodes,
you collapse it. But this has moduli, a disk with one interior and two boundary
marked points is parameterized by an arc. Then this whole arc corresponds to the
singular point. So the fiber is not exactly Σ, it’s Σ with boundary nodes replaced by
arcs. So Ck+1,` is obtained by shrinking arcs inMk+1,`+1. After shrinking, this is no
longer a manifold but an orbifold. So outside the part corresponding to boundary
nodes, this is a manifold.

This is about the universal family. You still get this and it’s almost everywhere
a manifold. Now once we remember, I want to define the topology, you should
use neighborhood systems, but I’m going to use convergent sequences, this isn’t
quite right. First let me define (Σ, z⃗, z⃗, u) as source stable if (Σ, z⃗, z⃗) is stable. If
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the source is stable then one can define the topology in the following way. Let
ξa = (Σa, z⃗a, z⃗a, ua), and ξ = (Σ, z⃗, z⃗, u). Assuming they are source stable, I’ll define
convergence lima→∞ ξa = ξa (later I’ll reduce to the source stable case). So first
(Σa, z⃗a, z⃗za) = ηa should converge to η = (Σ, z⃗, z⃗) in Mk+1,`. Then we want ua
to converge to u in some way. So now we can consider S(Σ) to be the set of
nodal points of Σ. Then V (η) is a neighborhood of η inMk+1,`. You consider an
ε-neighborhood of S(Σ) in Ck+1,`, and consider Σ ∖Bε(S(Σ)).

We have this map ϕ from Σ ∖Bε(S(Σ)), so you consider this map

ϕ ∶ (Σ ∖Bε(S(Σ))) × V (η)→ Ck+1,`
πÐ→Mk+1,`.

So this is an honest fiber bundle, if Σ has no singularity, this is honest. So you have
a trivialization. If you have a singularity you have to remove this, and the image
of ϕ contains π−1(V (η))∖Bε(S(Σ)). Then the neighborhood of the singular point
you can’t parameterize nicely. Why is the universal family good?

So now ξa ∈ Vη, if you take π−1(ξa) = Σa, and then we consider ua restricted to
this, So x ∈ Σ ∖Bε(S), and you have two maps,

Σ ∖Bε(S(Σ)) ϕ( ,ξa)ÐÐÐÐ→ Σa
uaÐ→X

and Σ∖Bε(S(Σ)) uÐ→X. So the first assumption is that x↦ ua(ϕ(x, ξa)) converges
to x↦ u(x) in the C2 norm. [pictures]

We also need to control what happens near the node. The other condition is
rather simple. We assume that for any δ there exists an ε so that Ua of any
connected component of Bε(S(Σ)) ∩Σa has a diameter smaller than δ. This part
of the picture is the “neck region”. If you have one component of that, forgetting
that red part you want C2 convergence. For that red part you request diameter
small. You fix trivializations out of that part and on the neck part you request
small diameter.

This is the definition of the topology in the case that everything is source stable.
Now let me consider the general case, with ξa = (Σa, z⃗a, z⃗a, ua) and ξ = (Σ, z⃗, z⃗, u)
inMk+1,`(β), and I want to define convergence without assuming source stability.
I say they are convergent if and only if there is some m and ξ̂a ∈Mk+1,`+m(β) and
ξ̂ ∈Mk+1,`+m(β) such that ξ̂a and ξ̂ are source stable satisfying two conditions

● the limit of ξ̂a is ξ̂, and
● the forgetful image of ξ̂a is ξa and of ξ̂ is ξ.

So you have to check some things to show that this is a topology. You need to know
that these ξ̂a and ξ̂ exist.

Theorem 1.1. The moduli space Mk+1,`(β) is compact Hausdorff (and in fact
metrizable).

This works in all genera. The compactness, Gromov compactness, that proof
shows compactness, you need something but it’s not very big. Hausdorffness you
need something. What is important here is that that’s where stability should
enter. It’s a quotient space. The quotient space fails to be Hausdorff when the
group is noncompact. So stability is some restriction. The metrizability is another
issue. You need to know that it’s compact Hausdorff and satisfies the first axiom
of countability. This is just an existence, the convergence definition.

The lemma is the following. Maybe I can just stop here, but here’s an exercise
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Lemma 1.1. Let lim ξa = ξ and suppose ˆ̂ξ is source stable and forgets to ξ. Then
there exists ˆ̂ξa source stable with limit ˆ̂ξ which forgets to ξa.

I think you can prove it if you think a bit and then prove metrizability.

2. Lecture II

We introduced this moduli space in the morning,Mk+1(β), we’ll need to include
` > 0 for several things but let me consider ` = 0 for simplicity. We have this
evaluation map ev ∶Mk+1(β) → Lk+1 which takes (Σ, z⃗, u) to (u(z1), . . . , u(zk)),
and we want to define operations on H∗(L). In a sense this, well, in some cases we
have L1, . . . , Lk with Li ⋔ Lj , and then we take

CF (Li, Lj) = ⊕
p∈Li∩Lj

Q[p].

In our case, all Li are L and so the transversality condition is never satisfied. So
CF (Li, Lj) should be replaced with H∗(L). If you have a Morse function, their
critical points are discrete, and this is more like a Bott–Morse case. The critical
point set is not discrete but it’s a submanifold. To perturb L from itself breaks
symmetry so it’s better not to do it. To go directly to the homology group is
sometimes not so nice, so we might try to obtain a chain model for the homology
of L. For the virtual technique, you can probably use almost all chain models that
you like. Which one you choose is related to what you are trying to do. Singular,
Morse, de Rham, Cech, for each of these there is a version. Depending on the model
you will have different problems. In this talk we’ll use a de Rham model. In our
book we use singular homology. This is sometimes difficult to do with intersection
theory. If you teach singular homology it’s technically heavier. The wedge product
of de Rham forms is much easier than cup product.

So what do we do with the de Rham model? Instead of defining the ho-
mology group. we take mk operations from Ω(L)⊗k → Ω(L), so we can write
mK = ∑T β∩ωmk,β , and these are some kind of A∞-relations.

Once we cook these up on the chain model, then you can transfer the structure
to the homology.

I want to mention the kind of one-line definition, take h0, . . . , hk on Ω(L), then
I want to define mk,β via

∫
L
mk,β(h1, . . . , hk) ∧ h0 = ∫

Mk+1(β) ev∗(h0×⋯×hk)

This is good only whenMk+1(β) is a manifold and ev0 ∶Mk+1(β)→ L is a submer-
sion. In these good cases, you can use integration to define operations. But this
rarely happens. There are many interesting cases when the map is not a submersion.

This is the main thing about the virtual fundamental chain technique. You want
to adjust your integrations over a singular space.

The theory looks like manifold theory. You have (very singular) moduli spaces
and want to justify integration over them. So I want to explain some framework for
singular spaces to justify integration and prove, e.g., some kind of Stokes theorem.
This kind of idea was studied by many people, but every group has their own taste
and style. Closest to us is Dominic Joyce. But he seems to follow Grothendieck.
He has about a thousand pages about his manifolds. He hasn’t gotten to the
homology theory yet. He’s trying to define a kind of scheme or stack using smooth
functions instead of polynomials. Hofer has an infinite dimensional version, this is
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very much in the vein of functional analysis. John Pardon, he wants to go directly
to algebraic topology constructions to construct algebraic topology and these kinds
of invariants. Probably he will not continue in this. If you like functional analysis
you go to Hofer, if you like schemes you go to Joyce. If you like manifold theory
you come to us, and if you like algebraic topology you go to Pardon.

So now I want to do the manifold theory type things. I want to explain a few
things about orbifolds before going there. SoMk+1,` itself is a manifold, a cornered
manifold, so you don’t need to go to the orbifold world. ButMk+1,`(β) might have
automorphisms. Now this could be nontrivial. Even in the genus zero case you
need to go to the orbifold world not the manifold world.

Write X = S2 and L = S1. Now Σ is a disk with a sphere bubble. This has
irreducible components ΣD and ΣS . So the disk goes to the upper half-sphere and
Σd goes to the double cover of S2. The automorphism of (Σ, z0, u) is Z2 where it’s
the identity on the disk and z ↦ −z on the sphere.

I want to say a few words about orbifolds. I don’t know, some people in symplec-
tic topology think orbifolds are horrible and dangerous objects. For me, orbifolds
are very simple. There are cases that are difficult, like maps between orbifolds. If
you go to some, if you study non-effective orbifolds, you should be careful.

But since I don’t want to make the story complicated or go to the difficult cases,
I’ll think of orbifolds as very close to manifolds.

I’ll give a very elementary definition. Let X be a space. We consider a triple
U = (V,Γ, φ), where V is open in Rn and Γ is a linear group action on Rn preserving
V , and φ is a map from V to X, which is Γ-invariant (with respect to the trivial
action on X) so that φ ∶ V /Γ → X is a homeomorphism to an open set. I assume
effectivity: if γx = x for all x then γ is the identity. If a group acts trivially on a
space, the local model is a manifold with a trivial γ action which might be twisted
globally, so the orbifold structure is not unique.

So X is covered by Ua and the Ua are open sets with trivial Γ actions. You might
think this was unique, but actually there are many different examples, because the
transition functions when you glue them, this includes an automorphism of Γ. So
there’s something about the Cech cohomology of Γ. Then it’s getting cumbersome
to understand it. This is probably not so close to manifolds.

Now suppose you have p ∈ V and you take Γp, the elements of Γ that fix p. Then
you take Vp,Γp, φ∣Vp , this is an orbifold chard, the “induced chart”.

Now (I don’t want to explain so much about orbifolds) if vi = (Vi,Γi, φi), we say
v1 and v2 are compatible if for pi in Vi we have φ1(pi) = φ2(p2). Then an induced
chart at pi is isomorphic to an induced chart at p2.

This is the kind of definition that two orbifold charts are compatible. This is
almost the same as what you get in manifolds, a little more complicated.

The orbifold structure of X is a cover ∪ϕa(Va), you cover X with locally finitely
many charts that are compatible.

So what is a smooth structure? It’s all compatible charts.
Then something I need is about boundaries. I said that to define morphisms

of orbifolds is not trivial, especially for non-effective orbifolds. One example is the
following. Let X be a point and Γ trivial. Then consider Y = R2/Z2 and if you want
to find a map of topological spaces X → Y , you send a point to the isomorphism
class of 0. But this is a problematic map. One bad thing is, if we have a vector
bundle then you can’t pull back along this map.
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The right thing is probably to think of orbifolds as a 2-category, if you try to
do something involving equality of maps you may make a serious mistake. But
anyway I’d like to restrict to a situation where I don’t need to do this. So you have
a map from orbifolds to topological spaces, and I’ll say that two maps of orbifolds
f and g are the same if their forgettings f̄ and ḡ are the same. For non-effective
orbifolds, you don’t get this property. Maybe someone used to 2-categories can do
this without going to this kind of assumption.

So you can consider X and Y to be two orbifolds and want to know when a map
f is an embedding. So first of all, it should be an embedding of topological spaces.
Then you consider p ∈ X and q = f(p) ∈ Y , and (Vp,Γp, φp) and (Vq,Γq, φq), and
we can restrict to the case that p = φp(0) and likewise for q.

So I require h ∶ Γp → Γq an isomorphism, and Vp ↪ Vq is a Γ-equivariant smooth
embedding compatible with f and φp and φq.

So locally it’s an embedding and the isotropy group does not change. In the
counterexample I gave the isotropy group changes.

So you can see that the composition of embeddings is an embedding. If you just
take embeddings then the category of orbifolds is not so bad, it is just a 1-category.

Now I want to define vector bundles. If E πÐ→X is a continuous map of orbifolds,
this is a vector bundle if, for each p in X, you have a chart (Vp×Ep, φ̂p,Γp) of p, with
Ep a vector space and Γp acting on Ep linearly. Then you require compatibility of
φ̂p and φp with projections.

I don’t want to repeat but you can again define when two charts are compatible,
and a global bundle is a cover by compatible bundle charts.

An example, take S2/Zp, [picture], then you can consider the tangent space
divided by Zp. The fiber is R2/Zp at the endpoints so it’s not the usual thing.

So the exercise is to suppose that, take a bundle, I don’t want to say orbibundle,
this is a vector bundle in the orbifold world in this sense. So Y ↪X is an embedding
of orbifolds. Then we take F the fiber product of Y with E over X, and then you
have a natural projection to Y and this has the canonical structure of a vector
bundle. This is what I mean about pulling back vector bundles by embeddings.
For example, the first bad map, where the point goes to something with isotropy,
when you pull back you get something bad, you can’t do that.

This is most of what I wanted to say about orbifolds. Now I want to define this
notion of a Kuranishi structure. But first I want to define a Kuranishi chart.

Suppose that X is a topological space. Maybe we assume some other things,
compact, Hausdorff, metrizable, I don’t know. Then we’ll take a Kuranishi chart
of X to be (U,E , s, ψ) where U is an orbifold, E πÐ→ U is a vector bundle, s is an
embedding U → E and π ○ s is the identity.

Finally, s−1(0)→X is homemorphic to an open set.
So in a restricted setting, V a complex manifold, Kuranishi found a vector bundle

E → V and the map s. Then Mε close to M is parametrized by s−1(0).
[I’m losing focus; he is not writing on the board very much, mainly just talking.]
Then the idea is the following thing. We have the moduli spaces, and you want

to find, X is kind of singular and you want more structure, not just a topological
space. Scheme is essentially something like this, locally write your space as a zero
set of polynomials, and remember that. There’s also a version in a complex analytic
space. That case one can also handle by sheaf theory, but something bad in our
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case is that s is just a smooth function, so if you imitate schemes, you get things
that you have to do on the sheaf of smooth functions (but this is a terrible thing).

So what do we do? We don’t do sheaf theory. We focus on the zero set.
So a Kuranishi structure will be to have (U,E , s, ψ) as a chart, and define co-

ordinate change of such an object. In place of taking only the zero set to have
small neighborhoods and some consistency conditions. That’s the notion I want to
define, but it will take an hour, so how about a little break.

Okay so we have E over U and inside U w have s−1(0) and we map that to X,
and that’s a Kuranishi chart.

Now I want to define coordinate change between Kuranishi charts, supposing
you have two of them. So a coordinate change Φ21 ∶ U1 → U2, so you have an
open set U21 inside U1 and an embedding ϕ21 to U2, and so you have E1 and
sitting inside of it E1∣U21 and this maps to E2 and this makes a square which should
commute set-theoretically. So Φ21 should be (U21, ϕ21, ϕ̂21), and you assume that
ϕ̂21 ○ s1 = s2 ○ ϕ21. The final condition is that s−1

1 (0) ∩ U21, this goes via ϕ21 to
s−1

2 (0), and then you can take ψ2 to go to X. On the other hand you could have
just gone by ψ1. These should agree.

These are natural conditions, a pair of embeddings, these things should all be
compatible, the Kuranishi map and the parameterization should commute. So the
other things, the next one looks a little technical but you need it. So if x ∈ s−1

1 (0)∩
U21 and y = ϕ21(x). Then you have a map from Ty(U2)/TxU21 → (E2)y/(E1)x, we
demand that this is an isomorphism, this is a normal bundle condition.

So ∆XS2 will be in E1 for X ∈ TxU1.
Why is this important? On U1, X is approximated by s−1

1 (0); on U2 it’s approx-
imated by s−1

2 (0). So this means that the two descriptions of X are consistent.
An example of this kind of embedding: so U1 is the x-axis, and U2 is R2. Then

E1 is 0 and E2 is R. Then s1 is 0 and s2(x, y) = y. So you increase the equations
and the variables simultaneously.

So this is the notion of coordinate change.

Definition 2.1. A Kuranishi structure on X is, for each p in X, a tuple Up =
(Up,Ep, sp, ψp), a Kuranishi chart,

(1) such that ψp(s−1
p (0)) is an open neighborhood of p, so that,

(2) for q ∈ ψp(s−1
p (0)), then there exists a (Kuranishi) coordinate change Φpq =

(Upq, ϕpq, ϕ̂pq) from Uq to Up so that Ppq ∋ oq wher sq(oq) = 0 and ψ(oq) = q.
(3) If q is in ψp(s−1

p (0)) and r ∈ ψq(s−1
q (0)), then Φpq ○ Φqr = Φpr from Ur to

Up.

In a sense, you can think the first two parts is a kind of definition of a manifold
structure. In our case we’ll need the third condition. In manifolds, the composition
of smooth map and the inverse of the other, this is automatically smooth.

Definition 2.2. Given X and a Kuranishi structure Û , a differential form on it is
a collection hp ∈ Ω(Up) for all p such that ϕ−1

pqhp = hq.
For twenty years we struggled to define morphisms. You have a pair of spaces

and bundles, and you can try to write down some commutative diagrams. But
suppose you have a manifold. Then we can say that f̂ ∶ (X, Û)→M is a C∞ map if
you have fp ∶ Up →M with fp ○ϕpq = fq. We say f̂ is weakly submersive if all fp are
submersions. Your map is a system of many maps, if all of them are submersions,
then this is submersive. This is weak because Up can have big dimension.
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Before giving some examples, I want to say what we want to do and what we
can do.

Theorem 2.1. There is a Kuranishi structure onMk+1,`(β) such that

Mk+1,`(β)
evÐ→ Lk+1 ×X`

is weakly submersive.

At the beginning this is a map of underlying topological spaces. But it lifts to
be a submersion. Then the second theorem is the following.

Theorem 2.2. If (X, Û) f̂Ð→ M is weakly submersive then we can define a “CF-
perturbation” Ĝ (I’ll explain tomorrow), and you get f!( ; ĜE) which takes differen-
tial forms on (X, Û) to differential forms on M (for the choice ŜE).

Let me remind that if f ∶ N →M is a submersion of smooth compact (or proper)
manifolds, then you have f! ∶ Ω(N)→ Ω(M), integration along the fibers,

∫
M
f!h ∧ g = ∫

N
h ∧ f∗g.

The theorem says that you can push out the differential forms in the presence of a
weakly submersive thing, but this is more delicate.

So you can pull back differential forms very easily and this push out is much
harder. So Mk+1(β) maps to Lk and to L. You can pull back and get ev∗(h1 ×
⋯ × hn), but then we want to push out to get another differential form on L, the
pushout is highly non-trivial. That theorem says that you have a weakly submersive
map, then you can define a system of perturbations and get differential forms. If
you make everything consistent at the boundary you get an A∞ structure like you
want.

This is a bit more complicated than manifold theory, where you can just inte-
grate. So we don’t get integration but you get perturbations to make sense of the
integrations, and you can do this in a consistent way.

3. August 29: Lecture III

I’ll talk today about something very similar to manifold theory. We learn first
what is a coordinate and coordinate change, then what is map, differential form,
and then integration of differential forms, and then the most interesting thing is
maybe Stokes’ theorem.

I want to start by reviewing Kuranishi structures. I want to draw a picture. You
have E a vector bundle over an orbifold U with a section s and you have s−1(0) and
from there ψp ∶ s−1(0). For another point q you have Eq over Uq and then you have
Upq inside Uq which maps via ϕpq (covered by ϕ̂pq) to Up, and everything must
commute with ψp and ψq.

So this is a Kuranishi chart. Now ĥ = (hp) is a siystem of differential forms, this
is a differential form on (X, Û), so hp ∈ Ωk(Up) and ϕ∗pqhp = hq.

Then k, the dimension of (X, Û) is the dimension of Up minus the rank of Ep.
If sp is transversal to zero, then this is exactly the dimension of s−1

p (0). But the
issue is that this need not be transversal. But we assume that hp is a differential
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form of this degree. So I want to integrate ĥ over (X, Û). If this were transversal
this should be something like

∫
(X,Û)

ĥ =∑∫
s−1
p (0)

χphp

where χp is something like a partition of unity. But suppose you have very singular
maps, the zero sets will be singular, and there won’t be a canonical way to define
the integral in this non-transversal situation.

So I want to define an approximation regime, and the homological data you get
will be independent but you’ll need to remember the approximation data.

First I want to explain how we do it on one chart. Suppose we have just U =
(U,E , s, ψ), with U = V /Γ and h is a differential form of compact support on a
neighborhood of s−1(0). I want to define integrations on this zero set.

Definition 3.1. A CF-perturbation S on U is the data (W,ω, sε) where
● W is a real vector space, with an action of Γ
● ω is a differential form of top dimension of W (say d), which is of compact
support, normalized to have integral 1 and non-negative.

● sε is a section of E ×W → U ×W which is Γ-invariant and the limit as ε
goes to zero converges to s in the C1 sense.

We say S is transversal to 0 if sε is transversal to 0 on U × suppω.

I want to explain two things. This is the data abou perturbation we want to
put. You are increasing the parameter by finitely many variables. Then it’s easy
to get the integration, I want to get

∫
(U,S,ε)

h = 1

#Γ
∫
s−1
ε (0)⊂V ×W

ω ∧ h.

So h is a differential form on U , we can regard it on V , and so it induces one on
V ×W and ω is on W . This s−1

ε (0) is a smooth submanifold of V ×W . Since we
went up from U to V we divide by the order of the group.

Remark 3.1. If s ⋔ 0 then we can take sε(x,u) = s(x) and then

∫
s−1
ε (0)

ω ∧ h = ∫
W
ω∫

s−1(0)
h = ∫

s−1(0)
h

so we don’t have to perturb.

This is homologically well-defined. The local thing is not well-defined but the
global thing is well-defined.

Some important message is that to make this locally you need some choice and
typically, when ε goes to zero, you’d like this to give you the integral you want, but
actually it diverges so you do it for positive ε.

Then the global thing, (X, Û), and ∂(X, Û) = ∅ and you have ĥ a closed form
(I’ll be more precise later). Then if you take a consistent choice of S, then

∑
p
∫
(X,Û,S)χphp

is well-defined. This is like currents, and integration of currents is problematic, but
if you have n-currents on an n-manifold and you do some approximations, you get
a global thing even though the local invariants are well-defined.
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Now when the boundary is non-empty (this empty boundary case is the Gromov–
Witten case) you get operations but they depend on the choices and you can’t get
around this. But you want to make consistent choices over the different moduli
spaces and get something at the end that is well-defined.

So for now I have these local CF-perturbations, or pointwise versions, I want a
global version. I just explained you do this integration by partitions of unity. In
manifold theory you have M and a differential form h. So you take

(1) locally finite cover ∪Uα =M , with Uα ≅ Vα ⊂ Rn, then
(2) χa a partition of unity, and you do ∑∫Va χah.

So in the Kuranishi case we have uncountably many, and we want finitely many, a
good coordinate system, since X is compact we can do it with finitely many.

In many situations people start from a good chart, not from a Kuranishi struc-
ture. For some people to associate Up to all p you have too much structure, but
you can’t even do direct products with good charts. You can do it with Kuranishi
structures.

I want to point out one very important point. In manifold theory, changing
coordinates is symmetric, so you have go and back. But in the definition of the
Kuranishi structure, ϕpq is not even locally a diffeomorphism. So you might not
have a coordinate change in the other direction. That’s this partially ordered set
P, and for each p/ in P, so I write Up/ = (Up/,Ep/, sp/, ψp/), the partially ordered set is
finite, and

(1)
⋃
p/

ψp/(s−1
p/ (0)) =X

(2) if x is in the image of ψp/ and ψq/ then either p/ < q/ or q/ < p/
(3) if q/ < p/ then there is a coordinate change Φp/ q/ from Uq/ to Up/, and ψq/(Up/ p/ ∩

s−1
q/ (0)) is imψq/ ∩ imψp/

(4) On the disjoint union of Up/, the relation x ∼ y if x = ϕp/ q/(y) for x ∈ Up/ and
y ∈ Up/ q/ is an equivalence relation.

(5) the disjoint union of Up/ modulo ∼ is Hausdorff

Theorem 3.1. If you have a Kuranishi structure (X, Û) then there is a good co-

ordinate system
∆

U .

We wrote various versions of this proof at different lengths. I think this proof is not
something good to explain during talks. The six page version will be done soon. If
you don’t like it, then start from the good coordinate system.

So Up/ is an open set and if you glue together open sets of different dimensions
this is not very good, the topology is pathological. So now we pass to K = {Kp/}
where Kp/ is compact in Up/ and

⋃
p/

ψp/(IntKp/ ∩ s−1
p/ (0)) =X

still, and we call this a support system sometimes. Then ∣K ∣ = ∐Kp// ∼. We
thought we should give a name for these spaces, and we call these heterodimensional
compacta.

So let me explain [pictures]. So in this example, with X this circle in the plane
with a complicated singular structure on the negative y side. If p = (x, y) ∈ X for
y > 0 then Up is a neighborhood of p in X, and for y ≤ 0 it’s a neighborhood of p
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in R2. What does the coordinate change look like? If q is near p, but with positive
y coordinate, then the arc is Uq. The one dimensional thing has an embedding to
Up. It’s not, kind of, symmetric, you have a good map in one direction but not in
the other. The number of equations may depend from point to point.

You try to construct these structures, heterodimensionality naturally appears.
So how to construct a good chart? One is half of the circle, one dimensional, Uq/,
and the other is Up/, which is two dimensional. The compact things, these Kp/ and
Kq/, and ∣K ∣ looks like this [pictures].

Something I want to define is the following thing, CF is going to be the sheaf of
CF-perturbations on ∣K ∣. The important thing is that this is transversal to zero.

There are many ways to define sheaf theory. It’s old-fashioned but I’ll define the
germ at each point and give the topology. At p ∈ ∣K ∣, I want to define CFp, this
will be the set of p/ in P such that p ∈Kp/. This is P(p), and an axiom is that there
is some linear order. Now I write P(p) to be {p/1 < ⋯ < p/m} for some m ∈ Z+. So
there we have Up/1

⊂ ⋯ ⊂ Up/m
, and on each of these you have the vector bundles

Ep/1
⊂ ⋯ ⊂ Ep/m , and everything has Γ actions. Then you consider (W,ω, sε), and W

is again a finite dimensional vector space and ω is a form, a top form, with compact
support and the integral of it is 1, and ω is a non-negative thing times the standard
top form. Then sε is a section of Ep/m , but if x ∈ Up/k

then sε(x,w) ∈ Ep/k . Everything
is Γ-equivariant and finally sε(−,w) converges to s in the C1 sense as ε→ 0.

The example is the following thing. [pictures] At this point p you have two
charts, you have R in R2 with the zero vector bundle and the rank 1 vector bundle.
Then you have these maps, and you take real valued functions that vanish on R.
This is a rather simple thing.

This S is transversal to zero if on the smallest set it’s transversal to 0, if the
restriction s∣Up/i

is transversal to zero.
I believe it’s kind of an exercise to prove that there is a global sheaf with germ

like this. Before I say that I need an equivalence relation. I have this (W i, ωi, siε) for
i = 1,2 and we say, well S1 → S2 is a linear projection if we have a linear projection
π ∶W 2 →W 1 with π!(ω2) = ω1. So s2

ε(x,π(w)) = s2
ε(x,w). That’s the projection.

Then if there is such a projection, then we say S1 ∼ S2 and we take the equiva-
lence relation generated by this relation.

So let me remind you the integration is something like

∫
(s1ε)−1(0)

ω1h,

which is the same as

∫
(s2ε)−1(0)

ω2h.

So this holds very elementarily. This gives the equivalence relation. So as I said,
then of course this equivalence relation with respect to the filtration, the sequence
of manifolds and vector bundles, I want to say that there is a sheaf CF⋔0 on ∣K ∣
such that the stalks at p are these equivalence classes over (W,ω, s). There is a
standard thing in sheaf theory to make this a sheaf. So you can get this sheaf.
Being transversal to zero means that s ⋔ 0.

Maybe I want to explain two theorems.

Theorem 3.2. This sheaf CF⋔0 is soft.
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Softness means for a closed subset Z ⊂ ∣K ∣, the global sections of the sheaf, the
restriction from global sections to sections over Z is surjective.

So this is a section on its neighborhood, you can extend to a global thing without
changing it on Z. This softness is a standard type of thing, a Thom type.

Before the break I want to state two or three theorems. Then after the break I
want to say how to prove and use them.

Let me mention loosely, you have this chart, this Kuranishi chart, and you have
something like a partition of unity associated to this, with support contained in
this compact set KP. This is delicate because Up/ in Up// ∼ is not closed, not open,
so this makes partitions of unity delicate.

So cover ∣X ∣ by Ua and on Ua let S be represented by (Wa, ωa, sεa), you can cover
by a locally finite open set. Each chart has a representative. Then integration of
this differential form with respect to this sε is

∫∆
sε
h =∑∫

s−1
εa(0)∩(Wa×Ua)

χahωa.

So that’s a very natural definition à la manifold theory. You want this to be
well-defined, independent of the partition of unity blah blah blah. So in manifold
theory this isn’t totally easy but it’s standard. Here this depends on ε and on the
perturbation.

Finally Stokes’ theorem:

∫
(

∆
U,

∆
Sε)

dh = ∫
∂(

∆
U,

∆
Sε)

h

and the proof looks like the usual one but you should make sure things are het-
erodimensional.

I want to explain how to prove and use this.
I want to prove this softness theorem, this is a transversal thing. Here W is

not a vector space but a finite set, you can do the same thing. The existence in
this case was in the 1996 paper, and that proof used a double induction. Then we
expanded from 10 pages to 30 pages because of complaints. Using sheaf theory I
can provide a shorter proof. The 30 page proof is too hard to explain in this kind
of talk. The idea is using partitions of unity. So let me explain what I want to do.
Let me just show existence of one global thing. So first (CF⋔0)p, I want to show
this is nonempty. So I have U1 ⊂ ⋯ ⊂ Uk and E1 ⊂ ⋯ ⊂ Ek. So we have the section
s, and I want to replace it with U1 ×E1 and take W = E1 and ω any non-negative
top form supported in a neighborhood of zero, and ∫E(x,w) is s(x) + εw, and this
is trivially transversal. You want to extend this, you have U2 and U1 is contained
in it with E1 in E2 over it. Now you consider U2 projecting to U1, and take pr∗(E1)
and embed this in E2. That embedding is i. So now we haveW1 and ω1 and sε1 and
sε(x,w) = s(x)+i(sε(π(x),w)−s(x)). This is trying to extend to the neighborhood.

So the local construction is very easy. There is never a difficulty locally to making
transversality.

So now I want to prove the global thing is non-empty. You take Ua that cover
∣K ∣ and you take (Wa, ωa, s

a
ε ) which represent transversal sections on Ua.

So let me say what I mean by partition of unity, I say f ∶ ∣K ∣ → R is smooth if
f ∣Ka is smooth for all a. An exercise is that for any open covering, there exists a
χa, smooth, with sum 1.
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So W =∏Wa and ω =∏ωa, and you write

∫
[unintelligible]

(y, (Wa)) =∑
a

χa(x)Saε (x,Wa).

But this is dangerous because it’s like having the same W everywhere. So take x
and consider a such that x ∈ Ua. Then Γx → Γa for all such a. This is a small
orbifold with x in this neighborhood, so Γx is in Γa. So now take ∏x∈UaWa =Wx

and ωx is the same. Then we write that partition of unity:

∫
x

ε
(y,Wa) =∑χa(y)sε(y,Wa)

[Some pictures]
So now we say that (W,ω, sε) is transversal if ∂sε

∂W
is surjective. That’s enough.

[couldn’t follow]. So that’s the existence of the transversal sections.

So now
∆

S is a global section and h ∈ Ω(Û) with top degree, and we want ∫ŝε h in
R.

So we take ⋃Ua = ∣K ∣ and Ua ⊂ UP(a)∩ ∣K ∣, and Up/ contains Kp/. Maybe say UP(a)

is Ûa. You want to take a covering, so you look in the biggest thing containing it
and take intersections. Now χa is a partition of unity with respect to this covering
Ua.

Now χa is a C∞ function on Ûa, and restrict it to give this partition of unity. So
now Ŝ has a representative (Va, ωa, saε ), and I require that saε extends to Ûa ×Wa.

Then integration is similar:

∫
hatSε

=∑
a
∫
ŝ−1
ε (0)

χaωaha

So you cover it like this [pictures] and most places you have a usual thing, but you
have a strange situation in transitional places.

We need to prove it well-defined, but this is similar to the proof of Stokes’.
There’s one key statement. The dangerous part looks like where the boundary
changes, the boundary of the compact set, the story may break some.

I want to explain one lemma. The key lemma we had to make it work is the
following thing. Suppose we had Kp/ in Up/ and we want K+

p/ also compact with Kp/

in the interior of K+
p/ which is contained in Up/. So ∣Kp/∣ ⊂ ∣K+

p/ ∣ and put metrics on
them and look at

⋃
p/

s−1
εp/

(0) ∩K+
p/ ∩Bε(X),

and the lemma is that this is

⋃
p/

(s−1
εp/

(0) ∩ IntKp/) ∩Bε(X).

[pictures]
So this lemma actually shows Stokes’, because the boundary of Kp gives you the

extra terms and this shows that you don’t have any such boundary.
That looks kind of strange, but let me try to prove it. There exists ε0 such that

for ε < ε0 and

⋃
p/

(s−1
ε,p/(0) ∩K+

p ) ∩Bε(X) =⋃
p/

(s−1
ε,p/(0) ∩ IntKp) ∩Bε(X).
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My student Irie needed this for his work on loop spaces and he didn’t like the
proof, so I will explain his proof. So one direction is easy. Assume the lemma is
wrong, we suppose that εm → 0, and fix p/, and xm ∈ K+

p and sεm,p(xm,Wm) = 0
and xm ∈ Bεm(X) but

Xn ∉⋃
q

(s−1
εn,q(0) ∩ Int(Kq)) ∩Bεn(X)

So limn→∞ xn = x ∈X. We know that X is contained in ⋃(s−1
q (0)∩ IntKq). Take q

so that x is in s−1
q (0) ∩ IntKq. So the condition we want to avoid is the following.

[pictures]
So TUp/∣Uq/

/TUq/ → Ep/∣Uq/
/Eq/ is an isomorphism. Now sε,p∣Uq/

is contained in Eq/

and also sε,p/ converges to s in the C1 sense.
What this implies is that if you consider, N⃗ is the normal directions, NUq/

Up/,
then ∇N⃗sε in Ep//Eq/ is uniformly positive.

This normal derivative estimate says that sε,p/(xp/,W ) modulo Eq/, this has norm
larger than cd(x,Uq/). This is C1 convergence so still kind of non-zero, and the
quotient is still zero and in the normal directions it’s positive by something. If it’s
zero then the Ep component is zero so it should be right on this subset.

We write this as sε(x,w) is something like (sε1(x), sε2(x)) in Ep and Ep/Eq, and
then

∣sε2(x)∣ ≥ cd(x,Uq/).
Then after perturbation it’s still zero on Uq/ so this still holds so if the left is zero
then the right is zero, so then if it’s closed it should already be contained in Uq/. It’s
not really difficult if you see what this normal bundle condition is a little carefully.

That’s the end of the proof, so by this argument, you can show that even if the
boundary of K looks exotic, everything looks like it’s on the inside, you can do
Stokes’.

4. August 30: Lecture IV

Today I’m supposed to talk about the existence result on the Kuranishi structure
on the moduli space of disks. I need to define this structure on this space and
explain how to use this integration to get A∞ structures. The construction is in
three preprints, with arXiv numbers 1710.01459, 1808.06100, and 1603.07026. The
first one is a “gluing analysis” kind of heavy estimate papers. The two other ones
assume the gluing analysis and are more topological. Estimates are difficult for me
to do in front of the blackboard so I will focus on the second and third. I want to
explain my goal and how to use it first.

Let me remind you that we have this moduli spaceMk+1(β) with the class β in
H2(X,L;Z), and this moduli space is of treelike unions of disks and spheres with
k + 1 marked points. This is a metric space, and the first theorem is that this has
a Kuranishi structure.

First, to have individual Kuranishi structures is not good enough. To have just
one is good enough for Gromov–Witten theory, because you have a closed manifold.
Here you have a manifold with boundary and corners. So you should know how
this looks at the boundary. So to say ∂Mk+1(β) doesn’t really make sense, as this
is just a metric space, but we can say naively that

∂Mk+1(β) = ⋃
k1+k2=k+1

⋃
β1+β2=β

⋃
i

Mk1+1(β1)ev0 ×LeviMk2+1(β2)
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where ev ∶Mk+1(β)→ Lk+1. This kind of splitting is common in Floer theory.
Then the second theorem is that this equality is compatible with the Kuranishi

structures. The decomposition has local charts and Kuranishi structures on them,
and the second theorem is that the decomposition is compatible.

I want to explain the precise formulation, I think it’s important to explain pre-
cisely what is to be proved rather than proving it.

So I want to define the fiber product of two Kuranishi structures.
So suppose (Xi, Ûi) are Kuranishi structures and f̂i ∶ (Xi, Ûi) → M is a map,

with M a manifold.
Then X1 ×M X2 is just the usual fiber product (p, q) ∈X1 ×X2 such that f1(p) =

f2(q). In scheme theory to have fiber products of schemes has an important role.
The virtual fundamental chain is some kind of intersection theory so this is central.
But in manifolds, fiber products have problems. Categorically fiber products are
well-defined and in schemes this is clean, but in manifolds this is not possible. In
some point I have a dream to define a category containing manifolds faithfully and
has honest fiber products. So then I need some assumptions.

I say that f̂1 ⋔ f̂2. So I have U1
p

fpÐ→ M and U2
q

fqÐ→ M . The transversality
requirement is that fp ⋔ fq. This means that the sum of the differentials of fp and
fq at the origins gives the tangent bundle, TxM , where x = fp(p) = fq(q).

So you change the Kuranishi structure to make it bigger and then you can always
get this kind of transversality, and this gives a possibility to solve the problem as
described. If you can justify the category of Kuranishi structures, with embeddings,
then you can maybe solve this problem. Joyce says you need to go to 2-categories.

Under the transversality assumption (which was weaker) you can always define
fiber products. Then the claim is thatX1×MX2 has a canonical Kuranishi structure.

Then Upq is the product U1,p ×M U2,q. If M is an orbifold, then you have to be
more careful. I don’t know how much fiber products of orbifolds is understood. In
principle it should be okay but you have to think a bit carefully how to do it. If
you want to do the Floer theory for an orbifold you have to do it, I guess.

So now you can take π∗1Ep⊕π∗2Eq and then the section is sp + sq and then on the
zero section you can define ψp × ψq.

The fiber product of good coordinate systems has some trouble. This fiber
product is as described, and you need a coordinate change. Suppose p′ is in the
image of ψ1,p and q′ is in the image of ψ2, q. Then I have U1,p′ ×M U2,q′ and this
maps to U1,p ×M U2,q via ϕpp′timesϕqq′ . So suppose you have this good coordinate
system and you have p1 with Up1 and for p2 you have Up2 . You want direct
products of good systems. Suppose p′1 < p1 and likewise for q. [pictures] For the
Kuranishi structures you don’t have these problems and then the fiber product is
associative.

The categorical fiber product is automatically associative because it’s unique.
So we have to show associativity by hand. There is no room to do anything else,
so there is no room for associativity.

So now I want to mention ∂̂. Suppose given a manifold with corners M . If
we have a manifold with corners, then what is the boundary? There is a notion
of normalized boundary which maps ∂̂M → ∂M (where the latter as a topological
subset ∂M has clear meaning, but if you want ∂M to be a smooth manifold you
have prolems). So ∂̂M is a manifold with corners and it’s k − 1 to one one the
codimension k corners. [pictures]
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So before this was a union but now it’s a disjoint union, replacing ∂ with ∂̂. So
ten years ago we felt okay, but if you want to axiomatize it there might be other
things. So the second thing, ∂̂∂̂M should look like

∐(∂̂M) ×M ⊔∐M × ∂̂M.

So this is something like

∐(M ×M) ×M ⊔∐M × (M ×M).

Each term comes up two different ways. You have these two things, and if you take
the double normalizations of some N , then the corner points appear exactly twice.
[pictures]

You have two canonical isomorphisms between the corners that have been blown
up, one from associativity and the other from blowup. Coincidence of these two is
not automatic—in general requiring just an existence theorem for an isomorphism
is not enough, you need this kind of corner compatibility.

This is codimension 2 corners, but for higher codimension you have to do the
same thing. Orbifolds is dangerous because they form a 2-category. You want to
say that morphisms are isomorphic, not equal. I have some trouble saying that
these are isomorphic, so that you need higher compatibilities. We’ll work only with
effective orbifolds and if things are set theoretically equal there, then they’re equal.

Again, for the fiber product, you have set-theoretically well-defined fiber prod-
ucts so we just use those.

[digression on ∞-operads]
So the claim is the following. I defined the notion of CF-perturbations, I defined

it only on a good coordinate system, I did it that way because you should go to a
good chart. To do integration, you need a local finite cover, infinitely many charts
are impossible to use. So you start with the good chart.

So now you can take fiber product. Let me remember what it is. Suppose you
have these two charts, (Ui,Ei, . . .) for i = 1,2 and you have fi ∶ Ui →M .

So what’s the perturbation? It’s (W, ,ω, sε) where W is a vector space, ω is a
top-form and sε is a section varying with ε. So you want a Fubini type thing so
you want to take a fiber product of perturbations. So we assume f1 is transversal
to f2. This is weakly transversal, and you define that f1 is strongly transversal
with respect to S1 and S2 ,you consider (s1

ε)−1(0) and (s2
ε)−1(0) and we want to

require that f1 ○π1 is transversal to f2 ○π2 as a map on (s1
ε)−1(0), (s2

ε)−1(0). Under
this assumption one can take fiber products of these two data and still have this
transversality. You need extra conditions so that you can take fiber products of
CF-perturbations. Yesterday I proved that this sheaf is soft, and this sheaf of
transversal perturbations is also soft.

Now we can take this fiber product, S1 ×M S2. Suppose you have these strong
enough things. For example, this is satisfied, you want to say that f1 ○π1 restricted
to s−1

1ε (0)→M is submersive, then it’s transversal to anything else.
So suppose you haveMk+1(β) compatible with the boundary and corners. Then

you can cook up Sk+1,β transversal to zero and a CF-perturbation, and restricted
to the boundary it’s the disjoint union of the fiber products. That this conincides
with the thing you already have is the condition.

So you write an order where (k, β) ≤ (k′, β′) if and only if ω ∩ β < ω ∩ β′ or they
are equal and k < k′.
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Suppose we are given CF perturbations for smaller stages, then what we can do
is the following thing, I want to emphasize a bit about corner compatibilities, note

∂̂Mk+1(β) =∐Mk′1+1(β′1) ×LMk′2+1(β′2).
and the fiber product is given. You have your manifold with corners. [pictures]

[Discussion of the induction]
The nasty part of this story is the following thing. You have the Kuranishi

structure and cook up good coordinates, and this induces something, a larger one,
you go from Û∂ to Û+∂ , and [pictures].

Theorem 4.1. There are Kuranishi structures onMk+1(β) compatible at boundary
and corners.

I don’t want to prove this, it involves analysis that’s too heavy. So let me instead
define a notion called obstruction bundle data (OBD)

Theorem 4.2. Given OBD onMk+1(β) we get a Kuranishi structure on the same
moduli space, canonical, in the sense of germs.

The next thing,

Theorem 4.3. There exists OBD.

These two theorems are about individual moduli spaces. The next thing is, we
define a notion of, some compatibility of OBD and I want to define it later on.

Theorem 4.4. This compatibility of OBDs imply that ∂Mk+1(β) ≅M ×M with
corners.

The last thing is that there is a compatible system of OBD for these moduli
spaces. This is probably more general. To construct OBD is geometric. You use
the geometric intuition to construct this and then be done.

So I want to construct, mention some set. This is a bit dangerous set. Mk+1(β)
will be a subset of Xk+1(β). This is the set of isomorphism classes of (Σ, z⃗, u),
with Σ a semi-stable disk, z⃗ its marked points (the same kind of object we used
before to define moduli spaces) and u is a map from (Σ, ∂Σ) to (X,L) which is not
holomorphic but C2, this is the only difference.

So to be inMk+1(β) means that ∂̄u = 0 and then we just replace with C2.
I don’t want to topologize this, because stability here is dangerous. If you’re

careful enough maybe you can do it but I’m afraid of it so I want to use it as a set.
Isomorphisms are the same, (Σ, z⃗, u) is isomorphic to (Σ′, z⃗′, u′) if thre’s v holo-

morphic, biholomorphic on components that intertwines u and u′ and z⃗ with z⃗′. If
you prove an equality it suffices to think in the set Xk+1.

We’ll need things outside of the moduli space for our Kuranishi charts. I want to
define the notion of partial topology next. SupposeM is a metric space contained
in a set X . For each p ∈M, we specify the ε-neighborhood of p in X . So we should
have conditions

(1) ⋂εBε(p,X ) = {p}
(2) for q ∈ Bε(p,X ) ∩M , there is a δ such that Bδ(q,X ) ⊂ Bε(p,X ), and
(3) Bε(p) ∩M for ε > 0 is a basis of neighborhood systems for M .

So only elements of M have neighborhoods and they only have to have good be-
havior with regard to points inM.
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Lemma 4.1. Mk+1(β) ⊂ Xk+1(β) has a partial topology.

The constriction says, take ξ = (Σ, z⃗, u), and add z⃗to make it source stable,
so that the triple (Σ, z⃗, z⃗) is stable. So this is in Mk+1,` [pictures], this is ξ+,
and V is a neighborhood of ξ+ in Mk+1,` and you consider the universal family
Ck+1,` →Mk+1,`, and you remove an ε-neighborhood of the singular point set of Σ
from the total space. Then you get this map ϕε from (Σ∖Bε(S))×V → Ck+1,` which
commutes inMk+1,` with the projection to V . This gives a local trivialization away
from Bε(S).

Then I want to define Bε(ξ) so that you have this element (Σ′, z⃗′, u′) such
that there exitss z′ so that (Σ′, z⃗′, z⃗′) is in V and the C2 distance from u′ ○
ϕ2([unintelligible]) to u is less that ε. Moreover the u′ of any connected com-
ponent of Σ′ ∖Bε(S), the diameter is less than ε.

This is the same definition as for the stable map topology. Something that, this
is an ε-neighborhood. If you just use this kind of definition, and if ξ is in the moduli
space, it’s okay, but if it’s not in the moduli space you have problems. [picture]

We have to take some time to prove the axioms. It takes some time but it’s
something we need to do. Then we want to define,

Definition 4.1. Obstruction bundle data, say p is in Mk+1(β), represented by
(Σp, z⃗p, up) and there is a neighborhood Bε(p) in Xk+1(β). So for each x in here,
you have Ep(x) ⊂⊕C2(Σxa, u∗xTX⊗Λ0,1) This is a target of the non-linear Cauchy
equation, a finite dimensional subspace, Σx, of this set. For each p you fix a small
neighborhood and for each point in the neighborhood you have this data.

(1) Ep(x) is semi-continuous with respect to p— for q in Bε′(p) ∩M , there
exists δ such that Bδ(q) ⊂ Bε(q). The condition is that if x ∈ Bq(δ) then
Eq(x) ⊂ Ep(x). This finite dimensional subset depends on x and p. If you
move p it gets bigger but never smaller.

(2) x↦ Ep(x) is smooth in x.
(3) invariance of automorphisms.

This is delicate, this smoothness, regard ux as a kind of L2
k(ΣthickX). So first of

all, Σthick is the removal of a small neighborhood of a singular point. So I want to
identify the domain of ux with this thick part.

If you lose stability here then there is some ambiguity. Fix z⃗ so that (Σ, z⃗, z⃗) is
stable, and assume that u is an immersion at zi. [picture].

So start with u, pick your point zi, and get a submanifold Ni of X with u
transversal to Ni at zi. Then there exists a unique z⃗x in any Σx such that (Σ, z⃗, z⃗)
is C2-close to (Σx, z⃗x, z⃗) and u′x(zi) ∈ Ni.

Then you have ϕx which depends on everything which goes from Σthick to Σx.
The issue is that this map canonically depends on Σx.

Now we consider ux ○ϕx which goes in C2(Σthick,X). This is independent of x.
Now I want to consider also, this, you have Ep(x) ⊂ C2(Σx, u∗XTX ⊗Λ0,1), and the
first requirement is that the support of s in Ep(x) is contained in the image of ϕx.
You can assume it.

Then we can use this ϕx, the C2-image C2(ϕx(Σthick), u∗x(TX ⊗Λ0,1)) mapping
to C2(Σthick, u

∗Tp ⊗ ∧0,1).
[pictures]
Then you have C2(Σthick,X)→ Γx(Ep(x)) contained in C2(Σthick, u

∗
pTX⊗Λ0,1).

Now you have x-independent spaces.
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The claim is that for each k there is an ` such that when e1, . . . , em (m is the
dimension of Ep(x)) which is a map L2

k+`(ΣthickX)→ L2
k(Σthick, u

∗
pTX⊗Λ0,1) such

that ei is a Cm map and

e1(u′x ○ ϕx), . . . em(u′x ○ ϕx)
is a basis of Γx(Ep(x)).

So we use these fixed coordinates and parallel transport. The domain you can
trivialize, and the original map is something like x-dependent function spaces.
These are kind of hard to control, but anyway then the claim is that, you can
just, as you take m to ∞, you need k and ` to be big. Then as far as this is C2

k+`
you get this Cm-family. I think this is independent of the choices but we were lazy
to prove this, so we assumed this was true for any such choice.

This is the definition of smoothness. Can I have five minutes to complete the
story?

The first part is under these constructions to give the structures. You have
Ep(x) and for p ∈ Mk+1(β), this is just x ∈ Xk+1(β) such that ∂̄ux ∈ Ep(x). I
should make some transversality assumptions, that Ep(X), at p, take Dup ∂̄, this
came from W 2

k+1(Σp, ∂Σp), (u∗pTX,u∗pTL)) mapping to W 2
K(Σp, u∗pT ⊗Λ0,1)). The

assumption of this transversality is that the image of Du∂̄ plus Ep(x) is everything.
Now I assume this transversality and get this up. Something nontrivial written

in our third paper is that this is an orbifold. You need this obstruction bundle,
you need to solve these equations ∂̄ux ∈ Ep(x), you can use a function theorem at
∞ if this moves nicely enough with x. Something delicate is when x has a node.
[pictures]

Roughly you use some trivializations to do some functional analysis. The ob-
struction bundle is actually very simple, (Ep)x = Ep(x) and sp(x) = ∂̄Ux ∈ Ep(X),
this is smooth by the conditions. Then s−1

p (0), then Σx, z̄x, ux is actually in
Mk+1(β). So the Kuranishi neighborhoods are now automatic.

Let me finally say some words about coordinate change, because it’s easy. Let
q ∈ Bε(p) ∩M and let Bδ(q) ⊂ Bε(p),Eq(x) ⊂ Ep(x). Then Uq = {x∣∂̄ux ∈ Eq(x}
and Up = {x∣∂̄ux ∈ Ep(x)}. Then you need analysis to get the coordinate change to
be smooth but once you have it, the complicated combinatorics disappears because
the sheaf condition is automatic.

So then you get the Kuranishi structure. I’ll define compatibilities tomorrow.

5. August 31: Lecture V

Today I said I’d give some applications, but usually there is big machinery.
I want to explain one application, the most classical one. So suppose (M,ω) is a
symplectic manifold andM is compact, and we consider X asM ×M with the form
(ω,−ω), and L is M but as the diagonal, {(x,x) ∶ x ∈M} and this is Lagrangian.

So the claim I want to prove is that for H ∶ [0,1] ×X → R, so XHt is the (time-
dependent) Hamiltonian vector field, and ϕtH from X to X is, this is a standard
thing in symplectic topology,

dϕtH
dt

= XHt ○ ϕtH .

We assume L ⋔ ϕ1
H(L)

Theorem 5.1 (Arnold conjecture). H(L ⋔ ϕ1
H(L)) ≥ rkH(L,Q).
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So if you instead take M compact symplectic and H ∶ M × (0,1) → R we get
ϕ1
H
∶M →M . Then

Fixϕ1

H

= {γ ∈M ∣ϕ1
H
(x) = x}

and with transversality, we get the slightly weaker version

Theorem 5.2. H(Fixϕ1

H

) ≥ rkH(M,Q).

We proved this in some heavy way in our book, and I want to pick out the key
part that comes from the machinery I’ve built.

So usually what one does is define Floer homology of L, the main thing is to show
that a certain boundary operator squares to zero. Then you show that HF (L,L) ≅
H(L) and finally you show that HF (L,ϕH(L)) ≅ HF (L,L), and that’s usually
good enough.

In the Lagrangian case HF (L,L) has some kind of trouble, which I want to
explain. Let me take β ∈H2(X,L;Z) and considerM2(β). You have two boundary
operators, ev1 and ev0, to L, and I want to define mβ

1 as a map from Ω(L)→ Ω(L),
and this is something defined in the following way,

mβ
1 (h) = (ev0)!(ev∗1 h, Ŝ

ε),

where the thing we have is the CF-perturbation we built yesterday. This is a kind
of correspondence. So then we take Λ0, the ring of series ∑aiTλi where ai ∈ R and
λi ≥ 0 and grows without bound.

Then δ = d+∑β T β∩ωmβ
1 . This is the usual Floer type thing. This does not have

β = 0 because that map is constant but then it can’t be stable.
The important thing is that δ ○ δ ≠ 0 in general. This is related to obstruction

theory. You want the correct operator to do this business.
In this particular case of diagonals, you have two options that I know about to

fix this defect. One is, if you have τ ∶ M ×M → M ×M , the anti-holomorphic
involution, and you try to make everything invariant with respect to τ . To see the
cancellation the most delicate thing is the sign. Since we’re doing this integration,
we can’t work over Z2. The sign issues are actually very delicate. There are two
things: well-definedness and isomorphism. Then you may think that δ = d because
the higher things look like pairs. If you try to do this with sign you find out it’s
not correct. For well-definedness it’s okay. But in general sometimes it works and
sometimes not. In front of the blackboard I can’t do it.

So I’ll do it another way, with so-called bulk deformations. We cansiderM2,`(β)
[pictures]. On one side you have L ×X` and on the other side evaluation to L. In
a similar way as before you try to get a map Ω(L)⊗Ω(X)⊗` → Ω(L), q1,`.

So we have b which we write ∑i Tλibi for bi ∈ Ω(X) closed, and all λi > 0. Now

δb(h) = dh +∑
β,`

T β∩ωqβ1,`(h, b, . . . , b)

converges in Ω(L)⊗̂Λ0, where this is

{∑Tλihi}

with hi in ω(L) and each λi ≥ 0 and increasing to ∞.

Theorem 5.3. For L =M In M ×M , there is a b in Ω(X)×̂Λ+ such that δβ ○δb = 0.
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Let me try to prove this, for δ(h) = dh +∑T β∩ωmβ
2 (h).

So we have
dmβ

1 +m
β
1d +∑mβ1

1 mβ2

2 .

Our Stokes theorem is d(ev0)!h + (ev0)!h = ev, well, actual Stokes is

(d ○ f!)h + (f! ○ d)h = (f ∣∂M)h.

So for instance, if the target is a point you get the usual Stokes theorem. You can
prove this if you started with manifolds and orbifolds.

This is one kind of important ingredient to the theory of integration. So what
I want to prove is the formula I wrote before. You have the first terms are the
bracket. Then the first operations dmβ

1 +m
β
1d is an obstruction. This is Stokes. I

want to explain another formula, a comparison formula. There is something like
a composition formula, I want to, the day before yesterday I defined integration
of differential forms and pushouts. One theorem we need to prove is Stockes, the
other is this composition formula.

So you have N1 and N2 and N3 fitting into this diagram, with f2 and q2 sub-
mersions:

M1, S1,ε M2, S2,ε

N1 N2 N3.

f2

f1

q2
q1

So we can take the pullbackM1 ×N2M2. Then I have correspondencesM1, f1, f2)
from N1 ot N2

[I can’t read the board, skipping]
Then the theorem is that (Ξ2 ○ Ξ1)∗ = (Ξ2)∗ ○ (Ξ1)∗. The proof is not hard

if correctly stated. You can do manifold theory, use partitions of unity to reduce
to one chart, and then get to manifolds and submersions, where it’s just Fubini’s
theorem.

So now we have Stokes and composition. You see that this is the composition
formual in our equation for zero, so that mβ1

1 ○mβ2

1 is exactly this correspondence
M2(β1) ×LM2(β2), this yields the compositions. So this is rather nice. You
see many similar situations, you want some algebraic formula about, you have
something to be a chain map and some leftover, and you can often translate this
equality into something about moduli spaces.

So the first term is boundary and the second term is fiber product. This was
what we wanted to do yesterday, we wanted families of Kuranishi structures and
CF perturbations that realize this kind of picture.

But the problem is that this picture is not correct in general. After you do this
work, the picture proof comes out to really be a proof. Even as a picture proof
there is a famous trouble. [pictures]. So if (ev0)![M1(β)] [unintelligible]you will
have trouble.

I want to eliminate this bad effect with this bulk deformation.
If the homology of (L,Q) injects to the homology of X,Q, then you can use b to

eliminate this term.
This is a general principle, but you have a kind of obstruction, this actually lies

in a kernel of this map, and so this is injective in our case and you can do it. I’m
going to do it more directly.
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In our case, h is in Ω(∆) and dh = 0 so there is an ĥ ∈ Ω(M ×M) with i∗ĥ = h.
For us, ĥ = pr∗1 h.

I want to do this kind of deformed thing mb
1(h) = dh +∑ 1

`!
qβ1,`(h, b, . . . , b).

So this is related to the moduli spaceM2,`(β), so I’ll consider its boundary. The
boundary is described by the following [pictures].

So with a similar business you can prove the following things. Maybe I should
write

δb1(h) =∑T β∩ω!` (h, b, . . . , b)
so mb

1 ○mb
1 [sic].

One can check that if ∑` 1
`!
q0,`(b, . . . , b) = 0, then δb ○ δb = 0.

So you haveMβ
1,`, you have evaluations to X` and L.

The claim is that there exists b so that ∑∞
`=0

1
`!
q0,`(b, . . . , b).

[illegible]
The key observation is that the q0

0,1 is just the pullback along the inclusion of L
in X.

So we use this fact and surjectivity to construct this thing.
Let G0 be the set of ω∩β such thatM(β) ≠ 0. Gromov compactness says that G0

is discrete. Then G is the monoid (additive) generated by G0, this is again discrete.
Then we write G = {λ1, . . . , λn, . . .} but we only need to consider exponents in G
going forward.

I want to construct b = ∑∞
1 Tλibi.

Take b(k) to be∑Tλibi. Then I want to prove that∑ q0,`(b([unintelligible])), . . . , b([unintelligible])
is zero modulo Tλk+1. I want to do this inductively on k.

If k = 1 then b(0) = 0 so ∑`(0, . . .0) = m0,1. This is trivial module Tλ1 . So now
for the k − 1 step, we have ∑ q0,`(bk−1, . . . , br−1) is hTλk modulo Tλk+1.

[not following]
So now the last thing I want to prove is that the Floer homology is isomorphic

to the homology of the manifold itself. This is actually routine if you know Floer
homology. I won’t go to that place then but the thing I want to prove is the
following. I define δb as d +∑T [unintelligible]/`!q1,`(⋅, b, . . . , b).

So we showed δb ○ δb = 0

Theorem 5.4. (Ω(M), δb) and (Ω(M), d) are chain homotopy equivalent.

Maybe this seems a little disappointing at first, but you can calculate this first
one.

So how to prove it. The general argument is the following thing. In general there
is a spectral sequence from H(L) and ends at HF (L,L). They are related by a
spectral sequence, and this theorem says that this spectral sequence degenerates,
there are no differentials. I want to do something more primitive by constructing an
explicit chain map. This chain map is written in our paper about anti-holomorphic
involutions. I want to do some other things, I want to takeM1,`+1(β), and evaluate
on one side to L ×X` as “inputs” and now evaluate to X as output. Before I did
this only to L. I define p as a map Ω(L)⊗Ω(X)⊗` → Ω(X). This goes h, g1, . . . , g`
to p(h, g1, . . . , g`).

So b ∈ Ω(X) is something we take, and I want to think of pb as ∑p(h, b, . . . , b),
and I want to take i∗ ○ pb. The claim is that this one gives the chain homotopy
equivalence.
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So I’ll take dpb − pbd, this is induced by the boundary of the moduli spaces,
∂M1,`+1(β). So this is routine, you look at the boundary and then a picture proof
is a proof. There are basically two cases. One interior marked point is different
from other boundary marked points. All others are inputs. So we have to remember
which one is the input. Here is one picture, where the boundary and output are in
the same component. The other option they’re in different components.

Then the claim is that the ones where they’re in the same component do not
contribute. One of them is q1(b, . . . , b), so you only consider the other picture. You
have in the other picture one which is q1,`(h, b, . . . , b)/`!. The second component is
pb. So this gives

p(q(h, b, . . . , b), b, . . . , b).
So what we calculate is that dp − pd is p ○m[unintelligible] so dp = p(d +∑mβ) so
dp + pδ is zero so p is a chain map from (Ω, δb) to (Ω, d).

I want to show that it induces an isomorphism on homology. [pictures]
I want the leading order term, over a power series ring the leading order being

a chain homotopy equivalence implies the whole thing is a chain homotopy equiva-
lence. So the leading order term isM1,1(0), so you pull back from L to L and then
push out from L to X. The pushout from L to X is somehow submersive. This is
not submersive so you need to do a perturbation to get a pushout. There are many
other ways but you take the following thing.

What do we do? We take this Kuranishi neighborhood, this normal bundle
of L in X, an ε-ball in this normal bundle, I want to cover this by one chart, a
neighborhood, a the normal bundle, and we have π ∶ U → L, and E is the pullback
of the normal bundle under projection. Then the section is x ↦ (x,x), over the
fiber you can take the same point of the same fiber. Then the evaluation map is a
submersion.

Now we recall what we are doing on the CF perturbations, you can take W ,
maybe, there are many ways, you, I think the pushout, with respect to this evalua-
tion map, takes h to a modifier smoothing of h and δ∆. You use this perturbation,
and make it a smooth form near L, perturb the delta function a little bit.

[pause]
So I made a mistake, pbβ is a map from Ω(L) to Ω(X), and then I want to take

pr! to Ω(L). Then the formula I wrote is a bit wrong. You should not take i∗.
Let’s go back to the chain map thing. So we used the correspondence to define the
map to Ω(X) and then I was supposed to project to L. Now I want to go back to
the proof that this was a chain map. The formula was—

[pause]

dp̂bβ +∑pb1,β ○mb
1,β + p̂pd = 0.

So pβ is something like the sum pβ,1—I want to write the composition p̄β . So I
want to write

pβ =∑ p̄β1 ○ ⋯ ○ p̄βk .
[some confusion]


