Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

I ended last time with two homework problems. I defined A_{t} as $\mathbb{R}[x] / x^{3}-t x$. The first question is, is A_{1} isomorphic to A_{2}. The other question is whether A_{0} is isomorphic to A_{t}. Maybe I won't spoil the answer for anyone. It's a slightly interesting problem, actually. Let me make a definition. Let (A, \cdot) be an associative algebra over a field \mathbf{k}. Then a formal oneparameter deformation of (A, \cdot) is an associative algebra structure $\left.\mu: A[[t]] \otimes_{\mathbf{k}[t t]} A[t]\right] \rightarrow$ $A[t t]$ such that the map such that the map $A[t t] \rightarrow A$ (evaluation at zero) is a map of algebras over \mathbf{k}. You could assemble this from what I said last time except that I didn't say $A[[t]$. This is actually $A \hat{\otimes} k[t t]$. Generally you want to deal with the completed tensor product. Just to point out the difference: If I do $A \otimes k\left[[t]\right.$, this would be finite sums of $a_{i} \otimes p_{i}(t)$. If I take $A[[t]$, this is infinite sums, power series in t with coefficients in a. The first one only allows finitely many distinct things from A. If \mathbf{k} is topological, you can ask that this converge but in general you won't ask. A formal one parameter deformation of (A, \cdot) is determined by a collection $\left\{\mu_{i}\right\}_{i=1}^{\infty}$ of bilinear maps $A \times A \rightarrow A$ as follows, $\mu(x, y)=x \cdot y+\mu_{1}(x, y) t+\mu_{2}(x, y) t^{2}+\cdots$ I wanted to frame the second homework question in this language. If μ is a one-parameter formal deformation of (A, \cdot) then μ is associative is equivalent to an infinite collection of relations among the $\left\{\mu_{i}\right\}$. In particular, μ_{1}, well, $\mu(x, \mu(y, z))-\mu(\mu(x, y), z)=0$. This is $x \cdot \mu(y, z)+t \mu_{1}\left(x, \mu(y, z)+\cdots-\left(\mu(x, y) \cdot z+t \mu_{1}(\mu(x, y), z)\right.\right.$

I can expand the other μ and eventually get some equations that I can write down. If these will be zero over $A[[t]]$ then each coefficient of t^{n} is zero. The constant coefficient is 0 so $(x y) z-x(y z)=0$ and $x \mu_{1}(y, z)+\mu_{1}(x, y z)-\mu_{1}(x, y) z-\mu_{1}(x y, z) \mathrm{I}$ wanted to isolate the t^{1} condition. Let me write this in an easier way to remember.

That is, $x \mu_{1}(y, z)-\mu_{1}(x y, z)+\mu_{1}(x, y z)-\mu_{1}(x, y) \cdot z=0$.
Let (A, \cdot) be a \mathbf{k} algebra. Two deformations μ and μ^{\prime} of (A, \cdot) over R are equivalent if and only if there exists an isomorphism of R-algebras $\varphi: A \otimes R \rightarrow A \otimes R$ so that the diagram commutes:

In the case of two formal one parameter deformations μ and μ^{\prime} they are equivalent if and
only if there exists a sequence of linear maps φ_{1}, \cdots so that for all x and $y, \mu(x, y)=$ $\varphi_{t}^{-1} \mu\left(\varphi_{t}(x), \varphi_{t}(y)\right)$ where $\varphi_{t}(x)=x+t \varphi_{1}(x)+\cdots$

Given an associative algebra (A, \cdot) over a field \mathbf{k}, one always has the very trivial defined by μ_{t} is trivial if and only if it is equivalent to the veryt trivial one.
[[unintelligible]]
Now let me erase everything on the board. I want to define the Hochschild complex.
Everyone can make up their own example of a trivial deformation. Pick any old maps.

Definition $1 C^{n}(A):=\operatorname{Hom}_{\mathbf{k}}(\underbrace{A \otimes \cdots \otimes A}_{n+1}, A)$. Then let $C:=\bigoplus n \geq 0 C^{n}$. This is a graded vector space. I want to define a differential $C^{n-1} \rightarrow C^{n}$ by $(\delta f)\left(a_{1}, \ldots, a_{n+1}\right):=$ $a_{1} f\left(a_{2}, \ldots, a_{n+1}\right)-f\left(a_{1} a_{2}, a_{3}, \ldots, a_{n+1}\right)+\cdots+(-1)^{n} f\left(a_{1}, \ldots, a_{n} a_{n+1}\right)+(-1)^{n+1} f\left(a_{1}, \ldots, a_{n}\right)$. a_{n+1}.

You might ask about the grading. Let me finish the construction. Fact, exercise, $\delta^{2}=0$.
So if $f: A \otimes A \rightarrow A$ then $\delta f(x, y, z)=x f(y, z)-f(x y, z)+f(x, y z)-f(x, y) z$. The formula that was there before shows up, and we see that if μ is a formal deformation of . then $\delta \mu_{1}=0$. How shall I summarize this? This leads in Kodaira-Spencer terms to the "question of existence": Given (A, \cdot) and a Hochschild 1-cocycle μ_{1}, does there exist a formal 1 parameter deformation μ of (A, \cdot) so that $\mu(x, y)=x \cdot y+t \mu_{1}(x, y)+\cdots$

Let me make this an exercise. Show that if μ is a trivial 1-parameter formal deformation then μ_{1} is a Hochschild coboundary. That is, there exists a $\phi_{1}: A \rightarrow A$ so that $\delta \phi_{1}=\mu_{1}$.

This is a special case. If two deformations are equivalent, then, if μ and μ^{\prime} are equivalent then $\mu_{1}-\mu_{1}^{\prime}$ is a Hochschild coboundary. So the infinitessimal deformations, modulo equivalence, are the Hochschild 1-cohomology.

The question of existence is typically hard.
I can make the following definition

Definition 2 Given an associative algebra (A, \cdot) and a formal one parameter deformation μ_{t}, we define $\left.\frac{d \mu_{t}}{d t}\right|_{t=0}$ to be $\left[\mu_{1}\right] \in H\left(C^{1}, \delta\right)$. The idea is that Hochschild 1-cohomology classes are infinitessimal deformations of (A, \cdot).

Let's go to graded algebras. Well, Gerstenhaber's circle product. Given $f \in C^{r}, g \in$ C^{s}, define $f \circ g \in C^{r+s}$ by $f \circ g\left(a_{1}, a_{2}, \ldots, r+s+1\right)=f\left(g\left(a_{1}, \ldots, s+1\right), a_{s+2}, \ldots\right)+$ $(-1)^{s} f\left(a_{1}, g\left(a_{2}, \ldots, a_{s+2}\right), \ldots, a_{r+s+1}\right)+(-1)^{2 s} \ldots$ So these signs will either all be plus or will alternate, depending on the sign of s.

I like to think of this pictorially. [Pictures] This is f with some inputs and an output. I let g
act on some number of inputs. So I evaluate g inside of f like this, plus or minus, this, plus or minus this, and so on.

Here's a fact. The associative product • on A is an element of $C^{1}(A)$ since it's a map from $A \otimes A \rightarrow A$. I'm already saying it's associative. I want to say that \cdot is associative is equivalent to saying $\cdot \circ \cdot=0$.

The condition that $\delta^{2}=0$, well, you have to use the associativity of \cdot for that. The differential δ can also be defined by $\delta(f)=\cdot \circ f-(-1)^{|f|} f \circ \cdot$.

Let's see that this is the same. $\circ \circ f\left(a_{1}, \ldots, a_{n+1}\right)$, I evaluate f, so it's $f\left(a_{1}, \ldots, a_{n}\right)$
I skipped one part of trying to get the signs and I see I paid for it. Elements that o with themselves and give zero, those are interesting. If you're in C^{1}, and do that, it's associative. The interesting 1 to 1 things are differentials, but those are only in graded algebras. The first thing I'd like to say, is how can I tell that $C^{n}=\operatorname{Hom}\left(A^{\otimes n+1}, A\right)$ should be degree n. Let me give a practical reason. Given a graded vector space V, define the shift $V[k]$ for an integer k to be the graded vector space where $(V[k])^{j}=V^{k+j}$. If I shift by one, for example, then $V[1]^{j}=V^{j+1}$. If V were in degree zero, then $V[1]$, well, everything will be concentrated in degree -1 .

If φ is in $\operatorname{Hom}(V, V)$ has degree j, then $\varphi: V^{i} \rightarrow V^{i+j}$. Or a map $\varphi: V^{i} \rightarrow V^{k}$ has degree in the homomorphism complex (forget complex, this is a vector space), $k-i$. So if A is a vector space that's not graded, you can view it as graded and concentrated in degree zero. Then any map $\varphi: A^{\otimes n+1} \rightarrow A$ can be viewed as a map $\varphi:\left(A[1]^{\otimes n+1} \rightarrow A[1]\right)$ of degree n.

The formula for the circle product will be a little different for a graded vector space, but the Hochschild complex is robust enough to give you things where square zero elements are interesting.

