
MICROLOCAL CATEGORIES
DMITRY TAMARKIN

GABRIEL C. DRUMMOND-COLE

Last time, I’m tired of writing Rn, and so I’ll call it E, and G = S̃p(2n), which you should think
of as E ⊕ E∗. Then we constructed (not quite explicitly) an object S ∈ D>0(G × E × E × R).
By some general nonsense you can extend something uniquely that is explecitly defined only in
a neighborhood. The first thing I’d like to do today is finish the construction. I can make Sg for
g ∈ G, and that’s a quantization of the symplectomorphism g : E⊕E∗ or T ∗E to itself. You can
consider the graph of g which is a Lagrangian (well, you should reflect in the first argument).
A quantization means that the microsupport of Sg is in this graph. If you want to do this in
families over G there is a unique choice. Now we’d like to compare Sg ◦ Sh with Sgh. You
should impose the condition Se = Z∆ � Z≥0[dim G]. Last time I think I left off the shift. Well,
actually, oh, probably, anyway, we will get to it later. Let’s just define it with the shift. It’s
something that should be a continuous family. So induce a monoidal structure on the category
D>0(G×E×E×R), morally this category is sheaves on G and sheaves on E×E×R. You have
separate convolutions on each of these, and so we should define this here then on the differential
graded level. I don’t know how to do it in a straightforward way. So you already have a big
problem, if you want to define the convolution product on G, let us define convolution of sheaves
on G to make it a monoidal category.

Normally convolution is defined as follows: you have multiplication G×G → G, and you define
the convolution as a derived pullback F ∗ G = Rm!(F � G). How do you define m!, as a left
adjoint to the pullback m−1 : cosh(G) → cosh(G × G), wait, no, here for, well, we want a
differential graded model that is associative. You can do it as follows. You define m!, you have
a formula that sections with compact support on m!φ|U is the same as sections with compact
support of φ on m−1U . A lot of things get messed up if you try to mimic directly, but you can
fix things by relaxing it a bit. So we’ll construct a relaxed monoidal category. Let me switch
directly to G × E × E, we’ll construct A (G · E · E), only on the product of open sets. I don’t
know, maybe it’s “lax” monoidal category. There are many versions but I mean this: for each
arity n you have a tensor product Tn and for any planar tree, you want to insert these one into
another, and you can put, associate to each vertex a functor, and if you compose these you will
get a new functor Tt which will go C N(t) → C where N(t) is the number of inputs of the tree
t. Our trees can also have 0-valence vertices, and for any such tree you can look at the space
F(t) = hom(TN(t), Tt), where if you have a small tree, imagine you have a micro tree, and at
each vertex you have another tree. You have insertion, and you have insertion maps for this
F(t). You have t for each vertex in the interior of t, we are given tree tv so that N(tv) is the
arity of v. From this you can create a new tree by insertion. Then F(t) describes multilinear
operations, (these should be complexes of natural transformations), multilinear operations

F(t)⊗
⊗
v∈V

F(tv) → F(t{tv}v∈V)

1

2 GABRIEL C. DRUMMOND-COLE

Here your valence is labeled by a tree instead of labeling by a number, so it’s some kind of
higher operad, a t-operad. You have a trivial t-operad (a t-operad for any planar tree you have a
complex and for every insertion you have a composition which is associative) and the trivial one
is Z in every tree. We define a lax monoidal structure a functor Rtriv → F . You can impose
a stronger restriction. You can additionally demand that a generator of Rtriv should map to a
weak equivalence.

Usually such thing cannot be constructed explicitly but you can prove that there is no obstruc-
tion. We will see that the space t ≤ 0 of these homs TN(t), Tt will be 1-dimensional. Our
category was something like A (G ·E ·E). To represent these functors by kernels, we can define
a convolution

A (G · E · E)n ◦A (G · E · E︸ ︷︷ ︸
n+1 times

) conv→ A (G · E · E).

Pick Kn in the second factor and then Tn(F1, · · · ,Fn) = conv(F1, · · · ,Fn,Kn) and we want Kn

to be a representative of ZLn where

Ln ⊂ (G · E · E)n+1 = {gi, ei, fi}n
i=1 = f1 = e2, f2 = e3, · · · , ei = en+1, fn = fn+1

(???)

It’s easy to do [unintelligible]with the kernels.

Since usual convolution is strictly associative, it will turn out that Kt will be weakly equiv-
alent to Kn(t). Then calculating F(t) will boil down to choosing, its cohomology will be
R•Hom(Kn(t),Kn(t)) which will be the same, we will have Euclidean spaces, and you’ll be
left with H∗(G#), the cohomology of some power of G. If I now replace each of my spaces with
their cutoffs τ≤0F(t) I’ll get Z. The induced composition will preserve the generators 1. I have
a natural projection to the trivial operad which is a weak equivalence, and also a natural map
to F . So we are done. This analysis shows that if someone else tries to invent another version
of a monoidal category it will be equivalent to this one.

After this we need to define, if we were in a usual monoidal category, we would want to endow
our thing with an algebra structure. In this relaxed world, well, in the strict case we could
consider the full operad full(S) but we can do that here too fulln(S) = hom(Tn(S), S). We’d
have a map from the associative algebra to here. But now we should have a map of an ∞
operad. What’s going to happen, you have a resolution Rtriv, for any tree you’ll have a bunch
of compositions. Then you cross with fulln, and you can organize the tensor product and you’ll
get a natural map

Rtriv(t)⊗ fullt(S) → fullN(t)(S)

where fullt := ⊗vfull|v|. We change the usual definition with this Rtriv(t). Since Rtriv is
isomorphic to the trivial operad, more or less the category of operads in the usual setting is
equivalent. You have the usual version Assoc(n) = Z and then you have this still satisfies the
definition. We should call the version before an ∞-operad, and Assoc is an ∞ operad. We
want a map from RAssoc to full(S), and this will be that we endowed our S with an algebra
structure. How to do this? Again by counting obstructions. We evaluate these spaces and prove
they have no negative cohomology. Then all of our things will behave like usual Abelian groups,
we’ll be able to cut off below t = 0. You can solve the problem of the map to t ≤ 0-full(S).

MICROLOCAL CATEGORIES DMITRY TAMARKIN 3

Maybe I will skip this and give the answer, which is that R•hom(Tn(S), S) = H•(G))⊗n. How do
you do this? It’s a tricky question. You need a 2-algebra structure or maybe 3-algebra structure
(somewhere) and then this will be this kind of operad, but we get around this with the cutoff.

So this finishes the story and the algebar is more or less unique.

[You take the dg category A on G×E×E×R, then we define a monoidal structure. You want
to define a convolution for integration along G. There is an infinity version of that. What is the
problem? Why isn’t it strict?] Well, it’s a problem with open sets not being products of open
sets.

I need a dg structure to get richer things that maps in the homotopy category. There are the
operadic school and the category school.

Let me demonstrate finally what we’ll need in the future. Eventually we’ll recover O(n)×Z ↪→ G
where Z is the center of G (or a kernel of the cover, that’s actually what I want)

Then you have an obvious map O(n) → Sp(2n), wher you act on E × E∗ on the first factor.
If you take the preimage of the image of O(n) in S̃p(2n) you get O(n) × Z. Let’s actually use
SO(n)

Then the question, we can compare SO(n) × E × E, we can restrict S|SO(n) ∈ D>0(SO(n) ×
E × E × R). (this restriction is actually to SO(n) × E × E × R). We can also look at the
constant sheaf Z(g,e1,e2)|e2=ge1

⊗ Zt≥0, call this Σ. Now S|SO(n)
∼= π−1L ⊗ Σ where π is the

projection SO(n)×E ×E × R → SO(n) and L is the unique nontrivial local system on SO(n)
with monodromy −1. Now, still, not today.

