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Recall that we are working with IV
g,n,β : H∗(V )⊗n → H∗(Mg,n), and the main diagram that is

needed in order to define these maps is like this:

Mg,n(V, β)
ev
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V n Mg,n =Mg,n(pt)

We pass to classes of algebraic cycles and treat this as a correspondence on the product. The
most difficult and nontrivial part of this story is the construction of the virtual fundamental class
[Mg,n(V, β)]vir ∈ A∗(· · · ). This requires a notion of stability, and this has become a variable.
Then different things in this change.

The philosophy is that of a moduli space of “something,” we let M lead to M(S) where S is a
variable scheme, the class of families of something over the base S which should be a category.
We can sometimes move along this arrow in the other direction to use this to define M. This
philosophy takes into account two contradictory desires. What families do you consider? The
minimal condition is that of flatness. The basic situation is when you have a morphism of two
affine schemes, that corresponds to a morphism of commutative rings in the opposite direction.
Flatness means that when you lift a three-term exact sequence you get a three-term exact
sequence. Intuitively, flatness means continuity in the sens of algebraic geometry. The next
condition is, you are considering objects of general type, this was always the concern, starting
in Euclidean geometry. You imagine it has three different vertices and three different lines. But
what if all the vertices are on the same line, or what if they all three coincide. In the very
degenerate case, then the side that connects the two vertices is any line passing through them.
This is a prototype of a trouble in algebraic geometry. When you pass from flat families to
a “degenerate case” then you have an infinity of possibilities. On the level of moduli spaces,
a triangle generically is given by E2 × E2 × E2, but when you sit on the diagonal, you have
infinitely many choices. One obvious stability condition is to fix a line, and declare that the side
should be parallel to a given line. The stability conditions could be done in a number of ways,
this kind is in bijection with lines. Similarly here, you glue your infinity of possibilities one and
the same thing, but you do not glue the points, and lose Hausdorffness. This would be true if
this is all you care about, flatness. Adding stability conditions, you cut down on the points you
allow.

Let’s do this in our example. We will need stable maps, and from that stable curves. We’ll work
in the other direction. The lower level is Gromov-Witten invariants of arbitrary genus or genus
zero, and above is motivic Gromov-Witten.

Now, stability. We will use the concrete (most popular) stability conditions for (C, x1, . . . , xn)
and maps from this into V .
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Definition 1. A prestable curve over a base T is a morphism π : C → T whose geometric fibers
are curves: 1-dimensional, reduced schemes, with a strong restriction to singularities which are
only double points and only with distinct tangents. Such a curve has genus over a point, which is
g(Ct) = dim H1(Ct,OCt). Usually one defines genus in a dual way, taking H0 of Ω. Singularities
introduce new structure, and this is the shortest definition. Labeled points are sections T → C,
labeled by a finite set. Then the simplest definition of stability is, a prestable curve is stable if
the sections are pairwise disjoint and do not pass through singularities and the normalization of
any irreducible component contains at least 3 points if g = 0 and at least 1 if g = 1.

This is easily seen to be equivalent to the fact that the automorphisms of any fiber, fixing marked
points, is finite. Although they are easily equivalent, intuitively, the automorphism condition is
the important one.

Why should this be the important condition? Let us return to our philosophy. For any S I have
M(S), flat families satisfying stability conditions. How can I reconstruct M from M(S) and
additionally from the functor’s action on the morphisms, S → S′ leads to M(S)→M(S′).

First, let’s translate some of this data? I’m assuming now that M does exist and is a scheme.
If M is a base of a universal family, how? I can take the identity morphism of M, since it is
a scheme, so the identity morphism should correspond to a family C̃ over M. Suppose I start
with base S. Then S carries its own family C over S. This should be obtained by an arrow
C → C̃. Each family C → S should uniquely define the arrows C → C̃ and S →M .

How do you relate this to automorphism? Imagine M is a point. If I want C → C to be unique
then there must be no automorphism of C. So if I want my moduli space to be represented by
a scheme, then there should be trivial automorphism groups. Let’s temporarily call this a very
stable family. For example g = 0 and n ≥ 3, we get M0,n. For g = 1, if I take n = 1, there are
automorphisms everywhere, and there are two points with automorphisms Z4 and Z6. Whatever
you do you cannot get a moduli space for genus one as a scheme, and this is the simplest example
of a stack. We have a “crude moduli space” where we let each object enter only once. You should
have instead a quotient of this object, modulo a trivial action of Z2. This is well-known. There
are two ways to include these in algebraic geometry, going to noncommutative geometry and
going through stacks. You will see right away, you see the first Deligne-Mumford stacks. In
algebraic geometry you might have an infinite automorphism group, like P1. The moduli space
is a point modulo PGL(2) so is BPGL(2). We don’t have that here. You restrict yourself and
do not get anything worse than a DM stack. For g ≥ 2 you don’t need a marked point, but
nevertheless the groups are there.

It’s silly to prove that you get a scheme directly, it makes more sense to go through stacks and
show that a stack with trivial group is a scheme.

Now let’s pass through maps. I’m considering not just individual maps but families of maps.
I think it’s more or less clear what is a family of maps. This time, prestable is very much
essential. Then I have a map of C → T into V . If this is flat, then everything I declare to be
flat as well. How do I change the stability condition? We have ΩC , the sheaf of 1-forms, and
the “dualizing sheaf” ωC , and there is a morphism ΩC → ωC . In the prestable case this allows
a very precise explicit description of the dualizing sheaf via, not ΩC but the sheaf of one-forms
on the normalization of C, ΩC̃ where C̃ → C is normalization, where you desingularize.
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What happens now, if I take my dualizing sheaf and want to understand its sections over U ,
then Γ(U, ω) is the sections of the preimage of Ω with [unintelligible]singularities, define D to be
the sum of all points that project onto singular points. So sections Γ(f−1(U),ΩC̃(log D), which
allows logarithmic singularities. There is an additional condition, that if x 6= y and f(x) = f(y)
then resxν + resyν = 0. So this should take into account what gets glued together. The
simplest explanation for why, not a proof, is that when I have such a singular point and I take
the completion of the local ring of this curve here, I have k[[u, v]]/(uv). Since I am factorizing,
this means d(uv) = 0, which is du · v + u · v which is the same as du

u = −dv
v . This is too strong,

but the residues remain the same.

Now we know how to characterize, and the name of the “dualizing” sheaf comes from the fact
that we have the canonical duality H1(C,F ) ×HomOC

(F , ωC) → H1(C,ωC) = k, and this is
a perfect pairing.

Instead of using differential forms, you should use this dualizing sheaf.

Then we need one more reformulation of the stability condition for an individual curve. A
prestable curve is stable if and only if when I allow for ωc(x + · · · + xr) with labelled points,
then it becomes ample and the points do not intersect. Then [· · · ]⊗3 is very ample.

This immediately generalizes to families, just because unlike differential forms, which fail to glue
together well if they’re singular. But here you get a relative dualizing sheaf ωC/T .

Second, it has a natural generalization to maps. If I have a prestable C → T with sections xn

and a map f → V , I can ask additionally, V will be a projective smooth variety with ample
sheaf M . Instead of the ampleness condition, require that ωC/T (

∑
xi) ⊗ f∗(M)⊗3 is ample. If

M is not a point there is another circumstance to allow you to stabilize.

Let me illustrate in genus zero. You might have an embedding of a curve of genus zero P1 → V .
If you forget V , P1 is unstable, but the inverse image of an ample divisor is ample as well. So
this shows one very important property, which is sometimes overlooked: there are unstable cases
in Mg,n where this doesn’t exist as a Deligne-Mumford stack because the automorphism groups
are infinite. So your diagram becomes incomplete. This shows you there can be trouble with
these invariants having 2, 1, or 0 arguments, or genus 1 and 0 arguments. To define them you
should work entirely in Mg,n(V, β), and add additional arguments like the identity class on V .
This is very important but more important is that one should consider some way out to put
something in as Mg,n or see what you can do with Artin stacks, quotients by algebraic groups
with dimension more than 0. It would be nice to consider M0,2 which should be BGm. I’m
not sure whether we can input this story. I was speaking of it with a German, maybe Polish
mathematician in Bonn and I think he has several papers saying what happens when one sets
here an Artin stack.


