Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

Recall that for V a vector space over k, we had $T V=\bigoplus V^{\otimes n}$ and $L V=\bigcap_{V \subset g \subset T V} g$. Then

$$
\tilde{\Delta}\left(v_{1}, \ldots, v_{n}\right)=\sum_{p, q \text {-shuffles, }, p+q=n}\left(v_{\sigma(1)}, \ldots, v_{\sigma(p)}\right) \otimes\left(v_{\sigma(p+1)}, \ldots, v_{\sigma(n)}\right)
$$

So $\gamma: T V \rightarrow L V$ takes 1 to 0 and $v \in V$ to itself. It takes v_{1}, \ldots, v_{n} to $\left[v_{1},\left[v_{2}, \ldots,\left[v_{n-1}, v_{n}\right] \ldots\right]\right]$

Proposition 1 For $x \in V^{\otimes n} \subset T V$ the following are equivalent:

1. $x \in L V$
2. $\tilde{\Delta}(x)=x \otimes 1+1 \otimes x$
3. $\gamma(x)=n \cdot x$

The easiest implication is the third to the first. Assume that $\gamma(x)=n . x$. Then $x=\frac{\gamma(x)}{n}$ so it's in the free Lie algebra, since γ is a map to the free Lie algebra. All iterated brackets are in the free Lie algebra.

Let me show the first implies the second. Let \tilde{g} be those x in $T V$ such that $\tilde{\Delta}(x)=x \otimes 1+1 \otimes x$. I claim that \tilde{g} is a Lie subalgebra of $T V$. If I have $x, y \in \tilde{g}$, and I take their bracket, I take $\tilde{\Delta}([x, y])$, what is that? Let's see. It's $\tilde{\Delta}(x y-y x)$. Recall that $\tilde{\Delta}$ is an algebra map, so this is

$$
\tilde{\Delta}(x) \tilde{\Delta}(y)-\tilde{\Delta}(y) \tilde{\Delta}(x)=(x \otimes 1+1 \otimes x)(y \otimes 1+1 \otimes y)-(y \otimes 1+1 \otimes y)(x \otimes 1+1 \otimes x)
$$

If you foil this, you get

$$
[x, y] \otimes 1+1 \otimes[x, y]
$$

. So this is a subalgebra of $T X$ as a Lie algebra. So $L V \subset \tilde{g}$.
The last implication assumes that $\tilde{\Delta}(x)=x \otimes 1+1 \otimes x$. We will see in a moment that $n . x=\bullet \circ\left(\gamma \otimes i d_{T} V\right) \circ \tilde{\Delta}$. This is a map from $T V$ to $T V \otimes T V$ to $L V \otimes T V$ to $T V$. Then this is $\bullet(\gamma \otimes i d)(x \otimes 1+1 \otimes x)$. Since $\gamma(1)=0$ we have $\bullet(\gamma(x) \otimes 1)=\gamma(x)$. The only thing I
owe you is to show that $n x=\bullet(\gamma \otimes i d) \tilde{\Delta}$. We show this by induction on n. The first couple of pieces are pretty trivial. If $n=0$ this is a scalar and will eventually go to 0 . If you start with $v \in V$ you get $\bullet(\gamma(v) \otimes 1)=\gamma(v)$.

Let $n \geq 2$; we'll do a little induction here. Assume that, I'm going to show it for homogeneous elements. Let $x=\left(v_{1}, \ldots, v_{n}\right)$. Write $\tilde{\Delta}$, apply it to $\left(v_{2}, \ldots, v_{n}\right)$, so this is $1 \otimes\left(v_{2} \ldots v_{n}\right)+$ $\sum_{i} a_{i} \otimes b_{i}$. The only thing I do is that $a_{i} \in V^{\otimes \geq 1}$.

By induction, $(n-1)\left(v_{2}, \ldots, v_{n}\right)$ is $\bullet(\gamma \otimes i d) \tilde{\Delta}\left(v_{2}, \ldots, v_{n}\right)=\bullet(\gamma \otimes i d)\left(1 \otimes\left(v_{2}, \ldots, v_{n}\right)+\right.$ $\left.\left.\sum a_{i} \otimes b_{i}\right]=\sum \gamma_{i}\left(a_{i}\right), b_{i}\right)$.

Then
$\left.\bullet(\gamma \otimes i d) \tilde{\Delta}\left(v_{1}, \ldots, v_{n}\right)=\bullet(\gamma \otimes i d)\left[v_{1} \otimes 1+1 \otimes v_{1}\right)\left(1 \otimes v_{2} \ldots v_{n}\right)\right]=v_{1} \otimes v_{2} \ldots, v_{n}+\sum v_{i} a_{i} \otimes b_{i}+1 \ldots v_{1} \ldots v_{n}+\sum a_{i} \otimes v$

$$
=\bullet\left(v_{1} \otimes v_{2}, \ldots, v_{n}\right)+\sum \gamma\left(v_{1} a_{i}\right) b_{i}+\sum\left(\gamma\left(a_{i}\right)\right) v_{i} b_{i}
$$

The last piece of this is $\left[v_{1}, \gamma\left(a_{i}\right)\right]-v_{1} \gamma\left(a_{i}\right)-\gamma\left(a_{i}\right) v_{1}$ so we get

$$
v_{1} v_{2} \ldots, v_{n}+\sum v_{1} \gamma\left(a_{i}\right) b_{i}=v_{1} \ldots v_{n}+(n-1) v_{1} \ldots v_{n}=n\left(v_{1} \ldots v_{n}\right)
$$

Corollary 1 for all $\theta: V \rightarrow g$ there exists a unique map $\tilde{\theta}: L V \rightarrow g$ a Lie algebra map which extends:

Proof. Define $\tilde{\theta}\left(\left[v_{1},\left[v_{2}, \ldots,\left[v_{n-1}, v_{n}\right] \ldots\right]\right]\right)$ to be $\left\{\theta v_{1},\left\{\theta v_{2}, \ldots\left\{\theta v_{n-1}, \theta v_{n}\right\} \ldots\right\}\right\}$ be the unique map induced by the Lie relation. We need to show that for x, y in $L V$, we have $\tilde{\theta}([x, y])=\{\tilde{\theta} x, \tilde{\theta} y\}$ By induction on $x \in L^{n} V$ we see for $n=1$ that $x \in V$. For $n>1$ let $x=[v, \bar{x}]$ Then
$\tilde{\theta}([x, y])=\tilde{\theta}([[v, \bar{x}], y]) \underbrace{=}_{\text {Jacobi }} \tilde{\theta}(\pm[v,[\bar{x}, y]] \pm[\bar{x},[v, y]]) \underbrace{=}_{\text {induction }} \pm\{\tilde{\theta} v, \tilde{\theta}[\bar{x}, y]\} \pm\{\tilde{\theta} \bar{x}, \tilde{\theta}[v, y]\} \underbrace{=}_{\text {induction }} \pm\{\tilde{\theta} v, \tilde{\theta}\{\tilde{\theta} \bar{x}, \tilde{\theta} y\}\} \pm$
Back to the Lie operad. $\operatorname{Lie}(n)$ is the span of monomials in $L V$ with exactly one v_{1}, \ldots, v_{n}

Lemma 1 The brackets $\left[v_{\sigma(1)},\left[v_{\sigma(2)}, \ldots,\left[v_{\sigma(n-1)}, v_{n}\right], \ldots,\right]\right]$ for $\sigma \in \Sigma_{n-1}$ form a basis for Lie (n). In particular, the dimension is $(n-1)$!

You just use anticommutativity to put one thing at the end, and then Jacobi to move the other brackets to this form.
[Discussion of Lie \rightarrow Ass \rightarrow Com. We agree that the maps don't go in the other direction.]

Let's to another example, the little disks operad. Let \mathscr{C} be the topological category, and let D^{k} be $\left\{x \in \mathbb{R}^{k}| | x \mid \leq 1\right\}$ be the k-ball. We define a little disk to be a map $f: D^{k} \rightarrow D^{k}$ of the form $f\left(x_{1}, \ldots, x_{k}\right)=y_{1}+c x_{1}, \ldots, y_{k}+c x_{k}$ so that $c \leq 1$ and $f\left(D^{k}\right) \subset D^{k}$. The little k-disk operad consists of $D_{k}(n)=\left\{f_{1}, \ldots, f_{n}\right\}$ where each f_{i} is a little disk such that their images can touch but not intersect in the interiors.
[What if they can't touch?] I think something breaks but I don't know what.
Let me draw a picture. [picture]
This sits in $\mathbb{R}^{n(k+1)}$. Now I need to tell you the structures. The identity in $D_{k}(1)$ is the identity of D^{k}. I'm using the cartesian product, so $\left(f_{1}, \ldots, f_{n}\right) \cdot \sigma=\left(f_{\sigma}(1), \ldots, f_{\sigma(n)}\right)$.

You can do this for cubes too, but it's very hard to write a map between the little disks to little cubes.

Let me finish this example. The composition is as follows. $\circ_{i}: D_{k}(n) \times D_{k}(m) \rightarrow D_{k}(n+$ $m-1)$ takes $\left(f_{1}, \ldots, f_{n}\right) \circ_{i}\left(g_{1}, \ldots, g_{n}\right) \mapsto\left(f_{1}, \ldots, f_{i-1}, f_{i} \circ g_{1}, \ldots f_{i} \circ g_{m}, f_{i+1}, \ldots, f_{n}\right)$. So here's an example [picture].

Let $(X, *)$ be a based topological space. Let $\Omega^{k} X=\left\{r: D^{k} \rightarrow X \mid r\left(\delta D^{k}\right)=*\right\}$. This is the k th iterated loop space. The way I've defined it is already nice. I can do an algebra map. We claim that $\Omega^{k} X$ is an algebra over D_{k}, so there is an operad map from $\mathscr{F}: D_{k} \rightarrow \operatorname{End}_{\Omega^{k} X}$ which means that for all n there are maps $\left.\mathscr{F}_{n}: D_{k}(n) \rightarrow \operatorname{Hom}\left(\Omega^{k} X\right)^{n}, \Omega^{k} X\right)$.
[Picture describing the map].
So for $t \in D^{k}$, given r_{1}, \ldots, r_{n} from $D^{k} \rightarrow X, t$ maps to $r_{j} \circ f_{j}^{-1}(t)$ if $t \in f_{j}\left(D^{k}\right)$ for some j and otherwise to the basepoint.

