Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

Recall that we defined a formal 1 parameter deformation of an algebra (A, μ) as a $\mu \in$ $C^{1}(A, A)$. Then $[\mu, \mu]=0$ if and only if μ is associative. Then let (A, μ) be associative let $\mu^{\prime}=\mu+t \tilde{\mu}$. Then μ^{\prime} is a deformation of μ if and only if μ^{\prime} is associative if and only if [$\left.\mu^{\prime}, \mu^{\prime}\right]=0$ if and only if $2[\mu, t \tilde{\mu}]=2 \delta(t \mu)+[t \tilde{\mu}, t \tilde{\mu}]=0$ so the Maurer Cartan equation for $t \mu$ or the master equation is

$$
\delta(t \tilde{\mu})+\frac{1}{2}[t \tilde{\mu}, t \tilde{\mu}]=0
$$

Let's do the Ext-Tor interpretation of Hochschild. Let R be a ring, let P be a left-module over R. Then P is called projective if it is a direct summand of a free R-module F so that there exists Q so that $F=P \oplus Q$. Let A be a free R-module; then a projective resolution of A is a chain complex $P .=\rightarrow P_{3} \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0}$ so that $\epsilon P_{0} \rightarrow A$, each P_{i} is projective, and so that $\ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow A \rightarrow\{0\}$ is an exact sequence.

For example, if A is projective, then $P=\ldots \rightarrow\{0\} \rightarrow\{0\} \rightarrow A=P_{0}$ is a projective resolution of A.

If A is an (left) R-module, and P. is a projective resolution of A, define the following:

Definition 1 If B is a right R module, let $\operatorname{Tor}^{R}(A, B)$ be the homology of $P . \otimes_{R} B$

One point is that these are independent of choices of B.
As an alternative, you look at the functor $\left(\otimes_{R} B\right): R-\bmod \rightarrow A b$, and say that this is a covariant right-exact functor and then define Tor^{R} is the left-derived of that functor.

The other one, Ext, is gotten by taking

Definition 2 If B is a left R-module, then let $\operatorname{Ext}_{R}(A, B)$ is the homology of $\operatorname{Hom}\left(P_{n}, B\right)$ with the reversed differential. Alternatively, you could say $\operatorname{Hom}_{R}(, B)$ is a contravariant left-exact functor from the category of R-modules into the category of Abelian groups, and $E x t_{R}$ is the left derived of this.

The main point is that Tor and Ext are independent of the choice of resolution.
I want to specialize to the case of Hochschild. Let's say (A, μ) be an associative algebra over some commutative ring S. What is the opposite algebra? Let $\left(A^{o p}, \mu^{o p}\right)$ be the opposite algebra. (This is ungraded). This means $A^{o p}$ is A and $\mu^{o p}(a, b)=\mu(b, a)$. So switch the order of inputs; it's the opposite way of multiplying. Let $\left(A^{e}, \mu^{e}\right)$ be the enveloping algebra, so $A^{e}=\left(A \otimes A^{o p}, \mu_{e}=\mu \otimes \mu^{o p}\right)$. We want to take $R=A^{e}$, so this will be our ground ring. What is $\operatorname{Tor}^{A^{e}}$ and $E x t_{A^{e}}$? So first, what is an A^{e}-module. If M is a left A^{e}-module, then we have maps $A^{e} \otimes M \rightarrow M$, so maps $A \otimes A^{o p} \otimes M \rightarrow M$, so that's like $a \otimes b \otimes m \mapsto a . m . b$. This said, I think it's fairly easy to see that this has the module property. This is equivalent to M being a bimodule over A. Well, A is always a bimodule (right- A bimodule or left A-bimodule). So what is $\operatorname{Tor}^{A^{e}}(A, M)$ or $\operatorname{Ext}_{A^{e}}(A, M)$? We need a projective A^{e}-resolution of A. We can take $\cdots \rightarrow A^{\otimes 5} \rightarrow A^{\otimes 4} \rightarrow A^{\otimes 3} \rightarrow A^{\otimes 2}$ and you stop there.

So $A^{\otimes n \geq 2}$ is an A-bimodule, where you multiply on the left and on the right. It's projective, and a resolution of A as an A^{e}-module. Here the projection, on ($a_{1} \rightarrow a_{n}$), multiplies successive pairs togother, so is very similar to the Hochschild differential. So this is ($a_{1} a_{2}$) \otimes $a_{3} \otimes \cdots \otimes a_{n}+\cdots+(-1)^{n} a_{1} \otimes \cdots \otimes \cdots\left(a_{n-1} \otimes a_{n}\right)$ This is a differential. We haven't discussed the Hochschild differential. ϵ is the product in A.

Now to prove this, why is P projective? If A is projetive over S and A has a left unit, well, [discussion]. Why is the sequence exact? What you do is define $s: A^{\otimes n} \rightarrow A^{\otimes n+1}$ which takes $a_{1} \otimes \cdots \otimes a_{n} \mapsto 1 \otimes a_{1} \otimes \cdots \otimes a_{n}$. Then $b^{\prime} \circ s+s \circ b^{\prime}=i d_{A \otimes n}$, where b^{\prime} is the projection map (including augmentation). To calculate we see

$$
b^{\prime} \circ s\left(a_{1} \otimes \cdots \otimes a_{n}\right)=a_{1} \otimes \cdots a_{n}-1 \otimes\left(a_{1} a_{2}\right) \otimes \cdots a_{n}+\cdots \pm 1 \otimes a_{1} \otimes \cdots \otimes\left(a_{n-1}\right)\left(a_{n}\right)
$$

On the other hand, $s \circ b^{\prime}$ is the same thing without the first term. So some of the terms cancel and you just get the leading term of the first. This is a typical calculation.

Now we can just plug this in. Let M be a bimodule over A. Then $\operatorname{Tor}^{A^{e}}(A, M)=H .(P . *$ $\left.\otimes_{A^{e}} M\right)$ is the homology of $A^{\otimes 4} \otimes_{M} \rightarrow A^{\otimes 3} \otimes M \rightarrow A^{\otimes 2} \otimes M \cong M$

What is the differential? We get for example $b^{\prime}\left(a_{1} \otimes a_{2} \otimes m\right)$, which can be written $\left(1 \otimes a_{2} \otimes\right.$ $\left.a_{3} \otimes 1\right) \otimes A_{A^{e}} m$ which is $a_{2} \otimes a_{3} \otimes s \otimes m-\left(1 \otimes a_{2} a_{3} \otimes 1\right) \otimes m+\left(1 \otimes a_{2} \otimes m_{3}\right) \otimes m$. So under the identification this gives $a_{3} \otimes m a_{2}-\left(a_{2} a_{3}\right) \otimes m+a_{2} \otimes\left(a_{3} m\right)$.

In general I get the Hochschild differential. You multiply things together and get $a_{2} \otimes \cdots \otimes$ $\left(m a_{1}\right)-a_{1} a_{2} \otimes \cdots \otimes m$ and so on. $\operatorname{Ext}_{A^{e}}(A, M)$ has exactly the Hochschild differential.

There are a few easy things. So let $A=T V=\bigoplus V^{\otimes}$ be the tensor algebra with product the tensor product. Then by this lemma, we can choose any projective resolution. This one has a small resolution, $P^{s m}$ is $T V \otimes V \otimes T V \rightarrow T V \otimes T V$. This is a resolution, with the only map b^{\prime} equal to
$\left.b^{\prime}\left(\left(v_{1}, \ldots, v_{n}\right) \otimes v \otimes\left(w_{1}, \ldots, w_{m}\right)\right):=\left(v_{1}, \ldots, v_{n}, v\right) \otimes\left(w_{1}, \ldots, w_{m}\right)-\left(v_{1} \ldots, v_{n}\right) \otimes v, w_{1}, \ldots, w_{n}\right)$
I claim this is a projective resolution of $T V$. What you get is that $\operatorname{Tor}^{T V^{e}}(T V, T V)=$ $H .((T V \otimes V) \rightarrow T V)$ which is $T V_{\tau}$ (as a homework), the coinvariants under the cyclic rotation, so $T V / 1-\tau$, in $i=0$ and for $i=1$ the elements $v \in T V$ so that $\tau(v)=v$.

One has to sit down and do these calculations, but you can just sit down and do them, it's totally spelled out, it's doable. The second example using this is $A=S V$. We can do the same thing, and again we need a resolution. Note that if V is 1-dimensional, then $T V=S V$, so wo can use the first case. If this is not one-dimensional, assume it is finite dimensional. You want to build the resolution out of these for, well, we get $P^{S V}-S V \otimes \wedge V \otimes S V$. So $P^{s m}$ has $S V \otimes \wedge^{d} V \otimes S V \rightarrow S V \otimes \wedge^{d+1} V \otimes S V \rightarrow \cdots$ Now you do the same thing as before and you get $\left(u_{1}, \ldots, u_{n}\right) \otimes\left(v_{1} \wedge \cdots \wedge v_{m}\right) \otimes\left(w_{1}, \ldots, w_{k}\right)$ is the sum of bringing one v_{i} into the left and right factor in all possible ways with the appropriate signs.

I will say some more next time, some resolution, and then some examples. The homology is $H H_{i}(S V, S V)$ is $S V \otimes \wedge^{i} V$ for $0 \leq i \leq d$. All the differentials become zero. I think I'll do more about this next time and the coderivation. This example where the algebra is $S V$ is like functions on the manifold. So the Hochschild on functions on a manifold is the smooth forms.

