Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

[Review. Not many notes on a very clear exposition because I cut my finger.]

 $\begin{array}{l} \textbf{Definition 1} \ CH_{\cdot}(A,M) = Tor_{\cdot}^{A^{e}}(A,M) \\ CH_{\cdot}(A,M) = Ext_{A^{e}}(A,M) \end{array}$

There are identifications of $CH_n(A, M) = A^{\otimes n+2} \otimes_{A^e} M$ with $A^{\otimes n} \otimes M$ and $CH^n = Hom(A^{\otimes n+2}, M)$ with $Hom(A^{\otimes n}, M)$.

For TV you have the small resolution $TV \otimes V \otimes TV \to TV \otimes TV$. This is a resolution of TV as a $TV \otimes TV^{op}$ module. We need to show that $TV \otimes V \otimes TV \to TV \otimes TV \to TV$ is exact. The nonobvious map is $b'(v_1, \ldots, v_n) \otimes w \otimes (u_1, \ldots, u_m)) = (v_1, \ldots, v_n, w) \otimes (u_1, \ldots, u_m) - (v_1, \ldots, v_n) \otimes (w, u_1, \ldots, u_m)$