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I want to do at least one more example. The other example I did was

1. A = TV .

2. Let A = SV = TV/(vivj = vjvi) be the symmetric algebra on V over k. Denote by
∧.V the exterior algebra, TV/(vivj = −vjvi). Denote u�v the product in SV and u∧v
the product in ∧V , and u ∈ SV is u1 � u2 � · · · and in ∧V we have u = u1 ∧ u2 ∧ · · ·
I’m assuming my vector spaces are finite dimensional. Define the following complex for
V , d-dimensional:

→ SV ⊗ ∧dV ⊗ SV → · · · → SV ⊗ V ⊗ SV → SV ⊗ SV → 0

with an augmentation to SV .

First of all I need to give you these maps b′. So

b′(u⊗v1∧· · ·∧vr⊗w) =
r∑

i=1

(−1)i+1(u�vi⊗v1∧· · ·∧v̂i∧· · ·∧vr⊗w−u⊗v1∧· · ·∧v̂i∧· · ·∧vr⊗vi�w)

The augmentation is �. Note that if V is one dimensional then SV equals TV and
this resolution is the same resolution we had before. If U and X are finite dimensional
vector spaces then P (U) ⊗ P (X) ∼= P (U ⊕ X). So this is an isomorphism of dgas.
It respects, you can go backwards. [Calculation] So we have an isomorphism of chain
complexes and then we can put these together to get that this is a resolution for X of
any dimension.

So now we can find out what our Hochschild is, tensoring over SV ⊗ SV op with SV , and we
get wedgeV ⊗ SV . Let me do this more precisely: the maps b′ ⊗ id transfer to ∧∗V ⊗ SV
as 0. Let me look at the diagram and show that it commutes. If we have u⊗ v ⊗ w and we
tensor this with x. This maps to v ⊗w � x� u which goes to zero. The other direction this
will go to

∑
±(((u� vi)⊗ v̂i ⊗ w)⊗ x− (u⊗ v̂i ⊗ (vi � w))⊗ x) which clearly goes to zero

under this map.

So HH.(SV, SV ) = H.(P ⊗ SV ) = ∧V ⊗ SV . As a homework, calculate HH .(SV, SV ).
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I at least want to state the third example that one can do. The third example is to take
A = k[x]/xn+1 = 0. The claim is that the following is a projective Ae resolution: · · · →
Ae → Ae → · · · → Ae, where the augmentation is the product and you multiply by u and v
alternatingly, where u = x⊗ 1− 1⊗x and v = xn⊗ 1 + xn−1⊗x + · · ·+ xn⊗A⊗Aop. Then
you can show that for every bimodule M over A, the HH.(A,M) and HH .(A,M) are two
periodic and if 1

n+1 ∈ k then HHi(A,A) ∼= HHj(A,A) ∼= A/xnA

I want to continue with the coderivation point of view.

Let me start by saying what a derivation is. Let (A,µ) be an associative algebra. A derivation
D : A → A is a linear map satisfying D(a · b) = Da · b + (−1)|a||D|a ·Db. Here A is graded
A = ⊕Ai and the degree of a is |a|. (Assume µ is of degree zero).

The diagram I just wrote down was

A⊗A
µ //

D⊗id+id⊗D

��

A

D

��
A⊗A µ

// A

The sign looks weird, but (id⊗D)(a⊗ b) is (−1)|D||a|a⊗D(b).

A coalgebra is a pair (C,∆) where C is a graded S-module and ∆ : C → C ⊗ C such that
we have coassociativity, degree zero. Coassociativity means that

C
∆ //

∆

��

C ⊗ C

∆⊗id

��
C ⊗ C

id⊗∆
// C ⊗ C ⊗ C

commutes.

A coderivation is a map f : C → C to make the following commute:

C

f

��

∆ // C ⊗ C

f⊗id+id⊗f

��
C

∆
// C ⊗ C

The main example we’ll be using is the tensor coalgebra T cV which is TV with the structure

∆(v1, . . . , vn) = 1⊗ (v1, . . . , vn) + v1 ⊗ (v2, . . . , vn) + · · ·+ (v1, . . . , vn)⊗ 1

where 1 ∈ k = V 0. Coassociativity corresponds to breaking things up in two ways, in either
order.

You can characterize the coderivations on the tensor coalgebra nicely as follows. Every
coderivation TV → TV is uniquely determined by its component f1 : TV → TV → V .
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There should be enough time to prove this. I don’t want to write out the formula but in the
end you will see it come out.

First of all, let fk : TV → TV → V ⊗k. We need to show that fk is determined by f1. We
have the following, we know that f is a coderivation, so we have the following diagram:

TV
∆ //

f

��

TV ⊗ TV

f⊗id+id⊗f

��
TV

∆
// TV ⊗ TV

If there was an f0 then we’d have

(v1, . . . , vm) ∆//

��

1⊗ (v1, . . . , vm) + · · ·+ (v1, . . . , vm)⊗ 1

++WWWWWWWWWWWWWWWWWWWW

f0(v1, . . . , vm)1TV + . . .
∆

// f0(v1, . . . , vm)1⊗ 1 2f0(v1, . . . , vm)1⊗ 1

These are different unless 0 = 1 in k. If we assume that m is minimal in the sense that
f0(v1, . . . , vk) = 0 for k ≤ m, then we get a contradiction that 1 = 2.

So in the general case, (v1, . . . , vm) goes to · · ·+ fk(v1, . . . , vm) + · · · where this part will be
called (w1, . . . , wk) which splits in all possible ways, and lands in V ⊗i ⊗ V ⊗k−i. For a given
component V i⊗V k−i, we can reconstruct fk if we know what the value is on the other side.
So by applying ∆ we get, well, the only things that will land in V i⊗ V k−i will be the things
that have either i factors in the first part or k − i in the second, and then what maps to use
are determined by the factors they must land in.

So I get the statement that fk(v1, . . . , vm) = f i(v1, . . . , vm−k+i, vm−k+i+1, . . . vm)+(−1)|f |(|v1|+...+|vi|(v1, . . . , vi, f
k−i(vi+1, . . . , vm).
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