Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

I want to do at least one more example. The other example I did was

1. $A=T V$.
2. Let $A=S V=T V /\left(v_{i} v_{j}=v_{j} v_{i}\right)$ be the symmetric algebra on V over k. Denote by $\wedge \cdot V$ the exterior algebra, $T V /\left(v_{i} v_{j}=-v_{j} v_{i}\right)$. Denote $u \odot v$ the product in $S V$ and $u \wedge v$ the product in $\wedge V$, and $u \in S V$ is $u_{1} \odot u_{2} \odot \cdots$ and in $\wedge V$ we have $u=u_{1} \wedge u_{2} \wedge \cdots$ I'm assuming my vector spaces are finite dimensional. Define the following complex for V, d-dimensional:

$$
\rightarrow S V \otimes \wedge^{d} V \otimes S V \rightarrow \cdots \rightarrow S V \otimes V \otimes S V \rightarrow S V \otimes S V \rightarrow 0
$$

with an augmentation to $S V$.
First of all I need to give you these maps b^{\prime}. So
$b^{\prime}\left(u \otimes v_{1} \wedge \cdots \wedge v_{r} \otimes w\right)=\sum_{i=1}^{r}(-1)^{i+1}\left(u \odot v_{i} \otimes v_{1} \wedge \cdots \wedge \hat{v}_{i} \wedge \cdots \wedge v_{r} \otimes w-u \otimes v_{1} \wedge \cdots \wedge \hat{v}_{i} \wedge \cdots \wedge v_{r} \otimes v_{i} \odot w\right)$
The augmentation is \odot. Note that if V is one dimensional then $S V$ equals $T V$ and this resolution is the same resolution we had before. If U and X are finite dimensional vector spaces then $P(U) \otimes P(X) \cong P(U \oplus X)$. So this is an isomorphism of dgas. It respects, you can go backwards. [Calculation] So we have an isomorphism of chain complexes and then we can put these together to get that this is a resolution for X of any dimension.

So now we can find out what our Hochschild is, tensoring over $S V \otimes S V^{o p}$ with $S V$, and we get wedge $V \otimes S V$. Let me do this more precisely: the maps $b^{\prime} \otimes i d$ transfer to $\wedge^{*} V \otimes S V$ as 0 . Let me look at the diagram and show that it commutes. If we have $u \otimes v \otimes w$ and we tensor this with x. This maps to $v \otimes w \odot x \odot u$ which goes to zero. The other direction this will go to $\sum \pm\left(\left(\left(u \odot v_{i}\right) \otimes \hat{v}^{i} \otimes w\right) \otimes x-\left(u \otimes \hat{v}^{i} \otimes\left(v_{i} \odot w\right)\right) \otimes x\right)$ which clearly goes to zero under this map.

So $H H .(S V, S V)=H .(P \otimes S V)=\wedge V \otimes S V$. As a homework, calculate $H H \cdot(S V, S V)$.

I at least want to state the third example that one can do. The third example is to take $A=k[x] / x^{n+1}=0$. The claim is that the following is a projective A^{e} resolution: $\cdots \rightarrow$ $A^{e} \rightarrow A^{e} \rightarrow \cdots \rightarrow A^{e}$, where the augmentation is the product and you multiply by u and v alternatingly, where $u=x \otimes 1-1 \otimes x$ and $v=x^{n} \otimes 1+x^{n-1} \otimes x+\cdots+x^{n} \otimes A \otimes A^{o p}$. Then you can show that for every bimodule M over A, the $H H_{.}(A, M)$ and $H H^{\cdot}(A, M)$ are two periodic and if $\frac{1}{n+1} \in k$ then $H H_{i}(A, A) \cong H H^{j}(A, A) \cong A / x^{n} A$

I want to continue with the coderivation point of view.
Let me start by saying what a derivation is. Let (A, μ) be an associative algebra. A derivation $D: A \rightarrow A$ is a linear map satisfying $D(a \cdot b)=D a \cdot b+(-1)^{|a||D|} a \cdot D b$. Here A is graded $A=\oplus A^{i}$ and the degree of a is $|a|$. (Assume μ is of degree zero).

The diagram I just wrote down was

The sign looks weird, but $(i d \otimes D)(a \otimes b)$ is $(-1)^{|D||a|} a \otimes D(b)$.
A coalgebra is a pair (C, Δ) where C is a graded S-module and $\Delta: C \rightarrow C \otimes C$ such that we have coassociativity, degree zero. Coassociativity means that

commutes.
A coderivation is a map $f: C \rightarrow C$ to make the following commute:

The main example we'll be using is the tensor coalgebra $T^{c} V$ which is $T V$ with the structure

$$
\Delta\left(v_{1}, \ldots, v_{n}\right)=1 \otimes\left(v_{1}, \ldots, v_{n}\right)+v_{1} \otimes\left(v_{2}, \ldots, v_{n}\right)+\cdots+\left(v_{1}, \ldots, v_{n}\right) \otimes 1
$$

where $1 \in k=V^{0}$. Coassociativity corresponds to breaking things up in two ways, in either order.

You can characterize the coderivations on the tensor coalgebra nicely as follows. Every coderivation $T V \rightarrow T V$ is uniquely determined by its component $f^{1}: T V \rightarrow T V \rightarrow V$.

There should be enough time to prove this. I don't want to write out the formula but in the end you will see it come out.

First of all, let $f^{k}: T V \rightarrow T V \rightarrow V^{\otimes k}$. We need to show that f^{k} is determined by f^{1}. We have the following, we know that f is a coderivation, so we have the following diagram:

If there was an f^{0} then we'd have

These are different unless $0=1$ in k. If we assume that m is minimal in the sense that $f^{0}\left(v_{1}, \ldots, v_{k}\right)=0$ for $k \leq m$, then we get a contradiction that $1=2$.

So in the general case, $\left(v_{1}, \ldots, v_{m}\right)$ goes to $\cdots+f^{k}\left(v_{1}, \ldots, v_{m}\right)+\cdots$ where this part will be called $\left(w_{1}, \ldots, w_{k}\right)$ which splits in all possible ways, and lands in $V^{\otimes i} \otimes V^{\otimes k-i}$. For a given component $V^{i} \otimes V^{k-i}$, we can reconstruct f^{k} if we know what the value is on the other side. So by applying Δ we get, well, the only things that will land in $V^{i} \otimes V^{k-i}$ will be the things that have either i factors in the first part or $k-i$ in the second, and then what maps to use are determined by the factors they must land in.

So I get the statement that $f^{k}\left(v_{1}, \ldots, v_{m}\right)=f^{i}\left(v_{1}, \ldots, v_{m-k+i}, v_{m-k+i+1}, \ldots v_{m}\right)+(-1)^{|f|\left(\left|v_{1}\right|+\ldots+\left|v_{i}\right|\right.}\left(v_{1}, \ldots, v_{i}, f\right.$

