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I mentioned that quantum cohomology generally refers to understanding maps IV
β : H(V )⊗n →

H∗(M n,g). There are infinitely many of these, but you have a bunch of variables. You have
β in a positive cone in H2(V, Z), you have variables n and g. You have an implicit variable of
the stability condition, which traditionally is fixed once and for all. There are various ways of
squeezing this information, restricting, cutting down. One traditional way to cut down is to
restrict to the case g = 0 and another probably to the case where, only numerical invariants,
〈IV

g,n〉 integrating over the fundamental class. We should consider the virtual fundamental class
as created, although I did not do so.

Now that this information is cut down, we can encode it into an analytic or differential geometric
object. I had in mind F or Frobenius manifolds, and I will explain if I have time very briefly
a way to cut it down even more, the so-called J-function of Givental, constructed in a different
way. Then you should ask, “what did I lose?” There are two basic questions. First of all,
what you can do if you take only g = 0 information. Another is if you consider only numerical
information, can you reconstruct the whole motivic story? These are reconstruction problems.
Then I mentioned the word motives, implying or reminding that H∗ is also variable, you can
work in any cohomology theory. Therefore you should be able to work in universal cohomology
theory, so in motives? In fact, the fact that one can put instead of H, the letter h that means
motivic cohomology because this is an algebraic correspondence. So then one can look at this
categorically.

You have a lot of invariants, you can look at parts of it, you can look at encodings, these analytic
pieces are some kind of Feynman integral, and this encoding is a small part about how to make
this precise. What physicists really mean is not well-understood.

Now let me illustrate some parts of this general picture, for example, when V = M 0,m. The
structure is pretty well-understood. As I said, the calculation of quantum cohomology is very
much an unsolved problem, even restricting to genus zero. There are a lot of subproblems. So
we have IM

β : (M 0,m)⊗n → H∗(M 0,n). The first step is to understand the players here. Already
with β there is a lot of trouble. So β ∈ H2(M 0,m, Z) and also in the positive cone. The positive
cone is the first unknown in this story. Let me give you more concrete information.

What is M 0,n? There exist curves of genus 0 only for n ≥ 3, then the dimension is n−3, since the
top cell is something like (P1)n with deleted diagonals modulo Aut P1. This can be made more
precise. We know too that H2(M 0,n, Z) = A1(M 0,n, Z) ∼= Z[ Dσ︸︷︷︸

boundary divisors

]/(R) The relations

correspond to splitting into two components and distributing along those two components. So
σ corresponds to splitting n into two components, S1 and S2 which each have at least 2 points.
Further degeneration is then allowed. There are as many divisors here as partitions of this kind.
The relations were established by Keel. There are two kinds of them. Say you have σ and
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τ two partitions, then we can consider, they are unordered, S1, S2 is the same as S2, S1. We
define a(σ, τ) is the number of nonempty pairwise intersections between Si and Tj . There are
no more than four and at least two, so it’s 2, 3, or 4. If it is 2, then σ = τ Otherwise it’s
three or four. There are i, j, k, ` so that ijσk` and ikτj`. Then if a(σ, τ) = 4, then the product
DσDτ belongs to the ideal (R). For any i, j, k, `, we have Rijk` =

∑
ijσk` Dσ −

∑
ikτj` Dτ is in

the ideal. Keel showed that these applied and Maxim and I showed that this was it. So this
is all generated by the boundaries. This is a combinatorial thing that is known, so you should
pass to the left-hand side H∗(M 0,m)⊗n and see what happens to the generators. It’s good to
start with small values of m and n. I didn’t see any calculation of this sort in the literature,
but it’s a good introductory exercise. It’s difficult to hope that we will somehow know a nice
general formula, and in particular, there is a problem of the positive cone, we really don’t know
what it is. It’s a particular case of a well-known phenomenon. These sholud have nonnegative
intersections with divisors. We know boundary generators of H2(M 0,m, Z) = A1(M 0,m), which
are generated by the trees of degenerated curves so that there are exactly three points on each
curve. You have these degenerate rigid stable curves, these are the points, I’m sorry, and the
cycles corresponding to curves at the boundary will allow just one component where there are
four of these. We know generators, and we know generators Dσ and we want to come up
with linear combinations of the first generators which have nonnegative intersection index with
Dσ. Probably there are other effective divisors. It’s known according to Mori theory that the
possible behavior of the cone depends on whether minus canonical class is [unintelligible]or not.
The anticanonical class, starting with six or seven, becomes non-effective. In principle, Mori
theory allows a nonpolyhedral part of the boundary. There are various infinity possibilities. It’s
important to know what is this cone β.

I know of two important papers devoted to this story? Castravet, Exceptional loci on M 0,n and
hypergraph curves. I don’t have the other one here.

So what about the encoding. You have H∗
quant(M 0,n), what is that? It involves only the genus

zero picture, and you know several questions that are unsolved. You know now that H2 generates
the whole quantum cohomology, so one can use the first reconstruction theorem, which basically
tells you it suffices to consider the triple correlators 〈∗ ∗ ∗〉Vβ , but you don’t know much about
β. But in principle this gives you everything. Then you can ask whether you can apply the
other reconstruction theorem, whether the quantum cohomology is semisimple. Nobody knows.
If it is, you could try to calculate at a certain point, special coordinates, so on. Then you may
try to ask for Givental’s generating function, and I will explain a little bit of this. First of all,
generalities.

Basically, Givental considers the case, take Y a smooth projective manifold, and we will say
smooth Fano. The object that will be considered is not necessarily Fano. So we consider when
ω−1

Y is ample (which is not true in our case but it won’t matter) and the J-function is a series
of the following kind: it is a series in one variable t, and it is a double sum

J(t) =
∑
d≥0

∑
γi

∑
β:(−KY ,β)=d

〈IY
0,3〉(γ1 ⊗ γ2 ⊗ γ3)td.

In quantum cohomology we have qβ , here we squeeze this down to taking into account only
(−KV , β). Then as a coefficient, you sum all Gromov-Witten invariants that appear. Instead
of information about these numbers separately, you have certain sums. What happens is, it
is very convenient for encoding this Gromov-Witten information analytically and providing a
“weak mirror” picture, for example, for toric Fano varieties.
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Can this be extended to when this is no longer ample, so to M 0,n? Let me show you the simplest
mirror phenomenon that can be demonstrated in this way. The mirror phenomenon I was
considering before that, if you have a quantum cohomology H∗

quant and a certain Saito unfolding
picture on the other hand, then I have demonstrated [unintelligible], a class of unfoldings of
Laurent polynomials. This is a mirror of the first type. It turns out that if one considers in the
same situation the J function instead of H∗

quant and on the other side something related to such
a Laurent polynomial, taken at a certain point, then this mirror can be described as a quality.
We don’t have the unfolding and versal unfolding and so on, we don’t have that but what he
have is a simple thing. Consider a torus. A Laurent polynomial is a function on a torus, which
is the spectrum of the ring of the Laurent polynomials. Consider the universal differential form
ω = ∧ dxk

2πixk
. So if you have a w, you can integrate∫

|xi|=ε

ω

1− tw
=
∫
|xi|=ε

( ∞∑
i=0

twi

)
ω.

This is a power series in t has as coefficients the constant term of wi. This is the J function.
This is a weak mirror phenomenon. The question is when that corresponds to the Saito mirror
phenomenon. This is a popular version of the mirror, because Givental made a lot of very clever
contributions. He has never looked at Frobenius manifolds, so people on one side don’t look at
the other side.

Again returning to H∗(M 0,n), we don’t know if either formalism can be meaningfully applied,
because it’s not Fano, The quantum cohomology must be very basic. We don’t know what it is.

Finally, I want to make a few comments about a very different question related to mirrors in
which it is essential to understand them at the motivic level. Here something very unusual
happens that was actually observed in the initial stages but never well-understood. If you’re
considering three-dimensional Calabi-Yau manifolds, and consider their cohomology, you have
the Hodge-Tate type and then you have the p + q = 3 part on the other side. If you go to the
mirror side, the horizontal becomes the vertical and vice versa. This cannot be so if the mirror
map itself is motivic. How can it be, then? Even to ask this question in a nice way is not very
easy, and it seems to me now that some kind of unifying assumption is this: on the left hand side,
try to consider manifolds with only Hodge-Tate cohomology, or whose full quantum cohomology
is semisimple. In particular, M 0,n satisfies this. Then their mirrors should be arithmetic but
[unintelligible]. [unintelligible]tried this on the level where you have a Fano variety and you look
only at the vertical part, and it turns out that in the Givental language you get hypergeometric
functions. There is a lot of interesting classification. This would be fantastically interesting for
M 0,n. I’m finishing now. My main goal today was to show you what kind of boundary of the
known territory can be considered as a source for new problems and ways of thinking. Any
questions? This was my last class at Northwestern. I wanted to thank you, I enjoyed it very
much, and farewell.


