Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

Let $\left(A, D=\mu_{1}+\mu_{2}+\cdots\right)$ be an A_{∞} algebra with $\mu_{1}=: d_{A}$, and $\left(B, d_{B}\right)$ a chain complex. Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be chain maps, and $h: A \rightarrow A$ be a homotopy: $h d_{A}+d_{B} h=$ $g f-i d_{A}$. Then there exists

- An A_{∞} structure (B, ν) extending $\nu_{1}=d_{B}$
- an A_{∞} algebra map $F: T A[1] \rightarrow T B[1]$ with $F^{1}=f$.
- an A_{∞} algebra map $G: T B[1] \rightarrow T A[1]$ with $G^{1}=g$.
- an A_{∞} homotopy (I don't want to talk about this, really) $H: T A[1] \rightarrow T A[1]$ extending h satisfying $H D+D H=G F-i d_{T A[1]}$.

I used the following notation. Did I use blue or red for A ? [Pictures] You introduce three new terms when dragging. You get terms with $f g$, terms with h and a decomposition, and terms with the identity.

Definition 1 A Hodge decomposition of a chain complex (V, d_{V}) is a decomposition $V=$ $W \oplus B \oplus R$ such that $B=\operatorname{Im}\left(d_{V}\right)$ and $W \oplus B=\operatorname{ker}\left(d_{V}\right)$. Hdet $H .\left(V, d_{V}\right)=\frac{W \oplus B}{B} \cong W$ and $d_{V}(W \oplus B)=\{0\}$. Then $\left.d_{V}\right|_{R}: R \rightarrow B$ is an isomorphism since $B=I m d_{V}$ and $R \cap W \oplus B=\{0\}$.

Note also that $f: W \oplus B \oplus R \rightarrow W$ and the reverse inclusion are homotopy inverses: $f g-i d_{W}$ is 0 and $g f-i d_{V}$ is the projection onto $B \oplus R$. It's not hard to see that this is $-d d^{-1}-d^{-1} d$. Then every finite dimensional chain complex has a Hodge decomposition.

Corollary 1 Kadeishvili 82 (The algebra structure on the homology of an A_{∞} algebra Let (A, D) be an A_{∞} algebra and let H be the homology of A with respect to μ_{1}. Then there exists an A_{∞} structure on H with $\nu_{1}=0$ and A_{∞} algebra maps $F: T A[1] \rightarrow T H[1]$ and $G: T H[1] \rightarrow T A[1]$ and a homotopy H with $G F-i d=H D+D H$.

This comes from choosIng a Hodge decomposition and applying the transfer theorem. For example, ν_{n} is the sum over all kinds of trees where you put things from H to V, use products in V, intersperse with homologies d^{-1}, and eventually project back.

