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1. decomposition

Let Q be a finite dimensional C algebra with a commutative associative multiplication ◦ and
a unit e. Then every nonzero x ∈ Q gives rise to a linear map x◦ : Q → Q. We can globally
decompose Q into common eigenspaces since it is commutative:

Q =
⊕̀
k=1

Qk

so that for instance Qk ◦Qm = 0 if k 6= m. Then e =
∑

e. [Write a definition of Qk.]

Qk is the generalized eigenspace with respect to λk which is a function from Q → C. This is
generalized in the sense that it is Ker(I − λk)n for some n > 0.

We write L = {λ1, . . . , λk} which is HomC−alg(Q, C). We have a complex structure on L so that
OL = Q nad OR,k

∼= Qk.

So we can think about a point p, and above it we have an algebra Q. We have this information,
we can find L. The concept introduced is that when p varies over a complex manifold M , and we
have Q(p), such an algebra, which makes the whole space into a holomorphic vector bundle Q

��
M

.

How do we generalize the concept of L to a global thing? We would like to find an object L also
over M , so that for each p the fiber is like this discrete set. The answer is that L = Specan(Q),
the analytic spectrum of L. We assume each fiber has a multiplication and the unit is a section,
where Q is holomorphic sections of the bundle. In a book, he works in a rather big space Q∗, the
dual bundle, to construct, how to construct it. Now Q is a sheaf but also an OM algebra with
a multiplication on each fiber ◦ and a global unit. Since Q is an OM algebra, we can consider
SymOM

Q → Q and we give the map q1 ⊗ · · · ⊗ qj 7→ q1 ◦ · · · ◦ qj . We also have an ideal J which
is the kernel of this map. We will consider in a bigger space Q∗ which is also a complex manifold
with a complex structure, and we will consider the sheaf OQ∗/J locally. [We called this the
spectral cover in the tangent case. Consider the support. This is our space, Specan(Q) = L.

In general, an analytic spectrum is an object representing a functor. A is an OM algebra. The
analytic spectrum satisfies, you have a map ζ : Specan(A) → M and ζ∗(OSpecan(A)) ∼= A. If
there is another map ϕ : Z → M then a map Z → Specan(A) above these is the same as
A → ϕOZ . [unintelligible]
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Q = π∗OL. So there is one thing. For p ∈ M , the fiber can be composed into eigenspaces. Set
L∩π−1(p) = {λ1, . . . , λ`}. The whole picture is compatible, we have Qp =

⊕
OL, λk with, just,

Ok(p) = OL,λk
⊗OM

C.

So we can extend a neighborhood of the fiber at a point to a little deformation of this.

The next thing is to make an application by the type of decomposition. If n is an integer, the
rank of Q over M then P (n) is partitions of integers of n. This has a partially ordered set
structure �. We write β � γ if the pieces of β can be slpit to make γ.

There is a result. Consdier all points of M where the decomposition of Q(p) into
⊕

Qk with
P (p) � β has n =

∑
dimCQk, the result is, this is an analytic subset in M . The next result is

that there exists β0 so that the p ∈ M ith P (p) = β0 this is an open set. The generic semisimple
case has β0 = (1, . . . , 1).

2. Sam Gunningham

Decomposition of F -manifolds.

This is going to be an extension of the previous talk. In the previous talk, we had an algebra Q.
At the beginning, it was finite dimensional and we decomposed it into a direct sum of generalized
eigenspaces, and extended that to the case of a vector bundle with multiplication, and we got a
decomposition in the same way. Taking this one step further, if (M, ◦, e) is an F -manifold then
TM has a multiplication ◦ so we get a decomposition locally of TM into

⊕
Tk. Here in this talk,

we’ll show that we can integrate this decomposition to a decomposition of manifolds (locally).
You have M =

∏
Mk so that the tangent bundle of a part Mk is (TpM)k.

It’ll amount to solving PDEs to give us a picture along the base. The F identity will give us
the integrability conditions. Maybe first I’d just like to do an example to see exactly how this
is, what the difference is between this result and the previous one. If M = C2 with coordinates
t1 and t2 We’ll have ∂1 = e and ∂2 ◦ ∂2 = t2∂2. You can check the F -identity and also that
when t2 6= 0 this is semisimple and then we have idempotents, projectors e1 = 1

2∂1÷ 1
2
√

t2
∂2 and

e2 = 1
2∂2 + 1

2
√

t2
.

We’d like to find local (canonical coordinates) on M so that ∂
∂ui

= ei. This gives the sysstem of
PDEs:

du1 = dt1 −
√

t2dt2, du2 = dt1 +
√

t2dt2.

We solve these and get at p = (a, b) the equations u1 = t1 − 2
3 t322 − (a − 2

3b
3
2 ) and u2 =

t1 − 2
3 t322 − (a 2

3b
3
2 ) and

The outline: we have a decomposition (everything will be local) TM/
⊕

Tk and the first step
is to show that the F -identity impries the following integrability condition: [Ti,Tj ] ⊂ Ti + Tj .
How do we use this? The proof of this claim is basically sort of a manipulation of the F -identity.
You can play around with some symbols. The harder bit of the theorem is wrapped up in
this: (Frobenius integrability theorem) which says that if E ⊂ TM is a subbundle of TM and
[E , E ] ⊂ E then we can find a submersion f : M → C n−r (where r is the rank). Tangent vectors
along the fibers span E . We can define Ei to be

⊕
Tk. Then the conditions I’m erasing give

us that these subbundles are integral, so we get fi : M → Cni , with ni = rk(Ti). This gives
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us the decomposition we want. Set Mi to be {fj = 0|j 6= i} so that when we put all the fs
together we get a decomposition. There’s still something that needs to be checked. We’ve got
a decomposition so that the tangent space is the eigenspace Ti but we still need to check that
the multiplication descends to one defined only on Mi. It could be that multiplying lifts of two
vectors in T Mi could vary in the fibers. This is just another application of the F -identity.

This is basically how the proof works. I could go into details of one of these lemmas or say
something about Euler fields. It’s also probably useful to note that this decomposition is com-
patible with Euler fields in the following sense: If M =

∏
Mi as F -manifolds (implicit is that

the product of F -manifolds is one) and E is an Euler field of some weight d on M , then Ei (the
projection of E) is an Euler field on Mi. This is proved in a very similar way to the other facts.
You’ll use the definition of an Euler field. I can show that or finish.

[This part of the theory shows that the usual operation of taking the direct sum or product of
commutative algebras is locally globalized to F -manifolds if you have an F -identity, and what is
interesting is that on commutative algebras you have a tensor product, which distributes over the
direct sum. It’s not at all obvious that you can extend the tensor product. You can, this is the
Kunneth formula for quantum cohomology. It extends this formula. If you look at F -manifolds
from singularities. If you have an unfoldinig that is isolated. If you have one f(x) and another
g(y), you take some sort of sum.]

[I missed Ian’s talk.]


