Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

I want to do at least one more example. The other example I did was

- 1. A = TV.
- 2. Let $A = SV = TV/(v_iv_j = v_jv_i)$ be the symmetric algebra on V over k. Denote by $\wedge V$ the exterior algebra, $TV/(v_iv_j = -v_jv_i)$. Denote $u \odot v$ the product in SV and $u \wedge v$ the product in $\wedge V$, and $u \in SV$ is $u_1 \odot u_2 \odot \cdots$ and in $\wedge V$ we have $u = u_1 \wedge u_2 \wedge \cdots$ I'm assuming my vector spaces are finite dimensional. Define the following complex for V, d-dimensional:

$$\rightarrow SV \otimes \wedge^d V \otimes SV \rightarrow \cdots \rightarrow SV \otimes V \otimes SV \rightarrow SV \otimes SV \rightarrow 0$$

with an augmentation to SV.

First of all I need to give you these maps b'. So

$$b'(u \otimes v_1 \wedge \cdots \wedge v_r \otimes w) = \sum_{i=1}^r (-1)^{i+1} (u \odot v_i \otimes v_1 \wedge \cdots \wedge \hat{v_i} \wedge \cdots \wedge v_r \otimes w - u \otimes v_1 \wedge \cdots \wedge \hat{v_i} \wedge \cdots \wedge v_r \otimes v_i \odot w)$$

The augmentation is \odot . Note that if V is one dimensional then SV equals TV and this resolution is the same resolution we had before. If U and X are finite dimensional vector spaces then $P(U)\otimes P(X)\cong P(U\oplus X)$. So this is an isomorphism of dgas. It respects, you can go backwards. [Calculation] So we have an isomorphism of chain complexes and then we can put these together to get that this is a resolution for X of any dimension.

So now we can find out what our Hochschild is, tensoring over $SV \otimes SV^{op}$ with SV, and we get $wedgeV \otimes SV$. Let me do this more precisely: the maps $b' \otimes id$ transfer to $\wedge^*V \otimes SV$ as 0. Let me look at the diagram and show that it commutes. If we have $u \otimes v \otimes w$ and we tensor this with x. This maps to $v \otimes w \odot x \odot u$ which goes to zero. The other direction this will go to $\sum \pm (((u \odot v_i) \otimes \hat{v}^i \otimes w) \otimes x - (u \otimes \hat{v}^i \otimes (v_i \odot w)) \otimes x)$ which clearly goes to zero under this map.

So $HH_{\cdot}(SV,SV) = H_{\cdot}(P \otimes SV) = \wedge V \otimes SV$. As a homework, calculate $HH^{\cdot}(SV,SV)$.

I at least want to state the third example that one can do. The third example is to take $A = k[x]/x^{n+1} = 0$. The claim is that the following is a projective A^e resolution: $\cdots \to A^e \to A^e \to \cdots \to A^e$, where the augmentation is the product and you multiply by u and v alternatingly, where $u = x \otimes 1 - 1 \otimes x$ and $v = x^n \otimes 1 + x^{n-1} \otimes x + \cdots + x^n \otimes A \otimes A^{op}$. Then you can show that for every bimodule M over A, the $HH_{\cdot}(A, M)$ and $HH^{\cdot}(A, M)$ are two periodic and if $\frac{1}{n+1} \in k$ then $HH_i(A, A) \cong HH^j(A, A) \cong A/x^n A$

I want to continue with the coderivation point of view.

Let me start by saying what a derivation is. Let (A, μ) be an associative algebra. A derivation $D: A \to A$ is a linear map satisfying $D(a \cdot b) = Da \cdot b + (-1)^{|a||D|}a \cdot Db$. Here A is graded $A = \bigoplus A^i$ and the degree of a is |a|. (Assume μ is of degree zero).

The diagram I just wrote down was

$$A \otimes A \xrightarrow{\mu} A$$

$$D \otimes id + id \otimes D \bigg| \qquad \qquad \downarrow D$$

$$A \otimes A \xrightarrow{\mu} A$$

The sign looks weird, but $(id \otimes D)(a \otimes b)$ is $(-1)^{|D||a|}a \otimes D(b)$.

A coalgebra is a pair (C, Δ) where C is a graded S-module and $\Delta : C \to C \otimes C$ such that we have coassociativity, degree zero. Coassociativity means that

$$C \xrightarrow{\Delta} C \otimes C$$

$$\Delta \downarrow \qquad \qquad \downarrow \Delta \otimes id$$

$$C \otimes C \xrightarrow{id \otimes \Delta} C \otimes C \otimes C$$

commutes.

A coderivation is a map $f: C \to C$ to make the following commute:

$$C \xrightarrow{\Delta} C \otimes C$$

$$f \downarrow \qquad \qquad \downarrow f \otimes id + id \otimes f$$

$$C \xrightarrow{\Delta} C \otimes C$$

The main example we'll be using is the tensor coalgebra T^cV which is TV with the structure

$$\Delta(v_1,\ldots,v_n)=1\otimes(v_1,\ldots,v_n)+v_1\otimes(v_2,\ldots,v_n)+\cdots+(v_1,\ldots,v_n)\otimes 1$$

where $1 \in k = V^0$. Coassociativity corresponds to breaking things up in two ways, in either order

You can characterize the coderivations on the tensor coalgebra nicely as follows. Every coderivation $TV \to TV$ is uniquely determined by its component $f^1: TV \to TV \to V$.

There should be enough time to prove this. I don't want to write out the formula but in the end you will see it come out.

First of all, let $f^k: TV \to TV \to V^{\otimes k}$. We need to show that f^k is determined by f^1 . We have the following, we know that f is a coderivation, so we have the following diagram:

$$TV \xrightarrow{\Delta} TV \otimes TV$$

$$f \downarrow f \otimes id + id \otimes f \downarrow$$

$$TV \xrightarrow{\Delta} TV \otimes TV$$

If there was an f^0 then we'd have

These are different unless 0 = 1 in k. If we assume that m is minimal in the sense that $f^0(v_1, \ldots, v_k) = 0$ for $k \le m$, then we get a contradiction that 1 = 2.

So in the general case, (v_1, \ldots, v_m) goes to $\cdots + f^k(v_1, \ldots, v_m) + \cdots$ where this part will be called (w_1, \ldots, w_k) which splits in all possible ways, and lands in $V^{\otimes i} \otimes V^{\otimes k-i}$. For a given component $V^i \otimes V^{k-i}$, we can reconstruct f^k if we know what the value is on the other side. So by applying Δ we get, well, the only things that will land in $V^i \otimes V^{k-i}$ will be the things that have either i factors in the first part or k-i in the second, and then what maps to use are determined by the factors they must land in.

So I get the statement that $f^k(v_1, \dots, v_m) = f^i(v_1, \dots, v_{m-k+i}, v_{m-k+i+1}, \dots v_m) + (-1)^{|f|(|v_1| + \dots + |v_i|}(v_1, \dots, v_i, f^k(v_i)) + (-1)^{|f|(|v_1| + \dots + |v_i|)}(v_1, \dots, v_i, f^k(v_i))$