Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

Let me give the simplicial interpretation of the Hochschild complex. Let's start with a prelude on simplicial objects.

Definition 1 Let Δ be the category with objects $\bar{n} = \{0, \ldots, n\}$ for $n \ge 0$ and morphisms ar maps $f : \{0, \ldots, n\} \rightarrow \{0, \ldots, n\}$, non-decreasing. Composition is composition of set maps.

The most important maps are the maps $\delta_i : \bar{n} \to n + 1$ which skips *i* and is injective. Let $\sigma_i : \bar{n} \to n - 1$ be the surjective map that hits *i* twice.

As homework, every non-decreasing map $f: \bar{n} \to \bar{m}$ can be written as $f = \delta_{i_1} \circ \cdots \delta_{i_r} \circ \sigma_{j_1} \circ \cdots \sigma_{j_s}$.

This is unique if $i_r \leq \cdots i_1$ and $j_s \leq \cdots \leq j_1$. We have the relations $\delta_j \delta_i = \delta_i \delta_{j-1}$ for i < jand $\sigma_j \sigma_i = \sigma_i \sigma_{j+1}$ for $i \leq j$ along with $\sigma_j \delta_i = \delta_i \sigma_{j-1}$ for i < j, $id_{\bar{n}}$ for i = j or i = j + 1, and $\delta_{i-1}\sigma_j$ for i > j + 1

Definition 2 Let \mathscr{C} be a category. A cosimplicial object in \mathscr{C} is a covariant functor $X \not \Delta \to \mathscr{C}$ A simplicial object in \mathscr{C} is a contravariant functor $X : \Delta \to \mathscr{C}$

- **Lemma 1** a A cosimplicial object in \mathscr{C} is equivalent to a sequence of objects $X^i \in Obj(\mathscr{C})$ and morphisms in \mathscr{C} $D_i: X^n \to X^{n+1}$ for $0 \leq i \leq n+1$, $S_i: X^n \to X^{n-1}$ for $0 \leq i \leq n-1$ satisfying the corresponding commutation relations.
 - b A simplicial object is a sequence of objects X_0, X_1, \ldots and morphisms $d_i : X_{n+1} \to X_n$ for $0 \le i \le n+1$ and $s_i : X_{n-1} \to X_n$ for $0 \le i \le n-1$ satisfying $d_i d_j = d_{j-1} d_i$ for i < j, $s_i s_j = s_{j+1} s_i$ for $i \le j$ and then

$$d_i s_j = \begin{cases} s_{j-1} d_i &, i < j \\ i d_{X_n} &, i = j, i = j+1 \\ s_j d_{i-1} &, i > j+1 \end{cases}$$

The proof for the first part is, take $X^n = X(\bar{n})$ and $D_i = X(\delta_i), S_i = X(\sigma_i)$. This works both forward and backward. The proof of the second is the same. The most common example is to have \mathscr{C} be topological spaces and then let $\Delta^n = \{(t_1, \ldots, t_n)\} | 0 \le t_1 \le \cdots \le 1$

This can be made into a cosimplicial topological space: $\Delta^{\cdot} : \Delta \to Top$ takes Δ^n as above and $D_i : \Delta^n \to \Delta^{n+1}$ which maps $t_1 \ldots, t_n$ to $t_1, \ldots, t_i, t_i, \ldots, t_n$ and S_i which maps $t_1, \ldots, t_n \mapsto t_1 loots, \hat{t}_i, \ldots, t_n$

Let X be a topological space. It has no bullet so it's not simplicial or cosimplicial. The singular *n*-simplices of X are $S(X)_n := \{r : \Delta^n \to X | r \text{ continuous}\}$. These can be put together to give a simplicial set.

This cosimplicial thing can be composed with the contravariant functor $Hom(\bullet, X)$ to give this as a contravariant functor $A \to Set$. This says $d_i(r) = r \circ D_i$ and $s_i(r) = r \circ S_i$. So S(X)is a functor from topological spaces to simplicial sets.

I want to say what the geometric realization is, which is a functor in the opposite direction. It comes up all over the place. We have a geometric realization functor T = | |. This takes, for a simplicial set X_{\downarrow} it takes

$$T(X_{\cdot}) = |X_{\cdot}| = \coprod_{n > 0} X_n \times \Delta^n / \sim$$

Where the equivalence relation says $(d_i(x), t_1, \ldots, t_n) \sim (x, D_i(t_1, \ldots, t_n))$ and $(s_i(x), t_1, \ldots, t_n) \sim (x, S_i(t_1, \ldots, t_n))$.

These are adjoint functors so there is a bijection between $Hom_{Top}(|X_{.}|, Y) \to Hom_{Simp Set}(X_{.}, S(Y)_{.})$ which is almost tautological. I start with $f : \amalg X_n \times \Delta^n / \sim \to Y$. I want to give a bunch of maps $f_n : X_n \to Hom(\Delta^n, Y)$. If you look at this this is almost immediate. You define $f_n(x)(t_1, \ldots, t_n)$ as $f((x, t_1, \ldots, t_n))$.

If X_i is a simplicial set then $x \in X_n$ is called degenerate if $x = s_i(y)$ for some y and i. Otherwise it is nondegenerate.

I want to do one more different example, a simplicial set that gives the circle. Next time I'll do more examples. So the simplicial circle S_{\cdot}^{1} The goal is to define $S_{0}^{1}, \ldots, S_{i}^{1}$ which should give the simplices so that the geometric realization is the circle. So $S_{0}^{1} = \{0\}$. Then S_{1}^{1} has $s_{0}(0)$ so I need at least one more simplex, one that is nondegenerate. I can let the set be $\{0,1\}$. I want $d_{i}s_{i} = id_{X_{n}}$. So s_{i} must be injective. I don't know how much I want to go through this, but it turns out the smallest thing you can do is the following:

S_{0}^{1}	0
S_1^1	0, 1
S_2^1	0, 1, 2
S_{3}^{1}	0, 1, 2, 3
S_4^1	0, 1, 2, 3, 4

If you analyze the s_i and d_i you get that $s_i : S_n^1 \to S_{n+1}^1$ for $0 \le i \le n$ is given by $s_i(k)$ is either k for $k \le i$ or k+1 for k > i.

The d_i are given by $d_i(k) = k$ if $k \leq i$ and k-1 if k > i. This gives all of them but $d_n(k)$ which is k if $k \leq n-1$ or 0 if k = n. So d_5 is not a nondecreasing map. I'm already fifteen

minutes late. I want to show that the geometric realization has just the two nondegenerate simplices.