
KENJI FUKAYA:

LAGRANGIAN CORRESPONDENCE

AND A-INFINITY FUNCTOR

CENTER FOR GEOMETRY AND PHYSICS (POHANG)

GABRIEL C. DRUMMOND-COLE

1. August 12

I want to talk something about constructions of functors. Let me recall what
everybody knows about homology theory. You have a space X and you associate
this group H(X), and to a continuous map f ∶ X → Y you get a homomorphism
f∗ ∶H(X)→H(Y ).

You also have something called quantum cohomology. When X is a symplectic
manifold, you have the quantum cohomology ring QH∗(X). It is no problem
that when you have a symplectic diffeomorphism, this leads to an isomorphism of
quantum cohomology. But if you have any morphism, you don’t get the naive guess
that there is f∗ ∶ QH(Y )→ QH(X). There were several attempts to make this more
functorial. In the symplectic world there is a classical proposal by Weinstein. Now
complex manifolds are nice, there are morphisms, but symplectic morphisms are not
well-understood. He said that if you have Xi, ωi symplectic, that L ↪ −X1 ×X2,
where −X1 is (X1,−ω1), if you have such a Lagrangian submanifold you should
regard this as a morphism. This is nice for many reasons. If you have L12 ⊂ −X1×X2

and L23 ⊂ −X2×X3, then you can take the fiber product, and if the fiber product is
transversal (this is a kind of nasty assumption necessary to make the composition
well-defined) then L13 is an immersed Lagrangian in −X1 ×X3. So you can kind of
compose. But then you need to go to the category of immersions, not necessarily
embeddings.

The proposal by Werheim–Woodward was to construct something like a category,
from (X,ω) with Lagrangian correspondence to try to construct a functor to all
A∞ categories. This is called the Weinstein category. What they could do, they
considered monotone Lagrangians and monotone compositions, that’s what they
could handle.

I want to realize this kind of project in complete generality.
This has a natural mirror. Consider X1 and X2 as a complex manifold. Let E be

an object of the derived category of coherent sheaves on the product D(X1 ×X2).
For example, if f is a holomorphic map X1 →X2 then the graph of f is a complex
submanifold and gives an object of this derived category.

Then we have this classically established morphism, D(X1)→ D(X2), the functor
FE , then you take R(π2)!(π∗1(C∗) ⊠ E). The tensor product and push down are
derived, you have the tors and things. This is called the Fourier–Mukai category.

So first our guess is that our objects are immersed Lagrangian submanifolds. For
this business it’s essential to go beyond the embedded case. It will be necessary to
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take immersions to make composition well-defined. I want to cook up the functors.
I have L12 in −X1×X2 and L1 in X1, and I want to cook up L2 in X2, and a natural
candidate is the fiber product L1 ×X1 L12. If the L are Lagrangian and the fiber
product is transversal, then L2 is an immersed Lagrangian submanifold of X2.

This is a kind of naive version. Then we should ask how this is related to
Floer homology. So far we have geometric things. How does this work with Floer
theory? I want to recall immersed Floer theory, due to Akahi–Joyce. Let X be
a symplectic manifold. Take V a real oriented vector bundle over X[3], the 3-

skeleton. An immersed Lagrangain submanifold is iL ∶ L̃→X, an immersion of half
dimension where the symplectic form pulls back to zero. Now σ is a spin structure
on T L̃ ⊕ i∗L(V ) on L̃[3]. I want to assume that L̃ is self-clean. What does that

mean? Take the fiber product L̃ ×X L̃ = L(+). What is L(+)? It’s L̃ ⊔ ⋃L(a).
[pictures]. Here L̃ sits inside L̃ ×X L̃ as the diagonal (x,x) such that x ∈ L̃. The

assumption is that L(a) is C∞ and Tp,qL(a) = dpi(T L̃) ∩ dqi(T L̃). But (p, q) and
(q, p) are different points in the fiber product. So CF (L) = Ω(L(+))⊗̂Λ0, where Λ0

is the Novikov ring {∑aiT
λi for ai ∈ R and λi ≥ 0 and increasing to ∞.

Theorem 1.1. There are mk ∶ CF (L)⊗k → CF (L) satisfying the A∞-relations.

Definition 1.1. L is unobstructed if there is b ∈ CF (L)⊗Λ0Λ+ with ∑mk(b, . . . b) =
0. Here Λ+ = {aiTλi ∶ λi > 0}.

The main theorem is

Theorem 1.2. If L1 and L12 are unbostructed then L2 is unobstructed.

Just immersed Lagrangians, you might not be able to do Floer homology. You
really need unobstructed.

Remark 1.1. Let L be immersed in Cn, self transversal nad unobstructed. Then
the number of self-intersections is at least half the total Betti number.

This is not correct in general, without the unobstructed condition.
One can say the following thing. Take Hamiltonian perturbations of L12. This

can be very complicated. The topology of L2 can change. The theorem says
that still it is unobstructed. Further, its Floer homology is independent of the
Hamiltonian perturbation.

Now we can say the following things. The Weinstein category does not seem to
be good enough for Floer theory. So I want to propose the unobstructed Weinstein
category whose objects are (X,ω,V ), where V is the bundle on V .

Ah, I should have said, if L1 is V1-relatively spin and L12 is TX1 ⊕ V1 ⊕ V2-
relatively spin, then L2 is V2-relatively spin. I need these assumptions to state the
theorem. I left that out.

So f is a symplectic diffeomorphism and Lf is the graph of f . Then Lf is
diffeomorphic to X1 but may not be spin. But it’s always TX1-relatively spin.
With Yong-geun and the others, we studied something like Floer homology on
X ×X. At some point we realized that something was not spin, so we tried to use
this kind of relative spin.

Okay, so the morphisms are L12 immersed in X1 ×X2 with TX1⊕V1⊕V2 which
is relatively spin, along with a bounding cochain b12.

Theorem 1.3. There is a functor F from the unobstructed Weinstein category to
the category of all filtered A∞ categories.
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This is kind of the main theorem of these talks. You have this triple, you can
construct an A∞ category.

I think HH(F (X1, ω, V )) has an open-closed map to H∗(X1), and this is co-
variant with respect to A∞ functors, and you can map to HH ∗ F (X2, ω, V ), and
I claim that this square should commute.

HH∗F (X1, ω1, V1)

��

// HH∗F (X2, ω2, V2)

��
H∗(X1) // H∗(X2)

Let me consider iL, the immersion L̃ → X, and CF (L) which is Ω(L̃ ×X L̃)⊗̂Λ0.

So L̃ ×X L̃, let me write it as the diagonal components L̃ along with ⋃L(a) for a⃗
which is (a0, . . . ak) ∈ Ak. Now let ○Ma⃗(L,E) be the set of (D2, z⃗, U, γ) where z⃗ is a
cyclically ordered set in the boundary ofD2, U ∶ (D2, ∂D2)→ (X,L) is holomorphic

and γ ∶ ∂D2/∣z⃗∣ → L̃ and iL ○ γ = U on ∂D2/∣z⃗∣. Finally, when z approaches zi, you
get γ(zi+1) is in L(ai). [picture]. The last condition is that ∫ U∗ω = E.

Now M can be compactified, and you get a map Ma⃗(L,E) → L(a0) × ⋯L(ak).
So you have projections

Ma⃗(L,E)

%%KK
KKK

KKK
KK

vvmmm
mmm

mmm
mmm

L(a1) ×⋯ ×L(ak) L(a0)

So you pull back and push out by integration along the fibers, and you get mE
a⃗ ∶

Ω(L(a1)) ×⋯ ×Ω(L(ak))→ Ω(L(a0)).
Then mk = ∑a⃗ T

EmE
a⃗ .

[pictures.]
Now I want to go to an A∞ category from the A∞ algebra. Let me assume

everything is oriented. It’s better to use a finite set of self-clean Lagrangian sub-
manifolds, you have L1 = {L1,i∣i = 1, . . . ,N}. You just take the unions L = ∪L1,i,
and assume that this one is self-clean. This just means that you have, well, each one
is self-clean and they have pairwise clean intersections. To go to the A∞ category
you can think of this as a single Lagrangian. So you get CF (L)⊗k → CF (L), and
you see that CF (L) is the sum of all CF (Li) along with ⊕Ω(L̃i ×X1 L̃j)⊗̂Λ0.

So you have CF (Li, Lj) = Ω(L̃i ×X1 L̃j)⊗̂Λ0. So CF (L) is just ⊕CF (Li) ⊕
⊕CF (Li, Lj). Thenmk for L ismk ∶ CF (L0, L1)⊗⋯⊗CF (Lk−1, Lk)→ CF (L0, Lk).
This gives us something called an A∞ category.

This step is not actually so difficult.
Now let me make a more precise statement. Suppose you have X1 with ω1,

and V1. Take L1, a finite set of immersed Lagrangian submanifolds. Take (−X1 ×
X2,−ω1 + ω2, TX1 ⊕ V1 ⊕ V2), and then L12 a finite set of immersed Lagrangian
submanifolds. Assume for all L1,i and all L12,j that this fiber product L1,i×X1 L12,j

is transversal. This you can achieve by perturbing slightly.
Now I want to consider L2, a finite set of a Lagrangian submanifold which

contains L1,1 ×X1 L12,j .
From L1 you have this filtered A∞ category whose objects are in L1. This A∞-

category is inconvenient, because this object may be obstructed. There are general
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constructions using bounding cochains. I’ll go back to geometry soon, but let me
do some algebra.

Let C be a filtered A∞ category. What does it mean? You have a set of objects
and then c1 and c2 are objects and C(c1, c2) is a Λ0-module. You have mk ∶
C(C0,C1) ⊗ ⋯ ⊗ C(Ck−1,Ck) → C(C0,Ck), which satisfies the A∞ relation. So
you want to define bounding cochains here because you have m0 here. You have
another A∞ category, with m0 = 0. The objects of C̄ is a pair (c, b), where c ∈ C
and b ∈ C(c, c) ⊗ Λ+ which satisfies the Maurer-Cartani equations. I just want
to start from the A∞ category. When m0 is nonzero then m2

1 is nonzero so you
can’t define Floer homology. The morphisms are just the same, but mk is different,
m̄k(x1, . . . xk) is m(eb0x1eb1⋯xke

bk). where xk is in C̄((ck−1, bk−1), (ck, bk)). Here
eb is 1 + b + b⊗ b +⋯. So an object is a pair, and the composition uses b insertions.
Then m̄0(1) =m(eb) = 0.

We call such a thing strict. This is a pure algebraic construction. What we do
is the following. We have X1 and L1 the finite set of Lagrangians. Then you have
−X1 ×X2, and L12 and L2 which contains {L1,i ×X1 L12,j}.

Now you have L1 an A∞ category whose objects are L1,i ∈ L1 and F (L1) leads
to F̄ (L1), an A∞ category with m0 = 0.

A theorem that I’ll prove maybe next time is that

Theorem 1.4. There is a filtered A∞ bifunctor F̄ (L1) × F̄ (L12)→ F̄ (L2).

Maybe I think today it’s better to state the things I want to prove in the first
three lectures. This was proven in the assumption that everything was embedded
and monotone.

Now I want to say about the compositions. I’ve given the space of morphisms.
The notion of A∞ bifunctor should be defined but I’ll do it later, postpone it because
I’ve done too much algebra.

Now the next thing is composability. Let me remind you that L12 is a set of
Lagrangian submanifolds of −X1 ×X2. I want to choose another finite set L23 of
Lagrangian submanifolds of −X2 ×X3. Then something I want to assume is the
following. Assume that L12,i ∈ L12 and L23,j ∈ L23, and that L12,i ×X2 L23,j is
transversal. Then the next theorem is, well, then L13 is a finite set of Lagrangian
submanifolds of −X1 ×X3, and I want to say that this contains all of these such
fiber products. You consider the finite set of morphisms, and that transversality is
okay and then a finite set containing the compositions.

Theorem 1.5. There is a bifunctor F̄ (L12) × F̄ (L23)→ F̄ (L13).

For example, if L12 and L23 are unobstructed, then so is their fiber product.
The unobstructed Weinstein category is thus a kind of [unintelligible]category.

I can probably prove this in generality, but let me write a weaker version first.
Let me remind that we have L1, L12, and L2. Then you consider L3 which contains
all the things from L2 as well as those from L1.

Theorem 1.6. There is a commutative square

F̄ (L12) × F̄ (L23)

��

// F̄ (L13)

��
Func(F̄ (L1), F̄ (L2)) × Func(F̄ (L2), F̄ (L3)) // Func(F̄ (L1), F̄ (L3)
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[some discussion.] What I can prove is, if I have L12, b12 and L23, b23, then we
get (L13, b13), and what we can prove, is well (L12, b12) yields W(L12,b12) ∶ F (L1)→
F (L2) and then

W(L23,b23) ○W(L12,b12)

is homotopic to W(L13,b13).
The next thing is the following thing. Suppose that L12 and L′12 are homotopic.

Then φt ∶ −X1 ×X2 → −X1 ×X2 is a Hamiltonian isotopy. Then somehow, what I
want to say is the following. First of all, the isotopy, b12 gives b

′
12, this is general the-

ory of Lagrangian submanifolds. What I want to claim is that WL12,b12 ∼WL′12,b
′
12

over Λ = Λ0[T −1]. If you look at Joyce’s paper about immersed Lagrangian Floer
theory, there’s one thing that’s difficult to understand. If you have these two La-
grangians, then HF (L,L′) and HF (φ(L), φ′(L′)) are equivalent over Λ. But for

immersed things, you can do isotopy locally. You have L̃ × [0,1] → R, and things
are quite delicate. If you use this Hamiltonian [picture], it’s hard to understand
what to do with the Floer homology. If the Hamiltonian isotopy, well, now you
don’t know that L2 is isotopic to L′2. They might not even be diffeomorphic. We
can still prove the theorem about homotopy equivalence of the W .

So suppose you have another L ⊂X2 with b, then we can show thatHF (W(L12,b12)(L1, b1), (L, b′))⊗
Λ is isomorphic to HF (W(L′12,b′12)(L1, b1), (L, b)) ⊗ Λ. There’s something delicate
related to the Künneth theorem.

[some discussion].
There is a notion of Lagrangian cobordism. In the monotone situation, cobordant

Lagrangians have the same Floer homology. It seems very likely that we can extend
that story in the unobstructed category. If the cobordism admits an extension of
the bounding cochain, then we expect the Floer homology is the same.

2. August 14

[This was a national holiday and I missed the lecture.]

3. August 17

Suppose you have a symplectic manifold X1. You cook up this category F̄ (X1),
that has objects (L,σ, b), where L is an immersed Lagrangian, σ is a relative spin
(I talked about this last time) and b is an element in the Floer chain complex of L.
Then for L12 which is L12, σ12, b12 ⊂ −X1 ×X2, we want to cook up an A∞ functor
WL12 ∶ F̄ (X1) → F̄ (X2). I want to show that this is compatible with composition
of Lagrangian correspondence.

Essentially what you want to show is, suppose L1 has a Maurer–Cartan solution
b1 and L12 has a Maurer–Cartan solution b12, we want to find b2 which is a Maurer–
Cartan solution. There are a couple of ideas. Here’s one, due to [unintelligible].

Consider a strip in C, the strip with Im z between 0 and 1. You want a holo-
morphic map from u1, the strip, to X1, from u2, the space above the strip, to X2,
from the real line to L1 and from the boundary between them to L12. [pictures,
confusing].

The way I want to cook up this functor is with a 3-step construction. Then I have
F̄ (X1) and F̄ (X2), and I take the Yoneda embedding of F̄ (X2)↪ Func(F̄ op(X2), ch).
It’s very natural to construct a “Künneth” functor F̄ (X1) → Func(F̄ (X2)op, ch).
Then there are two things you need to prove. Consider the image of the Yoneda
functor Rep(F̄ (X2)op, ch). The second theorem says that the Künneth functor lifts
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to the representables. The Yoneda theorem says that the map to representables is
an isomorphism, so you have an inverse function θ to the Yoneda embedding. Then
you can use this lift of the Künneth functor followed by a homotopy inverse functor.
In this way we can bypass the complicated thing. You need to prove many things
are functorial if you do this by hand. But the Künneth functor has nice functorial
properties, so it’s easier if you do it this way.

I want to define the notion of an A∞ bifunctor. Künneth is delicate in A∞
categories. What is the tensor product of A∞ algebras? This is not trivial, so the
Künneth theorem is a bit complicated. An A∞ category has a set of objects, and
for two objects c1 and c2, we have C(c1, c2) a Λ0-module, where Λ0 = ∑aiT

λi as
before. Then mk ∶ Bk(c, c′) → C(c, c′), where Bk(c, c′) = ⊕⊗C(ci−1, ci). In this
setting, there is no m0. There are some cases where we want that. Let me say C
is curved if m0 ≠ 0.

I want to explain A∞ bifunctors. Suppose you have C1, C2, and C3 which are A∞
categories. Let Fob ∶ ob(C1) × ob(C2)→ ob(C3). Then

Fk1,k2 ∶ Bk1C1(c1, c′1)⊗Bk2C2(c2, c3)′ → C3(Fob(c1, c2), Fob(c′1, c′2)).
Note that BC =⊕Bk(c, c′) has a coalgebra sturcture ∆ ∶ BC → BC⊗BC, but lands
in the subset of composable pairs. Then BC also has d̂ where d̂(x1 ⊗ ⋯ ⊗ xk) =
∑x1 ⊗⋯m(xi,⋯xj)⊗⋯⊗ xk). Then being A∞ is the same as saying that d̂d̂ = 0.

So F̂ ∶ BC1 ⊗ BC2 → BC3, which is kind of a cohomomorphism. The tensor
product of coalgebras is a coalgebra. If you just compose with the projection to C3
you get Fk1,k2 .

This F is an A∞-bifunctor if and only if F̂ d̂ = d̂F̂ .
From this definition you can easily prove this lemma. Consider the A∞ bifunctor

C1×C2 → C3, that’s the same as a functor C1 → Func(C2,C3). I don’t want to define,
but there’s also a similar notion of a trifunctor.

Now we have the algebraic preliminary. What do we get in the following thing?
What about our Künneth. We have −X1 and X2, two symplectic manifolds. The
claim is that

Theorem 3.1. There is an A∞ trifunctor F̄ (−X1)× F̄ (X2)op× F̄ (−X1×X2)→ ch.

This is what I want to call the Künneth functor. I just want to mention an
application of this.

Corollary 3.1. Using the tautological identification, you get a map F (−X1) ×
F̄ (−X1 ×X2)→ Func(F̄ (X2)op, ch). This is something in the Yoneda codomain of
F̄ (X2).

I want to prove the theorem. The category version follows formally from the
algebra version of this theorem. I want to prove the version where I don’t have the
bar, so that this is a curved A∞ functor. So say you have L1 ⊂ −X1, L12 ⊂ −X1×X2,
and L2 ⊂ X2, then you get D an A∞ -trimodule over CF (L1), CF (L12), and
CF (L2)op. We proved in FOOO that if L ⊂ X1 and L′ ⊂ L′, that CF (L,L′) is an
A∞-left module over CF (L) and an A∞ right module over CF (L′). But it’s easier
to say that this is an A∞ left module over CF (L′)op. So this is like this.

So you have u a map from a strip to X, whose boundary values are L and L′.
The bimodule structure comes from putting marked points on the strip.

The trimodule version has one more line. You put in a vertical strip with a
vertical line dividing it. U1 is a map from the first half of the strip to −X1 and U2
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from the second half to X2. The left boundary goes to L1, the right boundary to L2,
and the middle line has (U1(z), U2(z)) ∈ L12. This is called a pseudoholomorphic
quilt.

This looks like some different kind of moduli space. In fact, this moduli space
is something equivalent to one which you already know about. Just put a strip
between L12 and L1 × L2, and define U(z) as U1(z′), U2(z) where v = x +

√
−1y

and z′ = −x+
√
−1y. That makes the map to X1 antiholomorphic, which means it’s

holomorphic to −X1. So this moduli space looks slightly different, but in this simple
case, you know that the moduli space is related to Künneth. This just relates Floer
theory between L12 and L1 ×L2. You don’t do too much new analysis, this case is
established already.

So [unintelligible]wanted to take the limit when you let one of the strips get
narrower, but if you keep the strips fixed the analysis is just the same.

Now there is a slightly different point. So now what is D? I wanted to construct,
starting with L1, L12, and L2, I wanted a chain complex with an action of all the
Floer complexes.

D is Ω(L1 ×X1 L12 ×L2 X2)⊗Λ0. This is Ω((L1 × L2) ×X1×X2 L12)⊗Λ0. [Some
discussion of pictures]. When the imaginary part goes to ±∞, you see a point in
the fiber product. More precisely, you have the following.

You haveMk1,k12,k2(E,L1, L12, L2) = {U1, U2, z⃗1, z⃗12z⃗2∣[unintelligible], ∣z⃗i∣ = ki, ∫ U∗1 (−ω)+
∫ U2ω = E}. There are several evaluation maps, to Lk1

1 , to Lk12

12 , and to Lk2

2 . So
you also have ev−∞ and ev+∞, both of which go to L1 ×X1 L12 ×X2 L2.

You have

Ω(L1×X1L12×X2L2)⊗Ω(L1)⊗k1⊗Ω(L2)⊗k12⊗Ω(L12)⊗k12 → Ω(L1×X1L12×X2L2).
This is basically the trimodule structure, there are some other details but let me
suppress them. Then the relation is that

∆x1 =∑xc
1 ⊗ xc

1
′

and then

∑
c,d,e

n(n(y, xc
1x

d
2x

e
12)xc

1
′
xd
2

′
xe
12
′)+

+∑n(y1, (d̂x1)x2, x12) +∑n(y1, x1, d̂x2, x12)∑n(y1, x1, x2, d̂x12) = 0
Now we have the trifunctor. Well, this is a trimodule, but it’s kind of saying the
same thing in a different way. So we get F̄ (X1) × F̄ (X12) → Func(F̄ (X2), ch).
There’s a slight difference between this and Künneth. If you don’t put any marked
points in, then you have the same thing. But the marked points on L1 and L2 are
only hit by differential points on L1 and L2 separately, whereas in the product you
can hit with arbitrary differential forms on the product. So this is like the difference
between BCF (L1)⊗BCF (L2) and BCF (L1 ×L2).

Maybe I finish the constructions after the break.
So L1 is a relatively spin immersed Lagrangian with bounding chain, and L12, b12

similarly, as an object of F̄ (−X1 ×X2), so these give us W(L1,L12) ∶ F̄ (X2)→ Ch.
The claim is that there exists an L2 in ob(F̄ (X2)) such that Y o(L2) ≅W(L1,L12).
Then by the inverse of the Yoneda embedding we’ll get F̄ (X2).

The proof is two step. We have this particular geometric object L0
2 = L1×X1 L12.

First, we want to show that there is a bounding cochain, and the second step is
that Y o(L2) ≅W(L1,L12).
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So I want to prove this, and the key idea is that D = CF (L1, L12, L2) = Ω(L1×X1

L12 ×X2 L2). The idea is to particularly choose L0
2. Now I’ll make a very simple

geometric claim, that this is canonically diffeomorphic, L1 ×X1 L12 ×X2 L
0
2 ≅ L0

2 ×X2

L0
2. But this is something like CF (L0

2), so that CF (L1, L12, L
0
2) is isomorphic as

a Λ0-module to CF (L0
2). This CF (L1, L12, L2) is a right CF (L2)-module. You

have bounding cochains b1 and b12 then this is an uncurved right CF (L2)-module.
Let me give a geometric rationale. So CF (L,L′) is a left CF (L) module and right
CF (L′)-module. This means the following. So D is left C1 and right C2 module,
then you have nk1,k2 ∶ Bk1(C1)⊗D⊗Bk2(C2)→D. The relations are complicated,
something like

∑n(xcn(xc′yzd)zd
′
) + n(d̂x, y, z) + n(x, y, d̂z) = 0.

So here what’s the trouble? You just see this formula. Suppose you forget C1, then
D is not a right module structure. Let x be the empty set, just 1. Then

∑n(n(y, zc)zc′) + n(y, d̂z)
is missing the term n(m0(1), y, z). But we have the bounding chain b and can
correct n from the left and define nb so that nb(x⃗, y⃗, z⃗) = n(ebx1e

bx2⋯eb, y⃗, z⃗). This
gives a right C2-module structure on D. Geometrically speaking, if you cancel your
right disk bubbles by b, you get an honest right module structure. You can do the
same thing for a trimodule. You have L1, L12, and L2. You can put b1 and b12
in the same way. Then you get a right CF (L2)-module. This is still curved, but
only on the L2-side. I want to prove that CF (L2) has a bounding cochain. After
this, you can forget two of the module structures, and have a right CF (L2)-module
structure.

Then I’ll mention a simple lemma. I like it, because it gives a way to get a
bounding cochain.

Lemma 3.1. Ret D be a right C-module, where C is curved. Say you have 1 in D
such that n(1) = 0 (mod Λ)+, and x ↦ n(1, x) is a Λ0-module isomorphism, then
the conclusion is that there is a unique element b so that ∑nk(1, b, . . . , b) = 0. This
implies that ∑mk(b, . . . , b) = 0.

Once the statement is given, the proof is kind of obvious. The two conditions
imply that you can do this by induction and it’s unique.

We can actually use this lemma to obtain b. We’re exactly in the situation in
which our lemma can be applied. We have CF (L1, L12, L2), and we have b1 and
b12, and this is a right CF (L2)-module. You can see abstractly that Ω(L1 ×X1

L12 ×X2 L
0
2) ≅ Ω(L0

2 ×X2 L
0
2) abstractly.

We can see that L0
2×X2L

0
2 is L2 (the diagonal) along with a bunch of other parts.

Then we say 1 = [L2]. The first property n(1) ≡ 0 (mod Λ)+ is obvious because
d1 = 0. Higher derivatives come from positive energy.

Now I want to see the second property. You have the abstract isomorphism, and
I want to say that the abstract isomorphism (up to positive energy) is realized by
this multiplication.

We consider L1 and L12 and L2 in our strip, and we let one end of L1 go to 1. We
want to see the other end. I want to calculate n(1, x) (mod Λ)+. If we forget the
positive energy, we should get an isomorphism. The maps u1 and u2 are constant.
What is x? It’s a differential form on L2 or L2(a). Let me pretend that this is
self-transversal. Multiplication of differential forms on L2, this marked point can
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move everywhere. You have a constant map, and the pullbacks and pushforwards
are the obvious map. Then M is L2 with three marked points. So you get the
identity map modulo Λ+. The other option is that you’re switching components.
[geometric reasoning] Again, forgetting positive energy, this is the identity map.

This is a proof that your L2 is unobstructed. The rest of the proof is that
this particular pair represent the Künneth functor. We not only get the b, but 1 is
actually a cycle. To prove the isomorphism, you use the fact that ∑nk(1, b, . . . , b) =
0.

Let me consider that we have ∑n(1, b02, . . . , b02) = 0. Now suppose we have
(L2, b2) ∈ Ob(F̄ (X2)). We have HF ((L1, b1), (L12, b12), (L2, b2)). Then we want
to show that this is equivalent to HF ((L0

2, b
0
2), (L2, b2)).

The proof that they are isomorphic uses the following diagrams. [pictures].

4. August 20

So last talk I just explained that there is a functor. You have X1 and X1 and I
constructed a functor

F̄ (X1) × F̄ (−X1 ×X2)→ F (X2)
and this is what we did last time. You have this “unobstructed Weinstein category”
W whose objects are (X,ω,V ), a symplectic manifold along with something related
to its relative spin structure, and the morphisms are L12 ⊂ −X1×X2 with a bounding
cochain b12. We want a functor from W to the category of all A∞ categories. What
we did so far, well, we cooked up F̄ (X,V ). Now we have L12 = (L12, b12) inducing
WL12 F̄ (X1) → F̄ (X2). We need to show that this structure is compatible with
composition of morphisms.

First we need to define composition operator on the unobstructed Weinstein
category. If you have L12 ⊂ −X1 × X2, you have L23 ⊂ −X2 × X3, then L13 =
L12 ×X2 L23. This fiber product might not exist. To make this a category there
is some difficulty because of this. There are two ways to go around it. You can
include some perturbations; then L13 which is not fully defined, you might get
non-diffeomorphic things. One way, you hav L23 ∼ L′23, this is an unobstructed
cobordism, you have a cobordism, you have L and L′ in X, they are Lagrangian
cobordant if you have L̃ in X ×C, and outside a compact set it looks like L×R and
L′ × R. If you assume everything is monotone, then the Floer theory of L and L′

are the same. We’re working on the non-monotone case. I didn’t write the proof
yet. If you have L̃, b̃ which restricts to L, b and L′, b′, then the Floer theory of these
guys will be the same, at least with coefficients in Λ0.

Then you can make sense of the fiber product always, because Hamiltonian
isotopy is a Lagrangian cobordism. Then you get an honest category and you
get an A∞ functor defined up to homotopy. So you can go from the cobordism
category of the Weinstein category to the homotopy category of A∞ categories. Or
you could work on a topological category where everything is defined on a dense
subset. Things are well-defined only up to homotopy.

So that’s not the main thing I want to explain. I want to explain two theorems.

Theorem 4.1. Say L12 has b12 and L23 has b23. Then L13 = L12
⋔
×X2 L23 also has

a bounding cochain b13

Theorem 4.2. WL23,b23 ○WL12,b12 ∼WL13,b13 .
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Conjecture 4.1.

F̄ (−X1 ×X2) × F̄ (−X2 ×X3) //

��

F̄ (−X1 ×X3)

��
Fc(F̄ (X1)F̄ (X2)) × Fc(F̄ (X2), F̄ (X3)) // Fc(F̄ (X1), F̄ ,X3)

commutes. Here Fc is the functor category.

The first line is a categorical version of the first theorem above. The bottom
line should be pure algebra. The commutativity should be a better version of the
second theorem, which is commutativity at the level of objects.

We’ll use the tool of Y diagrams. It’s a complicated quilt. Consider the following
things: [picture].

The proof of the first theorem, consider a neighborhood of this puncture. Con-
formally change this picture [picture].

So we consider this moduli space. How do we use it? Suppose that Ui is Ji-
holomorphic and energy is finite. As τ , the R-factor, goes to ±∞, you get U1, U2, U3

go to a point in L12 ×X2 L23 ×X3 L31, contracted over X1. This is L13 ×X1×X3 L13.
I proved last time that b1 and b12 existing proved that there was a bounding

cochain b2 and this proof will be similar. You have evaluation maps

ME(L12, L23, L13)
τ→∞

))SSS
SSS

SSS
SSS

SS

τ→−∞
uukkkk

kkk
kkk

kkk
k

L13 ×X1×X3 L13 L13 ×X1×X3 L13

So put marked points and you get a map CF (L13)×CF (L12)×CF (L23)×CF (L13)→
CF (L13). This is a map nk1,k2,k3 , so now we take nb

k(y, x1, . . . , xk) to be

∑nk
k1,k2,k3

(y, bk12

12 , bk23

23 , x).
[picture]

This gives us a right CF (L13) modele structure on CF (L13). Then there is a
unique b13 so that ∑nk(1, b13, . . . , b13) = 0. This is from the algebraic lemma I
explained last time. We can then cook up the bounding cochain.


