
YURI MANIN

GABRIEL C. DRUMMOND-COLE

I’m continuing the introduction to quantum cohomology. As a recollection, I was starting with a
preliminary incomplete (imprecise) but intuitive definition. I feel that without such an intuition
one cannot really work with this stuff. We start with V a projective smooth algebraic variety.
Consider its space H∗(V ) of cohomology with complex coefficients. One variable will be an
integral class β modulo torsion in two-dimensional homology, which we use to classify algebraic
curves lying in V . If you fix a certain number of degrees, the family will be finite dimenisional.
Not any cycle can be one of these, there is an effectivitiy condition. You could choose a projective
embedding and then make a choice based on this arbitrary embedding, but choose all possible
embeddings (ample divisors), so they should be nonnegative with respect to any ample divisor.
So (β, [D]) ≥ 0 for any ample divisor D.

Then I will have a variable number n ≥ 0, and the basic Gromov-Witten invariant IV
0,n,β :

H∗(V )⊗n → C, where 0 reminds you that we’re only considering genus zero curves. I have
written you an intuitive description of these numbers. It suffices to describe these numbers IV

0nβ

on a basis ∆a of cohomology modulo torsion, represented by cycles Da. To define the full story,
IV
0nβ(∆a1 ⊗ · · · ⊗∆an) I must know this for every choice of aj . This will be the virtual number

of rational curves C of class β with n marked points x1, . . . , xn, pairwise distinct (and for now
nonsingular but we’ll talk about that in more detail later) which intersect Dai and so that the
intersection contains xi, then algebraic geometry says that the number of such curves is virtually
finite. If it is infinite then we put 0.

I will consider not just curves lying in V but maps of curves into V . Suppose you want to define
the fundamental group. Your first idea is closed loops at V starting and ending at a point. But
we know you should consider parameterized loops. You should not imagine the curves sitting in
V but mapping to V . The map on its image might have finite degree, but then the class should
be multiplied by the degree to get the correct β. There will be much more detail later on.

Now I will use the intuitive definition in the following way. I will produce a list of properties
that such numbers can be expected to have. From this intuitive definition, I will try to make
each statement of this list. I will call them “axioms.” Then, when this is done, I will construct
from IV

0nβ the potential of a formal Frobenius manifold.

On the other hand, of course, in 1994 it was a challenge to construct these numbers with these
properties, and when it was done, it turned out that it gives you much more than just these
numbers, and this is a big motivic picture in algebraic geometry. Then there arises an interesting
challenge. So far as we know it is not defined in terms of axioms. It might happen that there are
other properties, but we do not know all the properties. We should either prove some desirable
properties, or we can say that this incomplete information gives us more than what we started
from in the beginning. This is the source of a dozen papers, reconstruction theorems letting us
construct all of the data from some of it.
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Now I pass to the list of properties. For each one I will have an intuitive explanation, and then
say how it is reflected in the properties of the potential Φ.

0.1. Axioms.

(1) Effectivity: IV
0nβ = 0 unless β is in the positive lattice B (with respect to the positive

divisors). When β = 0 we should get something particular but I will defer that.
(2) Sn-invariance. So Sn acts simultaneously on IV

0nβ , and we renumber the points xi that
mark our curve. The result should remain the same. It shouldn’t matter what numbers
are here. It is important because it explains why my Φ should be the characteristic
function of commuting variables.

(3) Degeneration. This is nonobvious but the formula is very nice. Fix a representation
{1, . . . , n} = S1 t S2 with n1 and n2 elements. Then consider decompositions of β into
β1 + β2 (with βi ∈ B)

I0nβ(γ1, . . . , γn) =
∑

(IV
0(n1+1)β1

⊗ IV
0(n2+1)β2

)(
⊗
S1

γj)⊗∆⊗ (
⊗
S2

γk)

where ∆ is the class of the diagonal in V × V which sits in H∗(V )⊗2, and in a basis,
this is

∑
∆k ⊗∆`g

k`.
We have met something like this in the Kontsevich formula for P2. I’m considering

a rational curve with some market points in different parts, and the idea is that it can
degenerate into a curve consisting of two irreducible components. Some part of the
marked curves will go to one part, S1, and some to the other S2. This intersection point
is also a marked point, but these should be in such a way that these marked points
coincide.

The class β should remain the same, so βs should be the one and other side. You
should know how the components intersect each other. This explains why in the Kont-
sevich formula there were funny binomial numbers, that comes from this combinatorics.
This must be proved, but this shows the geomtery behind things. Now I am explaining
why something like that should be true, but this is basically the most important part
in showing that the potential should satisfy the associativity conditions. This is pretty
formal for the third derivatives of Φ with one index raised, Φc

ab.
[Question about stability.] I will speak about that in a lot of detail later.

(4) Identity. IV
0nβ(γ1 ⊗ · · · ⊗ γn−1 ⊗ 1), where 1 is dual to the fundamental class, this is the

same as IV
0(n−1)β(γ1 ⊗ · · · ⊗ γn−1). Intuitively this is clear, there is no condition in this

case.
(5) Divisor. IV

0nβ(γ1 ⊗ · · · ⊗ γn−1 ⊗ δ︸︷︷︸ in H2) = (β, δ)I0(n−1)β(γ1 ⊗ · · · ⊗ γn−1). I have

choices about which is x1, which is x2, and so on, and that gives me (β, δ).
What can we conclude from these? That the identity of the usual cohomology is

still the identity. From the divisor axiom it follows that, well, in the characteristic
function, one argument was appearing in the exponential. From this it will follow that
it is reasonable to exponentiate all arguments in the potential (linear dual coordinates
to a basis in the classical cohomology) that are in topological codimension 2.

(6) Dimension. I will state it as follows. If IV
0nβ(γi ⊗ · · · ⊗ γn) 6= 0 then∑

(|gammai| − 2) + 2[( KV︸︷︷︸
canonical class

, β) + 3] = 2 dimC V.
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This is difficult to explain intuitively, but it’s very useful, because it restricts those
monomials that can appar in Φ. If you endow your flat coordinates or the exponentiated
coordinates with weights, then with respect to these weights your Φ is homogeneous.

Let’s look at an important case. Knowing the identity and divisor axioms, I can
assume all γi are more than 2. Let’s consider the case when KV = 0, Abelian varieties
or Calabi-Yau varieties or something like this, we get

∑
(> 0) + 6 = 2 dim V . Consider

the case when the dimension is 3, so 3-dimensional Calabi-Yau’s. Then the arguments
are empty, that’s the only time when this can be nonzero. Only then, IV

0,0,β(1), you
may expect that things are nonempty for these values. But β remains totally restricted,
since it cancels with KV . In the Calabi-Yau thing, you are only interested in the degrees
of β in a fixed embedding. For them, a fantastic mirror formula was discovered by
physicists, Calabi, and then proven in some sense by Givental. So there should be this
number of rational curves. Whether this virtual count is the actual algebraic count,
that’s unsolved. There may be continuous families of β for some Calabi-Yaus but those
are not sufficiently generic. To say that for sufficiently generic Calabi-Yau there are this
many curves, that’s not yet proved. So you cannot avoid deforming. So for Pr you can
understand things in algebraic geometric terms.

(7) “Mapping to a point” (β = 0). This is not intuitive, it depends on an understanding of
what it means, virtual. In this geometry, β = 0 may not be trivial.

Later on I will explore in more detail the case of projective space. It’s essentially the case when
associativity gives you all the numbers by a recursive formula. I’ll give as a central example
quantum cohomology of Pr. This will be indicative of what we can expect from the mirror
picture.

Example 1. Let H = H∗(Pr, C) =
∑r

a=0 C∆a, where ∆a is a class of codimension a in Pr,
and this produces coordinates xa, and

ΦPr

(x) =
1
6

∑
a1+a2+a3=r

xa1xa2xa3 +
∞∑

d=1

Φd(x2, . . . , xr)edx1

︸ ︷︷ ︸
“quantum correction”

where

Φd(x2, . . . , xr) =
∞∑

n=2

∑
a1+···+an=r(d+1)+d−3+n

I(d, a1, . . . , an)
xa1 · · ·xan

n!

where IPr

0nβ = d`(∆a1 ⊗ · · · ⊗∆an), where ` is the class of a line.

Theorem 1. Assuming the existence of ΦPr

, it is uniquely reconstructed from I(1, r, r) = 1.

Even the existence can be proven combinatorially. This takes a lot of not really illuminating
computations. Exactly one power series with these properties and this coefficient exists.

You now have a formal Frobenius manifold which is the quantum cohomology of Pr. Any
questions?


