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Okay, so let me recall for you that basically I interpreted last time the nonlinear differential
equations involved in the F -identity and the metrics as integrability conditions. I’ll get a system
of equations that has as many solutions as it can. Then it’s helpful to say that the solutions
can be given by initial conditions. So in the semisimple case, if you have a germ (M,x0) of a
Frobenius manifold, then it is uniquely defined by the following finite amount of data:

First of all we want canonical coordinates ui(x0) at this point x0. Saying it like this I’m saying
basically nothing because these are defined up to multiplication and addition, so a point has
any canonical coordinates you wish. This becomes unique only if you have given the Euler field
E. Then the canonical coordinates are eigenvalues of E◦ at Tx0M . The eigenvectors are ei,x0

so that ei,x0ej,x0 = δijei,x0 . I need the coefficients of the compatible flat metric ηi(x). We know
that there is a function metric potential η so that eiη = ηi. I know this only at one point,
and at the same point the second derivatives ηij(x0), and this is sufficient to define the whole
germ, but you see a certain stupid choice is involved, if the i are 1 to n then a numbering
is involved of the ui. Speaking only about a germ you can pay no attention at all, but for a
global everywhere semisimple Frobenius manifold it might have nontrivial fundamental group,
so you have monodromy, you’d better assume that this is simply connected and then the number
doesn’t matter again.

There are some more or less trivial algebraic restrictions. A semisimple germ is defined by this
finite data. I will use this fact to show you the mirror picture for projective spaces Pr. I will
look separately at the quantum cohomology for projective spaces, and I will find points where
it is semisimple, and then I will construct a Saito structure, I will choose a point, calculate the
germ and show that they coincide. That will give us the mirror picture. Actually, I will give
almost complete constructions of ui and ηi and omit the ηij , discussing it a little.

Let us start with Pr. As I already explained several times, we have the flat coordinates xa where
a will run from 0 to r and xa will be dual to the cohomology basis ∆a which is dual to [Pr−a]
in H∗(Pr). You can put things geometrically as ∆a = ∂

∂xa
, and then the main information from

Gromov-Witten invariants is encoded in the potential

Φ(x) =
1
6

∑
a1+a2+a3=r

xa1xa2xa3+
∞∑

d=1

 ∞∑
n=2

∑
a1+···+an=r(d+1)+d−3+n),ai≥2

I(d, a2, . . . , an)
xa1 · · ·xan

n!

 edx1

I start counting when ai ≥ 2 because ai = 0 is only classical and ai = 1 is in edx1 . The
I(d, a1, . . . , an) = 〈IPr

0,n,β=d∆r−1
〉(∆a1 ⊗ · · ·∆an).

Then we get a new multiplication ∂a ◦ ∂b =
∑

Φc
ab∂c. So the first part is the classical part

and then the second part is the quantum correction. Only a common point contributes to
the intersection, but in the quantum case if there is a rational curve between them this also
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contributes to the intersection, but this gets smaller and smaller with the growth of the degree
of this curve.

So we know ◦ multiplication in flat coordinates. One easy corollary of these formulas is that
along H2, that is where x0 = x2 = x3 = · · · = 0, the multiplication is semisimple. You will
see by induction everything is generated by ∂1, and the last power which was 0 in the classical
case is not zero ∂

(r+1)
1 = ex1 . So semisimplicity is there, and I will be able to calculate things

exactly along H2. There is a general term. I am putting myself on H2 only, the resulting ring is
called small quantum cohomology. I am multiplying tangent vectors which might not be in H2

but projecting the result to H2. The quantum cohomology is semisimple there. We can define
the very standard idempotents. So C[x]/f(x), the idempotents correspond to normalized linear
factors.

You should imagine that, this manifold has its own coordinates. Imagine that the series I wrote
converges around 0. On this germ I have flat coordinates xa. I can take the tangent space at
any point, and calculate structure constants at that tangent space, and if z = ∂1 then you will
get C[z]/(zr+1 − 1) when ∂1 = 0 and everything else is 0.

The semisimple algebras are not deformable, so in the semisimple part you will only get something
new if you look at the basis of semisimplicity. You have two kind of specific basis, the flat
coordinates and the canonical coordinates. In canonical coordinates the multiplication is the
same; in flat coordinates it changes.

In an abstract commutative semisimple algebra over C you have idempotents ei which are canon-
ical up to choosing order. If you choose a different basis, then multiplication will be different.
The dependence is exactly dependence of the third derivative. If you want, you can say that ∂a

is given in terms of ei. This implicit formula for transformation of flat coordinates to canonical
ones can develop singularities, and so with no canonical coordinates you lose semisimplicity and
with no flat coordinates your [unintelligible]cannot be analytically continued.

The formulas to get canonical coordinates from this side, the point (x0, x1, 0, · · · ), any point
of this form in flat coordinates has canonical coordinates ui = x0 + ζi(r + 1)e

x1
r+1 where ζ is

a root of unity of degree r + 1. These are canonical coordinates along H2. In the case of
quantum cohomology, it is easy to calculate the metric potential η, and η = xr and therefore
we can basically derivate this and get that ηi = ζi

r+1e−x1
r

r+1 , this is the flat metric in canonical

coordinates. For the second derivatives in two different directions k 6= i, ηki = −2 ηi−k

(ηi−k−1)2
e−x1

(r+1)2 .
To calculate the first data it’s enough to set all the coordinates past the first two equal to zero.
Then to go on to the second derivative you need to know the linear parts of the quantum
cohomology. So initially you should take into account monomials of degree 4, so Gromov-Witten
invariants with 4 arguments. But you can calculate this since one line goes through 2 points.
Then all of them are 1 and you can make calculations involving some algebraic identities and
this is what you get as your answer.

Now let’s look at the mirror dual picture. I will have to take a function and deform it. There’s
a nice theory when there is an isolated singularity at x = 0. For quantum cohomology it simply
does not work. We have to take the function F (z, 0) (later I will put parameters of deformation)
to be z1 + · · · + zr + 1

z1···zr
. A similar way works for weighted projective spaces, other kinds of

spaces, then you should produce a deformation, and the general trick is to treat this as if there
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was an isolated singularity. Construct the ring C[z±1
i ]/(∂F (z,0)

∂zi
) and take the linear combination

with arbitrary coefficients.

I will not do this here, it’s not the most convenient example to use. I’ll pick a particular
deformation, with one parameter q, so I’ll take F (z, q, 0, . . . 0) = z1 + · · · + zr + q

z1···zr
. It will

turn out that the quantum multiplication point where q = 1 and everything else is 0 or q is
generic is semisimple, it’s just multiplication in the Milnor ring. Again I will be able to do
the calculation for first derivatives. The formulas for the initial conditions will have q = ex1 ,
so variation along q will correspond to variation on H2. In more complicated examples the
deformations are not trivial.

Let me see what I should calculate. What can I do right away? I first must calculate the ideal
of derivatives. The first derivative is

∂F

∂zi
= 1− q

(z1 · · · , zr)zi
.

At critical points, all the products are equal to q, so zr+1 = q. There are r + 1 possible values
which differ from one another by a root of unity. We get (ζiq

1
r+1 , . . . , ζiq

1
r+1 ). Then the canonical

coordinates are the values of F at these critical points F (ρi), and I am adding these things, I
get r + 1 copies of this, and then divide by the product, it’s all easily calculated, and I get
F (ρi) = ζi(r + 1)q

1
r+1 . If you compare that with the quantum cohomology. If I identify q and

ex1 , I get this correspondence.

Then the coefficients of the flat metric ηi, I had written the flat metric for a Saito structure after
the choice of Saito’s primitive form, and I should say here the primitive form is, and this seems
to be the general rule, it is the differential of the first kind on the torus, where all the zi are
nonzero, dz1

z1
∧ · · · ∧ dzr

zr
, and I can easily prove that the ηi are 1

det(zizj
∂2F

∂zi∂zj
(ρi))

[as long as you

have some aside about primitive forms and logarithms that I missed.]

This is ζa

r+1q−
r

r+1 . If i = j then you have z2
i , you derivate it again and get a 2, and after all you

will have to calculate the determinant of the matrix with 2 on the diagonal and 1 everywhere
else. As I did here I will omit the story and I’ll get the same result with ηij , if you input q instead
of ex1 . The step requires taking into account polynomials of degree 4 in quantum cohomology
or additional parameters of deformation in the Saito structure.

This is the mirror example in the generically semisimple case. The generic semisimple case has
as necessary Hodge of type p, p, and there is no known sufficient conditions.

[missed some]

I will briefly explain what I will be doing in the remaining part of the course, which is explaining
the general idea of the big algebraic-geometric panorama of quantum cohomology. What is
difficult about this story is that one needs to seriously enlarge the scope of algebraic geometry,
but consider Deligne-Mumford stacks. I’ll try to explain to you the intuition behind the things.
It’s not so hard to define but then we need the theory of algebraic cycles and intersection theory
and various new techniques. I’ll try to explain why they are really necessary for Gromov-Witten
invariants and what will come at the end. There will be no proofs practically but explanations
about what we will learn about all algebro-geometric manifolds that we did not know before.


