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1. Reconstruction

For my part, I will only consider the genus zero situation, so they are maps, if V is a smooth
projective variety over C, maps IV

0,n,β : H∗(V, Q)⊗n → H∗(M0,n, Q) for n ≥ 3 and β ∈ H2(V, Z).
My topic is the first reconstruction theorem. It’s very easy to state, so let me state it right away.

Theorem 1. If H∗(V ) is generated by H2(V ), then any system {IV
0,n,β} is uniquely determined

by IV
0,3,β, and I can further assume that one of the arguments is in H2(V ).

I want to talk about some of the things we need to be able to prove this theorem. One thing to
understand is what M 0,n is.

The variety M 0,n. This is supposed to be the moduli space of rational curves with n marked
points. How do you define this? Let k be algebraically closed. A stable n-pointed rational curve
over k is a curve with n distinct smooth points x1, . . . , xn satisfying the conditions that

(1) the genus is 0,
(2) the singular points are ordinary double points,
(3) each irreducible component is a copy of P1,
(4) on each irreducible component, the number of marked points and singular points together

is at lesat three

It’s very easy to see what such a curve looks like. If it’s smooth it must be P 1. In general, it’s
a tree of P1, you can’t have any cycles. Then there are marked points. [picture]

The point of the conditions is that such a curve cannot have any automorphisms. It has to
preserve the marked points and then you can see it preserves the singular points as well. The
only morphism fixing three points of P1 is the identity.

We have this notion for a curve over k, and now if you want to generalize this to families, let
S be a scheme over C. We define M 0,n(S) to be a set of maps C → S with n sections that is
flat and proper, and so that each geometric fiber is a stable and pointed rational curve. I look
at isomorphism classes of these objects.

Theorem 2. M 0,n is a smooth projective variety over C.

This was proved by Knudsen. That means that it is, it’s a contravariant functor of S represented
by a smooth variety. I should say this, for n ≥ 3. For example M 0,3, this is just a point. I
have only three marked points. I can’t have more than one irreducible component in my curve.
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M 0,4 now, I have this P1 with three marked points, I have a fourth smooth point. It can be
any point on P1 except those three, this means that if I remove the bar, M0,4 is nonsingular
curves, this is P1 minus three points. This is Zariski open in M 0,4. If I arrive at one of the three
points it creates a singular branch. There is a unique isomorphism between any two of those
curves. I’ll add a singular point. So M 0,4 is P1 over C. If you look at M 0,5 you will always
have M0,5 inside of it, so generally M0,n = (P1 − {a, b, c})n−3 with the diagonals deleted, so in
particular it is dimension n − 3. If S1, S2 is a partition of {1, . . . , n} with |Si| = ni ≥ 2, then
M 0,n1+1 ×M 0,n2+1 → M 0,n that identifies the extra marked points.

This is a closed immersion. Let me call it ϕS for the partition S. In fact, the images of ϕS are
the irreducible components of δM 0,n. This is the moduli space of singular curves. In the case
n = 4 I have three partitions of {1, . . . 4} corresponding to these three points.

This gives me a family of prime divisors.

Theorem 3. (1) The Chow ring of this variety is isomorphic to its cohomology ring, A∗(M0,n) ∼=
H∗(M0,n).

(2) In fact, the ring is generated by the image of map ϕS.

I’ll just maybe give, I won’t state the axioms for Gromov-Witten invariants, but I’ll state one of
them, the splitting axiom, which says

ϕ∗SIV
0,n,β(γ1 ⊗ · · · ⊗ γn) = ±

∑
β1+β2=β

(IV
0,n1+1,β1

⊗ IV
0,n2+1,β2

)(
⊗
S1

γj ⊗∆⊗
⊗
S2

γj)

This is an incarnation of saying that you can count degenerations.

Theorem 4. An auxilliary result, not weaker, no hypothesis on V , if V is arbitrary, then {IV
0,n,β}

is determined by its codimension 0 classes, those classes that end up in the top cohomology group
of M 0,n, the numbers that we consider, only the top cohomology part.

Maybe I can quickly prove this using the splitting axiom. I believe it is not true at all in higher
genus. The cohomology ring is generated by ϕS , and the splitting axiom tells me about what
happens on divisors. By this axiom, we can express each class in terms of smaller order classes.
Then I use the fact that the ϕS generate the whole ring. Maybe that’s enough.

2. Reconstruction Theorem II

First let me write down the statement of the theorem.

Theorem 5. Assume that the (p, p)-part of H∗(V ) is generically semisimple and admits a tame
semisimple point in H2(V ). Call this point o. In this case all genus 0 Gromov-Witten invariants
can be reconstructed from 〈γ1, . . . γn〉β , n ≤ 4, where 〈γ1, . . . , γn〉 means IV

0,n,β(γ1 ⊗ · · · ⊗ γn).

[The first part is equivalent to there being no nontrivial part when p 6= q.]

From the dimension axiom we get that k(β) = (−Kv, β) =
∑

(|γi| − 1) + 3− dim V . If ±Kv is
numerically effective then finitely many such correlators suffice to recover the invariants.

Let me give some notation, we have V and ∆a ∈ H |∆a|(V ) and ∆0 is dual to [V ], in general xa

dual to ∆a and we have the Poincaré form gab = (∆a,∆b) where ∆a =
∑

gab∆b. β should be
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in H2(V, Z) modulo torsion. It’s sometimes useful to have the total correlator 〈∆1, . . . ,∆n〉 =∑
β〈∆1, . . . ,∆n〉βqβ , then Φ = 〈e

P
xa∆a

We know that ∆a ◦∆b =
∑

∂a∂b∂cΦ∆c. Then there is a formula

∆a ◦∆b = ∆a ∪∆b +
∑
β 6=0

∑
c6=0

〈∆a∆b∆ce
P

xk∆k〉β∆ce
P

xk∆k,βqβ .

The (p, p) part of the quantum cohomology is always endowed with an induced Frobenius struc-
ture with flat identity and Euler field. This uses the principle that Gromov-Witten invariants
are algebraic and hence of p, p type.

Next, I should talk about tame semisimple, flat metric, and flat coordinates. So first, tame
semisimple should be semisimple and endowed with local canonical coordinates ui, and then you
have ui(x) 6= uj(x) so that you have something tame.

For quantum cohomology, take E =
∑

(1 − |∆a|
2 )xa∂a + sumbrb∂b︸ ︷︷ ︸

−KV

, and the other thing about

the flat metric is that a flat metric g satisfying g(X ◦ Y, Z) = g(X, Y ◦ Z) can be expressed
in some canonical coordinates as g =

∑
eiη(dui)2, ei = 2ui. For quantum cohomology, this

g is just the Poincaré form. We can take η to be the dual coordinate to a point. There is
some kind of reconstrcution problem. If the basepoint of your Frobenius manifold M is tame
semisimple, then the metric can be uniquely reconstructed from the following data: η0

i = (eiη)0

and η0
ij = (eiejη)0.

Now let’s look at the proof of the reconstruction theorem. First, if we know the structure of the
whole germ of Frobenius manifolds at 0, which just includes canonical coordiantes and the flat
metric g =

∑
eiη(dui)2 plus the expression of (ui) in terms of some flat coordinates xi modulo

J2 where J is the ideal of the equaton for H2(V ), and also the correlators with n ≤ 2, we can
reconstruct all of the Gromov-Witten invariants.

Why is this true? The reason is, now we have canonical coordinates and the flat metric, and
you want to solve like, some kind of flat coordinates (xi) from this data, because ∂

∂xi
is a flat

section of the tangent bundle, so it’s just a kind of, solve some kind of first order PDEs. If you
want to determine this, you need to know some initial conditions at this point. If you know that
~u = ~F (~x) + O(J2) then you can solve that d~u = d~F (~x) + O(JdJ) where [unintelligible]doesn’t
come near our [unintelligible].

So we can solve for (xi) and make the multiplication table as the third derivatives of Φ. The
coefficients of the Taylor expansion contain all the Gromov-Witten invariants.

To reconstruct the whole germ of the Frobenius manifold, we have already seen, we have
(u0

i ), η
0
i , η0

ij , and to calculate these data, you need (ui) to be expressed in terms of (xi) modulo
J2, for the same reason. For the second derivative, we use J3, because for the second derviative
d~u = d~F (x) = 0(JdJ).

So now the reconstruction problem is reduced to finding the expressions of (ui) in terms of (xi)
modulo J2 plus the correlators with n ≤ 2. For the first piece, since ui are the eigenvalues of
the canonical Euler field E, if you want to know them modulo J2 you just need to know the
multiplication modulo J2. So you just need to know Φ modulo J5, since the multiplication comes
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from the third derivative. This just comes from the correlators with n ≤ 4. The information is
contained.

3. Second reconstruction theorem

I don’t think we defined Gromov-Witten invariants. We have the projective variety X and the
moduli space M g,n(X, β) → Xn. This is a moduli space of maps C → X with n points. These
maps ei say just evaluate the map on the ith point. We can take the product ev of these. We
also have a map to M g,n. We also have do something additional, but let’s ignore it.

Let’s define Iβ
g,n(γ1, . . . , γn). Cup classes in X, pull back to M g,n(X, β), evaluate against the

virtual fundamental class, and push forward along st, this is st∗([M g,n(X, β)]vir ∩ ev∗(γ1 ∪ · · · ∪
γn).

This definition works for any genus. Let me take g = 0 to define Gromov-Witten numbers. Take
cohomology classes, then 〈γ1, . . . , γn〉0,n,β will be defined as before, but instead of pushing down
along st, integrate.

Today I’ll talk about a theorem that I will first formulate and then explain.

Theorem 6. We have Frobenius manifolds, formal Frobenius manifolds. On the other hand we
have, and I will talk about all of the objects in this diagram, we have cyclic Comm∞-algebras.
We also have systems of abstract correlation functions. The theorem says that these objects are
in bijective corresponence. There is also cohomological field theories. There is also a bijective
correspondence with that. We have an algebraic part, a differential part, and a physical part.
The last one is the hardest.

These are algebraic structures on something. Let’s say we are given a Q-algebra k, and let H
be a free, finitely generated module over k. So this is

⊕
k∆a. This comes with a pairing, a

symmetric nondegenerate pairing g : H ⊗ H → k. These are the structures on H. What does
it mean to give H the structure of a formal Frobenius manifold? It means the following: We
have this basis for H, so pick a dual basis xa. Let me consider the ring k[[xa]]. To give a
structure of a Frobenius manifold means to give a potential φ here which makes H ⊗k k[[xa]]
into a commutative algebra. I need to say that ∆a∆b =

∑
c φc

ab∆c.

Think of a point in the tangent bundle over H, there is a multiplication in this fiber. To
pick a point on H means to pick a value for xa. A point is something like

∑
xa∆a. It’s the

multiplication, not of formal variables but of numbers.

Let me tell you about cyclic Com∞ algebras. There is an operad Com∞. If I assume you know
operad theory, well, let me make a definition.

Definition 1. To make H an algebra over the cyclic Com∞ operad means you provide for every
n a function ◦n : H⊗n → H which has the following properties.

• Sn-symmetric (∞-commutative [sic])
• If you consider the map (γ1, . . . , γn+1) 7→ g((γ1, . . . , γn), γn+1), and
• Higher ∞-associativity [sic]. 0 Associativity is

((α, β), γ) = (α, (β, γ)).
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The ∞ associativity sasys for any δ1, . . . , δm ∈ H and every partition of S into S1 t S2,
you can put the items in S1 in the inner product and S2 in the outer and sum over all
possible decompositions.

A system of abstract correlation functions came to us from physics. It means the following. A
system of abstract correlation functions means Yn : H⊗n → k for n ≥ 3 with a splitting axiom.

Let me talk about this equivalence a bit. We have ◦n on H, how to go to the Yn? We let
Yn+1(γ1, . . . , γn+1) = g((γ1, . . . , γn), γn+1). Let’s construct a formal Frobenius manifold out of
this. We need a potential which is

∑
n≥3

1
n!Yn. The splitting axiom lets us get a potential. How

to get from a formal Frobenius manifold back? Write the potential in homogeneous form. This
gives you the polynomials Yn, and take these as abstract correlation functions.

Obviously you can go back and forth between Yn and ◦n and you need only check that all
properties go back and forth.

Let me mention now what cohomological field theories are. They are the cornerstone, essentially,
and this is the reason why there is a “Witten” in Gromov-Witten invariants.

Definition 2. A cohomological field theory on H is In : H⊗n → H∗(M 0,n) satisfying the
splitting axom (or its analog) for n ≥ 3.

So let’s say we have these homological field theories, these maps. You can integrate this over
M 0,n to get a number, that’s how to get from In to Yn. This is tedious but easy. To go from the
system of correlation functions to the cohomological field theory is hard. I wanted to give a proof
of how to go down but now I don’t have time. I want to give an analog. What we don’t know
is what the field theories and systems of correlation function are. We can think of these as a
generalization of Gromov-Witten numbers. The cohomological field theories are a generalization
of Gromov-Witten invariants. We don’t have the other axioms but it’s a generalization. This
hard theorem says that if you’re given Gromov-Witten numbers then you can reconstruct the
invariants in genus zero. Then everything is kind of clear, you have to provide a potential and
the coefficients, these numbers, those are Gromov-Witten invariants.


