Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

Let me give the simplicial interpretation of the Hochschild complex. Let's start with a prelude on simplicial objects.

Definition 1 Let Δ be the category with objects $\bar{n}=\{0, \ldots, n\}$ for $n \geq 0$ and morphisms ar maps $f:\{0, \ldots, n\} \rightarrow\{0, \ldots, n\}$, non-decreasing. Composition is composition of set maps.

The most important maps are the maps $\delta_{i}: \bar{n} \rightarrow n \overline{+} 1$ which skips i and is injective. Let $\sigma_{i}: \bar{n} \rightarrow n-1$ be the surjective map that hits i twice.

As homework, every non-decreasing map $f: \bar{n} \rightarrow \bar{m}$ can be written as $f=\delta_{i_{1}} \circ \cdots \delta_{i_{r}} \circ \sigma_{j_{1}} \circ$ $\cdots \sigma_{j_{s}}$.

This is unique if $i_{r} \leq \cdots i_{1}$ and $j_{s} \leq \cdots \leq j_{1}$. We have the relations $\delta_{j} \delta_{i}=\delta_{i} \delta_{j-1}$ for $i<j$ and $\sigma_{j} \sigma_{i}=\sigma_{i} \sigma_{j+1}$ for $i \leq j$ along with $\sigma_{j} \delta_{i}=\delta_{i} \sigma_{j-1}$ for $i<j, i d_{\bar{n}}$ for $i=j$ or $i=j+1$, and $\delta_{i-1} \sigma_{j}$ for $i>j+1$

Definition 2 Let \mathscr{C} be a category. A cosimplicial object in \mathscr{C} is a covariant functor $X \cdot \mid \Delta \mathscr{C}$ A simplicial object in \mathscr{C} is a contravariant functor $X: \Delta \rightarrow \mathscr{C}$

Lemma $1 \quad a$ A cosimplicial object in \mathscr{C} is equivalent to a sequence of objects $X^{i} \in$ $\operatorname{Obj}(\mathscr{C})$ and morphisms in $\mathscr{C} D_{i}: X^{n} \rightarrow X^{n+1}$ for $0 \leq i \leq n+1, S_{i}: X^{n} \rightarrow X^{n-1}$ for $0 \leq i \leq n-1$ satisfying the corresponding commutation relations.
b A simplicial object is a sequence of objects X_{0}, X_{1}, \ldots and morphisms $d_{i}: X_{n+1} \rightarrow X_{n}$ for $0 \leq i \leq n+1$ ando $s_{i}: X_{n-1} \rightarrow X_{n}$ for $0 \leq i \leq n-1$ satisfying $d_{i} d_{j}=d_{j-1} d_{i}$ for $i<j, s_{i} s_{j}=s_{j+1} s_{i}$ for $i \leq j$ and then

$$
d_{i} s_{j}=\left\{\begin{array}{lll}
s_{j-1} d_{i} & , \quad i<j \\
i d_{X_{n}} & , \quad i=j, i=j+1 \\
s_{j} d_{i-1} & , \quad i>j+1
\end{array}\right.
$$

The proof for the first part is, take $X^{n}=X \cdot(\bar{n})$ and $D_{i}=X \cdot\left(\delta_{i}\right), S_{i}=X \cdot\left(\sigma_{i}\right)$. This works both forward and backward. The proof of the second is the same.

The most common example is to have \mathscr{C} be topological spaces and then let $\Delta^{n}=\left\{\left(t_{1}, \ldots, t_{n}\right)\right\} \mid 0 \leq$ $t_{1} \leq \cdots \leq 1$

This can be made into a cosimplicial topological space: $\Delta \cdot \Delta \rightarrow T o p$ takes Δ^{n} as above and $D_{i}: \Delta^{n} \rightarrow \Delta^{n+1}$ which maps $t_{1} \ldots, t_{n}$ to $t_{1}, \ldots, t_{i}, t_{i}, \ldots, t_{n}$ and S_{i} which maps $t_{1}, \ldots, t_{n} \mapsto$ t_{1} ldots $, \hat{t}_{i}, \ldots, t_{n}$

Let X be a topological space. It has no bullet so it's not simplicial or cosimplicial. The singular n-simplices of X are $S(X)_{n}:=\left\{r: \Delta^{n} \rightarrow X \mid r\right.$ continuous $\}$. These can be put together to give a simplicial set.

This cosimplicial thing can be composed with the contravariant functor $\operatorname{Hom}(\bullet, X)$ to give this as a contravariant functor $\Delta \rightarrow$ Set. This says $d_{i}(r)=r \circ D_{i}$ and $s_{i}(r)=r \circ S_{i}$. So $S(X)$ is a functor from topological spaces to simplicial sets.

I want to say what the geometric realization is, which is a functor in the opposite direction. It comes up all over the place. We have a geometric realization functor $T=|\quad|$. This takes, for a simplicial set X. it takes

$$
T(X .)=|X .|=\amalg_{n \geq 0} X_{n} \times \Delta^{n} / \sim
$$

Where the equivalence relation says $\left(d_{i}(x), t_{1}, \ldots, t_{n}\right) \sim\left(x, D_{i}\left(t_{1}, \ldots, t_{n}\right)\right)$ and $\left(s_{i}(x), t_{1}, \ldots, t_{n}\right) \sim$ $\left(x, S_{i}\left(t_{1}, \ldots, t_{n}\right)\right)$.

These are adjoint functors so there is a bijection between $\operatorname{Hom}_{\text {Top }}(|X|, Y.) \rightarrow \operatorname{Hom}_{\text {Simp }} \operatorname{Set}(X ., S(Y)$.) which is almost tautological. I start with $f: \amalg X_{n} \times \Delta^{n} / \sim \rightarrow Y$. I want to give a bunch of maps $f_{n}: X_{n} \rightarrow \operatorname{Hom}\left(\Delta^{n}, Y\right)$. If you look at this this is almost immediate. You define $f_{n}(x)\left(t_{1}, \ldots, t_{n}\right)$ as $f\left(\left(x, t_{1}, \ldots, t_{n}\right)\right)$.

If X. is a simplicial set then $x \in X_{n}$ is called degenerate if $x=s_{i}(y)$ for some y and i. Otherwise it is nondegenerate.

I want to do one more different example, a simplicial set that gives the circle. Next time I'll do more examples. So the simplicial circle S^{1} The goal is to define $S_{0}^{1}, \ldots, S_{i}^{1}$ which should give the simplices so that the geometric realization is the circle. So $S_{0}^{1}=\{0\}$. Then S_{1}^{1} has $s_{0}(0)$ so I need at least one more simplex, one that is nondegenerate. I can let the set be $\{0,1\}$. I want $d_{i} s_{i}=i d_{X_{n}}$. So s_{i} must be injective. I don't know how much I want to go through this, but it turns out the smallest thing you can do is the following:

S_{0}^{1}	0
S_{1}^{1}	0,1
S_{2}^{1}	$0,1,2$
S_{3}^{1}	$0,1,2,3$
S_{4}^{1}	$0,1,2,3,4$

If you analyze the s_{i} and d_{i} you get that $s_{i}: S_{n}^{1} \rightarrow S_{n+1}^{1}$ for $0 \leq i \leq n$ is given by $s_{i}(k)$ is either k for $k \leq i$ or $k+1$ for $k>i$.

The d_{i} are given by $d_{i}(k)=k$ if $k \leq i$ and $k-1$ if $k>i$. This gives all of them but $d_{n}(k)$ which is k if $k \leq n-1$ or 0 if $k=n$. So d_{5} is not a nondecreasing map. I'm already fifteen
minutes late. I want to show that the geometric realization has just the two nondegenerate simplices.

