MICROLOCAL CATEGORIES
 DMITRY TAMARKIN

GABRIEL C. DRUMMOND-COLE

[Came in late]
Talking about $S \in D_{>0}\left(G \times \mathbb{R}^{D} \times \mathbb{R}^{D} \times \mathbb{R}\right) . S p(2 D)$ acts on $T^{*} \mathbb{R}^{D}$.
We have $\left.S\right|_{e \times \mathbb{R}^{D} \times \mathbb{R}^{D} \times \mathbb{R}}=\mathbb{Z} \Delta \boxtimes \mathbb{Z}_{t \geq 0}[D]$. We think of $S O(D)$ as sitting inside $S p(2 D)$ and this lifts to the universal cover $\widetilde{S p}(2 D)$ so we can talk about $\left.S\right|_{S O(D) \times \mathbb{R}^{D} \times \mathbb{R}^{D} \times \mathbb{R}^{\prime}}$.
$\Sigma \in D_{>0}\left(S O(D) \times \mathbb{R}^{D} \times \mathbb{R}^{D} \times \mathbb{R}\right), \Sigma=\mathbb{Z}_{K} \boxtimes \mathbb{Z}_{t \geq 0}[D]$ for $K=\left\{g, x_{1}, x_{2} \mid x_{2}=g x_{1}\right\} \subset S O(D) \times$ $\mathbb{R}^{D} \times \mathbb{R}^{D}$ 。

Claim: $S \cong \Sigma \otimes \mathcal{L}$ for some local system $\mathcal{L} \in \operatorname{Loc}(S O(D))$ with $\mathcal{L} \mid e \cong \mathbb{Z}$.
You can define a functor that will give you this \mathcal{L}. Let me call the group $S O(D)$ by H and the space \mathbb{R}^{D} by E, and then I need a convolution $D(H \times E \times E \times \mathbb{R}) \stackrel{\circ}{\times} D(H \times E \times E \times R) \xrightarrow{\circ}$ $D(H \times H \times E \times E \times \mathbb{R})$, where this is convolution of the second E of the first factor and the first E of the second factor. You also have an embedding $D(H \times E \times E \times \mathbb{R}) \xrightarrow{i} D(H \times H \times E \times E \times R)$ where h embeds as h, h^{-1}.

Let me also define $\tilde{\Sigma}=\mathbb{Z}_{\tilde{K}} \boxtimes \mathbb{Z}_{t \geq 0}$ where \tilde{K} is the opposite: $\left\{g, x_{1}, x_{2} \mid x_{1}=g\left(x_{2}\right)\right.$.
Now we can look at $i^{-1}(S \circ \tilde{\Sigma})$. From the singular support, you can see that it is a locally constant sheaf on $H \times \Delta_{E} \times \mathbb{R}_{\geq 0}$. Restricting on this diagonal, where it is supported, it is locally constant. Since $\Delta_{E} \times \mathbb{R}_{\geq 0}$ is contractible, you will get a local system on H. If you do the same thing with Σ you will get the inverse system. Therefore, since we know this one, we can get our original sheaf S by applying the inverse functor. Call this one $G(S)$ and $F(S)=i^{-1}(S \circ \Sigma)$ so then $F \circ G \cong \mathrm{id}$, and $S \cong F\left(\mathcal{L} \boxtimes \mathbb{Z}_{\Delta} \boxtimes \mathbb{Z}_{t \geq 0}\right)$. Which local system is this? We can prove that the fiber at the unit is \mathbb{Z} since $\left.\mathcal{L} \otimes \Sigma\right|_{e} \cong S_{e}$. There are two of these, the trivial one and the twisted one. If we restrict to $S O(2)$ we can see this. So look at $\left.\mathcal{L}\right|_{S O(2)}$ where $S O(2) \subset S O(D) \subset \widetilde{S p}(2 D)$. You could just as easily inject in $S U(2)$ in $S U(D)$ in $\widetilde{S p}(2 D)$. So we might as well assume that $D=2$. Now $S U(2) \subset \widetilde{S p}(4)$ is a homotopy equivalence, by accident, so now we need to look at $S U(2) \times E \times E \times \mathbb{R}$. Now we really need to construct the sheaf here and see what happens when we restrict to $S O(2)$. We're stuck, it's really a concrete computation.

We have \mathbb{R}^{4} with coordinates $\left(q_{1}, q_{2}, p_{1}, p_{2}\right)$. It's useful to introduce the coordinates $Q=q_{1}+i q_{2}$ and $P=p_{1}-i p_{2}$, and then $\alpha=\operatorname{Re}(P d Q)$. If you have a matrix $\left(\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right)$ where $|a|^{2}+|b|^{2}=1$, then

$$
\binom{\tilde{Q}}{\tilde{P}}=\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a} \\
1
\end{array}\right)\binom{Q}{P}
$$

Now we will quantize using generating functions. We need to do it on two charts separately. One, U_{1}, will be $a \neq 0$ and the other U_{2} will be $b \neq 0$. They will mismatch by a local system. You need to choose a pair of independent coordinates. If $a \neq 0$ you can choose \tilde{Q} and P (you will have $\tilde{Q}=a Q+b P$ and $\left.P=\frac{\tilde{P}+\bar{b} Q}{\bar{a}}\right)$. You need to compute $\operatorname{Re}(\tilde{P} d \tilde{Q}+Q d P)$ which is necessarily $d S(\tilde{Q}, P)$. This can be computed, we have $S(\tilde{Q}, P)=\operatorname{Re} \frac{2 P \tilde{Q}-b P^{2}-\bar{b} \tilde{Q}^{2}}{2 a}$

If $b \neq 0$ you can use Q and $\tilde{Q}[!]$. You have another formula and you define $d \Sigma=\operatorname{Re}(\tilde{P} d \tilde{Q}+P d Q)$ and $\Sigma=\operatorname{Re} \frac{\bar{a} \tilde{Q}^{2}+a Q^{2}-2 Q \tilde{Q}}{2 b}$.

Now let us see what kind of sheaves we can obtain from these functions and what we get on the overlap.

The idea is that first I can consider $t+S(\tilde{Q}, P) \geq 0$ with $\mathbb{R}\left(\tilde{q}_{1}, \tilde{q}_{2}, p_{1}, p_{2}\right) \times \mathbb{R}$. We need to do a Fourier transform. If you take the convolution with $t-P Q \geq 0$, overall it will look as $t+S(\tilde{Q}, P)-P Q \geq 0$. Take the constant sheaf on this set in $\mathbb{R}_{Q \tilde{Q} P}^{6} \times \mathbb{R}$, and then you push forward along P to $\mathbb{R}_{Q \tilde{Q}}^{4} \times \mathbb{R}$. I forgot the group variable, you should also multiply all factors by $U_{1} \subset S U(2)$ where $a \neq 0$.

Now we should compare it to the other quantization $\mathbb{Z}_{t+\Sigma(Q, \tilde{Q}) \geq 0}$. Call these \mathcal{S}_{1} and \mathcal{S}_{2}.
[Quantization of a group is a sheaf on $G \times E \times E \times \mathbb{R}$, and if you restrict to an element you should get a transformation of E. An object on $E \times E \times \mathbb{R}$ gives you an endofunctor on $E \times \mathbb{R}$. It's a way of encoding an action of G on $E \times \mathbb{R}$.]

Now we need to compare two objects. Both can be restricted to the overlap $U_{1} \cap U_{2}$. We will see they differ by a local system. You remove two big circles from S^{3}, which are linked but do not intersect. You need to complete the square, if a and b are nonzero, and you get the following formula.

$$
S(\tilde{Q}, P)-P Q=\operatorname{Re}\left\{-\frac{b}{2 a} \Pi^{2}+\Sigma(Q, \tilde{Q})\right\}
$$

where $\Pi=\left(P+\frac{a}{b}-\frac{1}{b} \tilde{Q}\right)^{2}$.
This overlap is S^{1} times a disk. If $a \neq 0$, maybe you can just, what you need to do, if $b \neq 0$, you can instead of projecting along P, you can project along Π. So restricting to the intersection the first sheaf is $R \Pi!\mathbb{Z}_{\left\{\operatorname{Re}\left(t-\frac{b}{2 a} \Pi^{2}+\Sigma(Q, \tilde{Q})\right) \geq 0\right\}}$. We can focus to where we project, first restrict yourself to $R \Pi_{!}^{0}\left(\mathbb{Z}_{t-\operatorname{Re} \frac{b}{2 a} \Pi^{2} \geq 0}\right)$ and we can look at $U_{1} \cap U_{2} \times \mathbb{R}_{\Pi}^{2} \times \mathbb{R}_{t} \xrightarrow{\Pi^{0}} \mathbb{R}$.

I don't have time, this is a good exercise, you have $U_{2} \xrightarrow{\operatorname{Arg} \frac{a}{b}} S^{1}$ and the pushforward is $\alpha^{*} \mathcal{L}_{S^{1}} \boxtimes$ $\mathbb{Z}_{t \geq 0}$. So $\mathcal{S}_{1} \cong \mathcal{S}_{2} \otimes \alpha^{*} \mathcal{L}_{S^{1}}$.
How can you glue this with one sheaf? You need to choos it to be \mathcal{S}_{1} on one chart and \mathcal{S}_{2} on the other chart or vice versa. Then you need to restrict it to $S O(2)$, and you realize this as $\left(\begin{array}{cc}e^{i \phi} & 0 \\ 0 & e^{-i \phi}\end{array}\right)$. You have two choices because we don't know which one to shift. The neighborhood of 1 , when $b \neq 0$, we should have the unchanged sheaf. So we should change \mathcal{S}_{1}
to $\mathcal{S}_{1} \times \mathcal{L}$, and we need to restrict to $S O(2)$, and if you restrict you will get what I said. This can be computed, and you will get the formula $\mathcal{L}_{S^{1}} \otimes \operatorname{Re} \mathbb{Z}_{t+\operatorname{Re}\left(P\left(\tilde{Q} e^{-i \phi}-Q\right)\right)>0}$.

I completely forgot the homological shift. They will work out together. This one, you can prove that this is t plus the Fourier transformation, and then you project on P you'll get the delta function on the difference $\tilde{Q} e^{-i \phi}-Q$.

