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Today I will explain some more details about structure needed for F -manifolds and Frobenius
manifolds. The subject will be the structure connection. Let me remind you that we are
considering manifolds M with an OM -bilinear product ◦ on the tangent sheaf, and sometimes
with a metric which should be flat, ∇0, and there is compatibility and the F -identity. The
aim of this lecture will be to encode all of this in the properties of some connection, not just
a connection but a one-dimensional family of connections. Before doing this, I will remind you
some preliminaries of the general properties of connections. These will be true for any reasonable
category of manifolds. I’ll think of analytic varieties over C, but much of this will work wherever.
If you have a vector bundle E over M (think of it as a locally free sheaf) then a connection ∇
is an operator E → Ω1

M ⊗OM
E. This should satisfy the Leibniz identity ∇(fs) = df ⊗ s + f∇s.

Instead you can do covariant derivatives along vector fields ∇X which will each send E → E,
and the Leibniz identity will look like ∇X(fs) = Xf · · · s + f∇XS.

If you have two connections ∇1 and ∇2 then ∇1 − ∇2 : E → E will be OM -linear, and vice
versa, if A ∈ Ω1

M ⊗ EndOM
E and given a connection ∇1, I can define ∇2 = ∇1 + A, and this

will be a connection. It’s easy to check that I will have the Leibniz identity. Then the space of
connections on E form a principal homogeneous space.

Now what is very important is that given any ∇, it uniquely extends to ∇̃ : Ω•M ⊗E → Ω•+1
M ⊗E

where the Leibniz formula looks like ∇(ω⊗s) = dω⊗s+ω⊗∇̃s, and then if I take ∇̃2, it will be
already a purely linear operator, ∇̃2 is OM -linear , and just multiplication by what? It should
be a form of degree two. It should be applicable to any section so there is a component coming
from E → E. It will be a form R in Ω2

M ⊗ EndE . This is called [unintelligible]curvature. The
most important part of it is that there is an equivalence between two statements, curvature is 0
if and only if the kernel of ∇ is the sheaf of linear spaces, Ef ⊂ E. Now it’s necessary to imagine
the language of differential equations, ∇S = 0 is a differential equation of a first order. Any
vector in the fiber can be a solution, and there is a unique flat fiber (?) continuing this solution.
If R 6= 0 there might be no solution. The unique correspondence between such solutions and
initial conditions corresponds to the case when the curvature is zero.

I’ve only been considering connections on an external vector bundle. It’s a good exercise to
write everything locally in terms of a chosen basis of E and local coordinates on M . You’ll see
that I’m considering differential equations of the first order. Then everything becomes partially
algebra and partially easy first order differential equations.

In this case my E is actually T . I’m applying all of this to E = TM , and some additional
operations and possibilities for interactions appear. What will be for me essential, there is
another tensor, called “torsion.” In terms of vector fields it sends a pair (X, Y ) 7→ ∇XY −
∇Y X − [X, Y ]. Also it is antisymmetric bilinear. This tensor then belongs to Ω2

M , and one can
assume that something interesting happens when it is zero, and it is in fact equivalent to the fact
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that ker ∇, (assuming that R∇ = 0), the bracket is zero there. Then T f
M is a sheaf of Abelian

Lie algebras.

Now something surprising We can encode all of this [F -manifold stuff] into vanishing of curvature
and torsion. I will explain this encoding. Suppose that I have (M, (TM , ◦),∇0), assuming
nothing on ◦, I can produce a pencile of connections on TM of the form

∇λ(Y ) = ∇0,X(Y ) + λX ◦ Y,

a one-parameter family of connections, and conversely, the reverse is true. Given a pencil of
connections ∇0 + λA, A ∈ Ω1

M ⊗OM
EndOM

TM , and multiplication X ◦A Y = iX(A)(Y ) where
iX(df) = Xf .

I did not take into account the flatness or F -identities or anything. The marvelous theorem is
that

Theorem 1. (1) ◦A is commutative if ∇λ has vanishing torsion for all λ.
(2) Assuming that this assumption holds, and that ∇2

0 = 0, then when I restrict ◦A to ∇0-
flat vector fields, it can be written as X ◦A Y = [X, [Y, C]] if and only if in the equation
∇2

λ = λR1 + λ2R2 we have R1 = 0.
(3) Then we have associativity, ◦A is associative if and only if R2 = 0

Generally when you have nonlinear differential equations it’s hard to come up with the appro-
priate conditions. But some of these are integrability conditions. The precise and typical case is
to establish that the non-linear differential equations are equivalent to the fact that some related
linear differential equations have as many solutions as they can. The nonlinear ones will be like
a moduli space for the non-linear ones. These had big applications in the 60s and 70s. In fact,
this whole story about deep-water waves leads to infinite dimensional F -manifolds. There are
papers in the ArXiv showing connections from that story to this one.

As soon as you know the statement the check is pretty formal. For example, about the first
claim, you write

∇λ,XY = ∇0,X(Y ) + λX ◦A Y

and taking a basis (∂a) of local flat vector fields with respect to ∇0, I get that the torsion of ∇
vanishes means that ∇λ,∂a∂b = ∇λ,∂b∂a if and only if ∂a ◦ ∂b = ∂b ◦ ∂a.

The condition [X, [Y, C]] implies the F -identity along with compatibility. So write ∂a ◦ ∂b =∑
Ac

ab∂c. We know that this is commutative, so Ac
ab = Ac

ba. Now R1 = 0. means that
∂aAe

bc = ∂bA
e
ac, which is the same as the fact

∑
b dxbAe

bc is closed, and it is thus a complee
differential. Then there is locally a Be

c so that Ae
bc = ∂bB

e
c , and then from the symmetry of Ae

bc

in b and c, it turns out that
∑

dxcBe
c is closed, so it’s also a differential, so that we can get Ce

so that Be
c = ∂cC

e Then it turns out that this presents C as
∑

Ce∂e.

One more miracle happens. We’ve introduced extra structure of Euler fields. These can also be
encoded in the connection, but we should consider a slightly larger manifold. Assume we have
M and (◦, e). Pick local coordinates (xa) on M , and produce the manifold M̂ = M × (λ− line),
where this last is interpreted as the situation demands, and consider the tangent sheaf on the
enlarged M , considering vertical vector fields perhaps depending on λ. Then I have covariant
derivatives in the previous picture, so I have all the previous conditions satisfied, I have an F
manifold, and I have covariant derviatives ∇̂λ,X which so far do not depend on λ. So ∇̂λ,X(Y ) =
∇0,XY + λX ◦ Y . What I would like to add is the covariant derivative with respect to this
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coordinate ∇̂ ∂
∂λ

(Y ) = ∂Y
∂λ + E ◦ Y + 1

λ (∇0,Y E − Y ) for a fixed vector field E. Now the theorem

says that ∇̂ with E independent of λ is flat if and only if E is an Euler field of weight 1
on the F -manifold M . In terms of curvature and torsion of connections, in a sense, a vector
bundle consisting of vertical vector fields, so everything is translated in terms of flatness and
torsionlessness of certain vector fields. I want to formulate a small problem that I several times
tried to do somethinga about. I could not summon the degree of creativity needed to solve this.
We know that ◦ : TM ⊗ TM → TM is one of our main players. We could instead consider
Ω1

M → Ω1
M ⊗ Ω1

M . Can we translate the F -identity in a meaningful way? What is the meaning
of the F -identity?

Now I will briefly explain the way that by explaining the integrability of linear equations one
can do something with the nonlinear ones, and apply this to semisimple Frobenius manifolds.
In this case the answer is easy.

A short application to semisimple Frobenius manifolds. We know that semisimple F -manifolds
are very easy locally. Everywhere you have a system of coordinates ua so that ea = ∂

∂ua
,

ea ◦ eb = δabea and e =
∑

a ea with E =
∑

uaea. Suppose you want to add a flat metric. Then,
of course, you must have a quasiRiemannian metric, and for it to be invariant with respect
to multiplication, you easily see that g(ei, ek) = g(ei ◦ ei, ek) = g(ei, ei ◦ ek) which is 0 unless
i = k. So the metric is diagonal in these idempotents. So g(ei, ei) = ηi. I took into account the
multiplication and Frobenius property but not the flatness.

Theorem 2. Flatness of such a g is equivalent to the following system of equations

(1) ηi = eiη for a single function η So
∑

ηidui is closed, it is dη.
(2) Let ηij = ∂2

∂ui∂uj
and write γij = 1

2
ηij√
ηi
√

ηj
(where I must make choices locally of branches

of the square root). Then the Darboux-Egoroff equations must be satisfied: ekγij = γikγkj

and (
∑

ea)γij = 0 where no two of the i, j, k are equal. We have one unknown function
η, the equations are of the third order, and the right-hand side is quadratic in the second
derivative, mildly nonlinear. What kind of initial data should define the analytic con-
tinuation? The answer is that you should give the first derivatives, second derivatives,
and the point itself should be given by values of ui. You may need compatibilities, so
intuitively you would expect that given this kind of initial data with obvious compatibility
conditions you would be able to produce a function η that would solve this differential
equation and produce the Frobenius structure on the given F -manifold. This is so, up to
several funny and non-obvious restrictions. The intuition is that the ui are the coordi-
nates in which the multiplication is simple. The η is the coordinates in which the metric
is simple. The transition functions can develop singularities wherever the canonical co-
ordinates, well, you could develop a pole. Flat coordinates seems to be so innocent. u
can develop singularities. This is not well-understood or well-studied. If you do not go
to non-semisimple points, you’re okay, but as soon as you go to the boundary and lose
your canonical coordinates, it’s unclear in which terms your things should be described.
I will suggest that a good way to approach this question is to apply stability conditions.
The only thing I want to say, the last sentence, when you’re proving that these num-
bers suffice, the best way to see this is to interpret integrability conditions by way of
connections.


