Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012
[Review. Not many notes on a very clear exposition because I cut my finger.]

Definition $1 C H .(A, M)=\operatorname{Tor}^{A^{e}}(A, M)$
$C H \cdot(A, M)=E x t_{A^{e}}(A, M)$

There are identifications of $C H_{n}(A, M)=A^{\otimes n+2} \otimes_{A^{e}} M$ with $A^{\otimes n} \otimes M$ and $C H^{n}=$ $\operatorname{Hom}\left(A^{\otimes n+2}, M\right)$ with $\operatorname{Hom}\left(A^{\otimes n}, M\right)$.

For $T V$ you have the small resolution $T V \otimes V \otimes T V \rightarrow T V \otimes T V$. This is a resolution of $T V$ as a $T V \otimes T V^{o p}$ module. We need to show that $T V \otimes V \otimes T V \rightarrow T V \otimes T V \rightarrow T V$ is exact. The nonobvious map is $\left.b^{\prime}\left(v_{1}, \ldots, v_{n}\right) \otimes w \otimes\left(u_{1}, \ldots, u_{m}\right)\right)=\left(v_{1}, \ldots, v_{n}, w\right) \otimes\left(u_{1}, \ldots, u_{m}\right)-$ $\left(v_{1}, \ldots, v_{n}\right) \otimes\left(w, u_{1}, \ldots, u_{m}\right)$

