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1. Si Li
Feynman diagrams, perturbative field theory, and Calabi-Yau

I want to start with something very elementary, so, calculus. I’ll start with Feynman diagrams.
I want to consider Zλ =

∫
Rn d
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Vijkxixjxk , where Aij is symmetric positive

definite matrix. This definiteely does not converge so we’ll consider it as a formal power series:∫
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We’ll intoduce
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Then
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but we can also write
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So we get
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So we look at the λ2 term ( 1
2

∑
A−1

ij ∂i∂j)3( λ
3!

∑
vijkJiJjJk)2.

We look at propagation. We have A−1
ij which we picture as i

Aij

J and the trivalent vertex
λvijk. So we get for the λ2 term two options, the dumbell and the theta. So we get for the
dumbell λ2vijkvi′j′k′A

−1
jk A

−1
ii′ A

−1
j′k′ , and we have to divide by 8. For the theta graph, we get

λ2vijkvi′j′k′A
−1
ii′ A

−1
jj′A

−1
kk′ , and we divide by 12. So if I call the graphs Γ1 and Γ2, this is W (Γ1)

|AutΓ1| ,
which is where 8 and 12 comes from.

Any questions? You should convince yourself after some calculus, that Zλ can be written as

Z0

∑
trivalent diagrams Γ

W (Γ)
|Aut Γ|

You have to do some calculation to see this. This includes disconnected graphs as well, all
possible graphs. Physicists want only connected graphs; then this is Z0exp(

∑ W (Γ)
|Aut Γ| ) where

this time the sum is over disconnected graphs. Call this Z0exp(Fλ) and Fλ is the free energy.
1
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Now I want to use Feynman diagrams to constuct some invariants. Any quesitons before I
proceed? Everybody is happy because of this formula?

Let’s consider and infinite dimensional example, this is Chern-Simons theory. The geometric
data is the following. Suppose M is a compact three dimensional manifold. Let g be the Lie
algebra of a Lie group G and we’ll consider only trivial G bundles. Connections will be one
forms valued in g, so Ω1(M, g). We have the interesting action CS[A] =

∫
1
2Tr A∧dA+ 1

3Tr A.
Suppose a basis {ga} of the Lie algebra, orthonormal with respect to the Killing form, and
Tr gagb = δab. Then I can write A = Aaga, and then I can write this as∫

1
2
Aa ∧ dAa +

1
3

∑
fabcA

a ∧Ab ∧Ac.

Physicists would tell you to look at
∫
DAeCS[A], they want to integrate that along the space

of connections Ω1(M, g), but this is ill-defined. Okay, so problem one is that this is an infinite
dimensional space. But for physicists, they can play with this guy.

Problem two, there is a gauge symmetry A→ uAu1 + udu−1 for u : M → G.

What are we going to do with this one? We want to actually, completely mimic the finite
dimensional case. We have two terms, why not do the same thing for the Chern Simons action
as we did before. Let’s use Feynman diagrams. First we need to know the propagator. The
propagator, there is a d here, so what about d−1? Definitely not a well-defined operator. We’ll
have to introduce a gauge-fixing condition. We’ll replace d−1 with d∗

∆ , pick a metric and this is
well-defined. Then dd∗ + d∗d = ∆. When the Laplacian is well defined this is called the Green
kernel, and this is in Ω2(M ×M\∆, g ⊗ g). This is singular on the diagonal. This can be used
for the propagator. What about the vertex? The vertex with A1, A2, and A3 is TrA1A2A3.

Okay, now I have a propagator. So, let’s consider the following: consider two-loop invariants,
the invariants we just discussed. We’ll write down what the diagrams mean. The barbell is

1
8

∫
M×M

Tr L(x1, x1) ∧ L(x1, x2) ∧ L(x2, x2)

and the theta is
1
12

∫
M×M

Tr(L(x1, x2)3).

We want to define something like this, but we have problems when x1 goes to x2 along the
diagonal. For the Chern-Simons case, this is finite. In general this is divergent.

The second one, problem 4, we want to define invariants out of this integration, and

CS[A] =
∫
Tr(

1
2
A ∧ dA+

1
3
A3)

and this doesn’t involve a metric. We used the metric to define d∗ and the kernel L. So this
seems like a metric construction. So the next problem is the (in)dependence o metric (also
called gauge fixing). There are a bunch of problems here. To solve the divergence problem,
the physicists say that we can add additional terms to cancel the singularity. This procedure is
called renormalization.

So problem one will be solved with Feynman diagrams, problem two with the BV-formalism
(gauge fixing), problem three with regularization (renermalization), and problem four with the
quantum master equation. Any questions? So far, so good?
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I will discuss another example less known to mathematicians.

[unintelligible]Calabi-Yau, there’s a gauge theory, called Kodaira-Spencer. Suppose X is a
Calabi-Yau 3-fold, a 3-dimensional complex manifold with a nowwhere vanishing holomorphic
3-form Ω. We want to consider the following space:

Ω0,1T 1,0
X

This is going to be the space where our fields will live. There is a natural identification of this
space with differential forms. We can take the contraction of this guy: Ω0,1T 1,0

X
∨Ω→ A 2,1

X .

So now consider H0,1

∂̄
(T 1,0

X ), sometimes called H1(TX). This is the tangent space of the defor-
mations of complex structures of X. Let’s consider, we need to consider a smaller subspace of
this guy. Let’s call this µ ∈ Ω0,1(T 1,0

X ) so that µ ∨Ω is in the image of ∂. The set of such µ sits
inside Ω0,1(T 1,0

X ). We want to consider the following action, called the Kodaira-Spencer action:

KS∗[µ] =
1
2

∫
(µ ∨ Ω) ∧ 1

∂
∂̄(µ ∨ Ω)− 1

6

∫
Ω ∧ ((x+ µ)3 ∨ Ω).

This won’t depend on the choice of preimage under ∂. This is the quadratic part, very strange,
right? My µ lies in the space I just described.

Physically we want to look at [unintelligible]. If we look at the variation ∂KS[µ]
∂µ well discover

that ∂̄(x + µ) + 1
2 [x + µ, x + µ] = 0 so x + µ defines a new complex structure on X! This is

interesting right? The critical locus gives us the moduli space of complex structures.

What do we expect from this structure? Later in my talk I’ll replace the condition with some
formal variables. So, first, suppose we have the moduli space M of complex structures on X.
At every point in the moduli space we can define an action. It seems like we can find some
invariants Fg living on the moduli space. [unintelligible]mirror symmetry. It’s a very strange
object. From a mathematical point of view it’s not known how to do this in general.

[Ezra: what’s “this”?]

How to construct Fg rigorously in the B-model.

[Ezra: I thought they have a perturbative expansion.]

[Some discussion. The individual Feynman diagrams are divergent here for higher genus.]

Some perspective for the propagators. The propagators, we want to invert our operator, so it
will be ∂ 1

∂̄
. How do I do that? Pick a metric, and replace this with the kernel

∂∂̄∗

∆
=

∫ ∞

0

∂∂̄∗e−t∆dt.

[Ezra: Do the diagrams have different properties if it is Calabi-Yau?]

I hope that a lot of cancellation will happen. It’s a complicated calculation.

[Ezra: Does this give insight into the existence or construction of Calabi-Yau metrics?]

The answer is, I don’t know.
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2. BCOV theory on the elliptic curve and higher genus mirror symmetry

So I’m going to discuss this topic, joint work with Kevin Costello. I’ll discuss background, BV
quantization of gauge theory, BCOV theory on elliptic curves, and then mirror symmetry.

Let me talk about some background. Consider a pair of Calabi-Yau three-folds, a so-called mirror
pair X and X̃, and physicists predict by string theory some invarinats. Call these FA

g and FB
c .

So these two data can be identified, so what do we know about these invariants? These denoe
the A-model and B-model in physics. The A-model is mathematically constructed in all genera
via the Gromov-Witten invariants, counting maps from a genus g curve to your Calabi-Yau.

What about the B-side? We know the genus zero case. This is known as the string potential or
the [unintelligible]coupling. People can check mirror symmetry for genus zero. Essentially thy
proved that FA

0 = FB
0 for a large class of Calabi-Yaus by Givental and also Lian-Liu-Yau.

What about higher genus? What about FB
g ? Actually, the geometric meaning is not very

clear. We don’t have a very good mathematical construction. It would help to establish mirror
symmetry for higher genus to know what this is.

In the early nineties there was a breakthrough paper by Berghesky-Cecotti-Ooguri-Vafa, a
physics paper, they proposed a gauge theory on a Calabi-Yau three-fold, and what they proposed
was the following. It’s a sort of Kodaira-Spencer gauge theory. Ther proposed a quantization of
the Kodaira Spencer should give FB

g for all g. This is now called BCOV theory.

There were a lot of physics breakthroughs after this paper. The holonorphic anomaly equation
was used to [unintelligible]. Then they predicted that FB

1 is given by analytic torsion. There
is a proof a couple of years ago. Yamaguchi-Yau showed that there are polynomial relations,
recursive relations for FB

g that they used to compute these for g = 2, 3, 4, something like that.
Then Huang-[unintelligible]-Quackenbush computed FB

g for g ≤ 51. These last two were done
for the mirror quintic.

This is a brief history.

The main result is, we quantize the BCOV gauge theory on the elliptic curve E and from this
one we can define FB

g (E) for all g and can check that FA
g (Ẽ) = FB

g (E). This works in the sense
of mirror symmetry.

[Can you do this for any dimension?]

We can do it in 3 and 1. There will be problems of divergence.

Let me discuss a little bit about BV quantization of gauge theory. This has some meaning to
physicists, but there’s a geometric realization in terms of very geometric data. Let me specify
some gauge data. We need E , Q,QGF ,KL, S. The first thing E is a space of fields, that we
should think of as maybe the sections of a vector bundle. It’s a graded complex. Then Q is
a differential of degree 1 on E and QGF is degree −1 and their commutator is a generalized
Laplacian ∆. You need to use the fact that the heat kernel is well defined for this operator.
Then KL is the regularized BV kernel that I will explain later, and S is the classical gauge
action.

Example 1. [Chern-Simons]
Here X is a compact 3-dimensional manifold and g is a Lie algebra. We’ll consider for simplicity
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Ω∗(X, g)[1] (shifted) as my space of fields E. My differential is d. To define QGF will be d∗,
picking a metric. Then ∆ is the ordinary Laplacian. Then KL is the heat kernel e−L∆ . The
action is the classical Chern-Simons action S[A] =

∫
1
2TrA ∧ dA+ 1

3Tr A
3.

From this theory we will define some invariants usiong Feynman Diagrams. For example, we’ll
need propagators and a vertex. The propagators are given by inverse of the quadratic part of
the action, so we replace d−1 with the propagator P (x1, x2) the kernell representing the operator
d∗

∆ =
∫∞
0
d∗e−t∆dt

The vertex is given by A1 ⊗ A2 ⊗ A3 7→
∫
Tr A1 ∧ A2 ∧ A3. Then on the theta graph we get∫

X×X
Tr(P (x1, x2)3). But as a problem, P (x1, x2) is singular as x1 → x2. We need to talk

about effective field actions. So we consider the truncated propagator

PL
ε =

∫ L

ε

QGFKudu

which in this case is
∫
d∗e−t∆dt.

Let me call O(E) the space of functionals and Oloc(E) the space of local functionals, which means
that this is integration of some Lagrangian.

Definition 1. A family of functions I[L] for L ≥ 0 so that I[L] ∈ O(ε)[[~]] is said to satisfy
renormalization group flow if the following is true: I[L] = W (PL

ε , I[ε]) =
∑

Γ connected
WΓ(P L

ε ,I[ε])
|Aut Γ|

for all L and ε. I[L] defines a family of effective field action.

For the Chern Simons theory, I would like to define∫
[DA]eCS[A]

But actually, if we use Feynman diagrams, you can write this as

eW (P∞0 ),CS)

but this is singular in general.

The theorem is the following. This is known to physicists for a long time and proved for us by
Kevin Costello.

Theorem 1. There exist perturbations
∑

~nSCT
n so that

lim
ε→0

W (PL
ε , S + SCT (ε)) = I[L]

exists.

These I[L] satisfy the renormalization group flow automatically.

We start from a classical action S and do a regularization to define a family of effective actions
{I[L]}. At the beginning we had to choose a metric. To define our integral and the propagators
we needed a metric. What about the dependence of I[L] on the metric? A priori Chern Simons
doesn’t depend on the metric. This is solved by the quantum master equation. Let me say a
little bit about it.

Given α ∈ E , we can define a derivation ∂
∂α on O(E) which takes I to (partial

∂α I)[β1, . . . , βn] =
I[α, β1, . . . , βn]. Similarly, KL ∈ E ⊗ E leads to ∂

∂KL
: O(E) → O(E).
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Definition 2. The regularized BV bracket is defined to be {S1, S2}L = ∂
∂KL

(S1, S2)−( ∂
∂KL

S1)S2−
S1( ∂

∂KL
S2).

Remark 1. If S! and S2 are local functionals the lim
L→0

{S1, S2}L exists as a local functional

{S1, S2}0.

There is a requirement I omitted. I require S[A] = 〈A, θA〉+ I[A]︸︷︷︸
at least cubic

satisfying the property,

called the classical master equation, that

QI +
1
2
{I, I}0 = 0

The physical meaning is very clear.

Remark 2. The classical master equation is the same thing as gauge symmetry in physics.

Because I want to do quantization, I want to explain the quantum master equation. A family of
effective actions I[L]L>0 is said to satisfy the quantum master equation if

QI[L] +
1
2
{I[L], I[L]}L + ~

∂

∂KL
I[L] = 0

[Picture]

The quantum master equation is some kind of consistency condition of the gauge symmetry,
which has to do with the independence of the gauge fixing. If you satisfy the quantum master
equation, when when you vary your gauge fixing, [unintelligible]will vary in a very nice way.

I just want to say, we hope to quantize the theory in the following sense. We start with a classical
action and want to find actions at varying scales. But in the previous case, we could always
find local counter terms. Here there is an obstruction. Here, the classical action S leads via
regularization to the family {I[L]}L>0 and then there are obstructions to finding solutions of
the quantum master equation.

Definition 3. A quantization of the gauge theory S is given by a family of effective actions
{I[L]}L>0, I[L] ∈ O(E)[[~]] so that they satisfy the renormalization group flow, the quantum
master equation, a locality condition, and so that when L → 0 and ~ → 0, this is the classical
action I

Okay. I should say actually, there are usually some obstructions. The space can be described as
a cohomology:

Theorem 2. (Kevin Costello)
The obstrcution space of the quantum master equation is given by H1(O`a(E), Q+ {I, }). The
master equation ensures this squares to zero.

Generally speaking, suppose we want to do a computation. We can find some quantization of
this theory. This is what I mean by BV quantization of gauge theory.

Now let me describe BCOV theory on elliptic curves. I have to specify my gauge data. So Eτ

will be the quotient of C by the lattice {1, τ}, specifying the complex structure. We want to
consider the space of all polyvector fields Ω0,∗(∧∗T 1,0

Eτ
)[[t]] as our space of fields.
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The differential will be, well, to define Q and QGF , we can use contraction for holomorphic one-
forms, so ∨dz is a map Ω0,∗(∧∗T 1,0

E ) → A ∗,∗
Eτ

. We’ll use this to define ∂ and ∂̄. Then Q = ∂̄+ t∂,
and QGF = ∂̄∗. The kernel is given by ∂e−L∆. The last thing is the gauge action, which is
defined in the following way: I =

⊕
n≥3 In which is a map In : Symn(E) 7→ C The value of In

on
∏
tkiµi is

(
n−3Q

ki

)
Tr(

∏
µi), where Tr : Ω0,1(TEτ ) 7→ C by α 7→

∫
Eτ

(α ∨ ω) ∧ ω.

Theorem 3. I satisfies the classical master equation QI + 1
2{I, I}0 = 0. This tells us we have

a well-defined classical gauge theory.

Remark 3. (
n− 3∏
ki

)
=

∫
M0,n

∏
ψki

i

which shows a connection between the classical master equation and the topological recursive
relations.


