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Recall that for V a vector space over k, we had TV =
⊕

V ⊗n and LV =
⋂

V⊂g⊂TV g. Then

∆̃(v1, . . . , vn) =
∑

p,q-shuffles, p+q=n

(vσ(1), . . . , vσ(p))⊗ (vσ(p+1), . . . , vσ(n))

So γ : TV → LV takes 1 to 0 and v ∈ V to itself. It takes v1, . . . , vn to [v1, [v2, . . . , [vn−1, vn] . . .]]

Proposition 1 For x ∈ V ⊗n ⊂ TV the following are equivalent:

1. x ∈ LV

2. ∆̃(x) = x⊗ 1 + 1⊗ x

3. γ(x) = n.x

The easiest implication is the third to the first. Assume that γ(x) = n.x. Then x = γ(x)
n so

it’s in the free Lie algebra, since γ is a map to the free Lie algebra. All iterated brackets are
in the free Lie algebra.

Let me show the first implies the second. Let g̃ be those x in TV such that ∆̃(x) = x⊗1+1⊗x.
I claim that g̃ is a Lie subalgebra of TV . If I have x, y ∈ g̃, and I take their bracket, I take
∆̃([x, y]), what is that? Let’s see. It’s ∆̃(xy − yx). Recall that ∆̃ is an algebra map, so this
is

∆̃(x)∆̃(y)− ∆̃(y)∆̃(x) = (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)− (y ⊗ 1 + 1⊗ y)(x⊗ 1 + 1⊗ x)

If you foil this, you get
[x, y]⊗ 1 + 1⊗ [x, y]

. So this is a subalgebra of TX as a Lie algebra. So LV ⊂ g̃.

The last implication assumes that ∆̃(x) = x ⊗ 1 + 1 ⊗ x. We will see in a moment that
n.x = • ◦ (γ ⊗ idT V ) ◦ ∆̃. This is a map from TV to TV ⊗ TV to LV ⊗ TV to TV . Then
this is •(γ ⊗ id)(x⊗ 1 + 1⊗ x). Since γ(1) = 0 we have •(γ(x)⊗ 1) = γ(x). The only thing I
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owe you is to show that nx = •(γ ⊗ id)∆̃. We show this by induction on n. The first couple
of pieces are pretty trivial. If n = 0 this is a scalar and will eventually go to 0. If you start
with v ∈ V you get •(γ(v)⊗ 1) = γ(v).

Let n ≥ 2; we’ll do a little induction here. Assume that, I’m going to show it for homogeneous
elements. Let x = (v1, . . . , vn). Write ∆̃, apply it to (v2, . . . , vn), so this is 1 ⊗ (v2 . . . vn) +∑

i ai ⊗ bi. The only thing I do is that ai ∈ V ⊗≥1.

By induction, (n − 1)(v2, . . . , vn) is •(γ ⊗ id)∆̃(v2, . . . , vn) = •(γ ⊗ id)(1 ⊗ (v2, . . . , vn) +∑
ai ⊗ bi] =

∑
γi(ai), bi).

Then

•(γ⊗id)∆̃(v1, . . . , vn) = •(γ⊗id)[v1⊗1+1⊗v1)(1⊗v2 . . . vn)] = v1⊗v2 . . . , vn+
∑

viai⊗bi+1 . . . v1 . . . vn+
∑

ai⊗vbi

= •(v1 ⊗ v2, . . . , vn) +
∑

γ(v1ai)bi +
∑

(γ(ai))vibi

The last piece of this is [v1, γ(ai)]− v1γ(ai)− γ(ai)v1 so we get

v1v2 . . . , vn +
∑

v1γ(ai)bi = v1 . . . vn + (n− 1)v1 . . . vn = n(v1 . . . vn)

Corollary 1 for all θ : V → g there exists a unique map θ̃ : LV → g a Lie algebra map
which extends:

LV

θ̃

��
V

inc

=={{{{{{{{

θ
// g

Proof. Define θ̃([v1, [v2, . . . , [vn−1, vn] . . .]]) to be {θv1, {θv2, . . . {θvn−1, θvn} . . .}} be the
unique map induced by the Lie relation. We need to show that for x, y in LV , we have
θ̃([x, y]) = {θ̃x, θ̃y} By induction on x ∈ LnV we see for n = 1 that x ∈ V . For n > 1 let
x = [v, x̄] Then

θ̃([x, y]) = θ̃([[v, x̄], y]) =︸︷︷︸
Jacobi

θ̃(±[v, [x̄, y]]±[x̄, [v, y]]) =︸︷︷︸
induction

±{θ̃v, θ̃[x̄, y]}±{θ̃x̄, θ̃[v, y]} =︸︷︷︸
induction

±{θ̃v, θ̃{θ̃x̄, θ̃y}}±{θ̃x̄, θ̃{θ̃v, θ̃y}} =︸︷︷︸
Jacobi

{{θ̃v, θ̃x̄}, θ̃y} =︸︷︷︸
induction

{θ̃[v, x̄], θ̃y} = {θ̃x, θ̃y}

Back to the Lie operad. Lie(n) is the span of monomials in LV with exactly one v1, . . . , vn

Lemma 1 The brackets [vσ(1), [vσ(2), . . . , [vσ(n−1), vn], . . . , ]] for σ ∈ Σn−1 form a basis for
Lie(n). In particular, the dimension is (n− 1)!

You just use anticommutativity to put one thing at the end, and then Jacobi to move the
other brackets to this form.

[Discussion of Lie → Ass → Com. We agree that the maps don’t go in the other direction.]
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Let’s to another example, the little disks operad. Let C be the topological category, and let
Dk be {x ∈ Rk| |x| ≤ 1} be the k-ball. We define a little disk to be a map f : Dk → Dk of
the form f(x1, . . . , xk) = y1 + cx1, . . . , yk + cxk so that c ≤ 1 and f(Dk) ⊂ Dk. The little
k-disk operad consists of Dk(n) = {f1, . . . , fn} where each fi is a little disk such that their
images can touch but not intersect in the interiors.

[What if they can’t touch?] I think something breaks but I don’t know what.

Let me draw a picture. [picture]

This sits in Rn(k+1). Now I need to tell you the structures. The identity in Dk(1) is the
identity of Dk. I’m using the cartesian product, so (f1, . . . , fn).σ = (fσ(1), . . . , fσ(n)).

You can do this for cubes too, but it’s very hard to write a map between the little disks to
little cubes.

Let me finish this example. The composition is as follows. ◦i : Dk(n) ×Dk(m) → Dk(n +
m − 1) takes (f1, . . . , fn) ◦i (g1, . . . , gn) 7→ (f1, . . . , fi−1, fi ◦ g1, . . . fi ◦ gm, fi+1, . . . , fn). So
here’s an example [picture].

Let (X, ∗) be a based topological space. Let ΩkX = {r : Dk → X|r(δDk) = ∗}. This is the
kth iterated loop space. The way I’ve defined it is already nice. I can do an algebra map. We
claim that ΩkX is an algebra over Dk, so there is an operad map from F : Dk → EndΩkX

which means that for all n there are maps Fn : Dk(n) → Hom(ΩkX)n,ΩkX).

[Picture describing the map].

So for t ∈ Dk, given r1, . . . , rn from Dk → X, t maps to rj ◦ f−1
j (t) if t ∈ fj(Dk) for some j

and otherwise to the basepoint.
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