## Deformation Theory and Operads

Gabriel C. Drummond-Cole

## July 9, 2012

Recall that for V a vector space over k, we had  $TV = \bigoplus V^{\otimes n}$  and  $LV = \bigcap_{V \subseteq q \subseteq TV} g$ . Then

$$\tilde{\Delta}(v_1,\ldots,v_n) = \sum_{p,q-\text{shuffles}, p+q=n} (v_{\sigma(1)},\ldots,v_{\sigma(p)}) \otimes (v_{\sigma(p+1)},\ldots,v_{\sigma(n)})$$

So  $\gamma: TV \to LV$  takes 1 to 0 and  $v \in V$  to itself. It takes  $v_1, \ldots, v_n$  to  $[v_1, [v_2, \ldots, [v_{n-1}, v_n] \ldots]]$ 

**Proposition 1** For  $x \in V^{\otimes n} \subset TV$  the following are equivalent:

1.  $x \in LV$ 2.  $\tilde{\Delta}(x) = x \otimes 1 + 1 \otimes x$ 3.  $\gamma(x) = n \cdot x$ 

The easiest implication is the third to the first. Assume that  $\gamma(x) = n.x$ . Then  $x = \frac{\gamma(x)}{n}$  so it's in the free Lie algebra, since  $\gamma$  is a map to the free Lie algebra. All iterated brackets are in the free Lie algebra.

Let me show the first implies the second. Let  $\tilde{g}$  be those x in TV such that  $\tilde{\Delta}(x) = x \otimes 1 + 1 \otimes x$ . I claim that  $\tilde{g}$  is a Lie subalgebra of TV. If I have  $x, y \in \tilde{g}$ , and I take their bracket, I take  $\tilde{\Delta}([x, y])$ , what is that? Let's see. It's  $\tilde{\Delta}(xy - yx)$ . Recall that  $\tilde{\Delta}$  is an algebra map, so this is

$$\tilde{\Delta}(x)\tilde{\Delta}(y) - \tilde{\Delta}(y)\tilde{\Delta}(x) = (x \otimes 1 + 1 \otimes x)(y \otimes 1 + 1 \otimes y) - (y \otimes 1 + 1 \otimes y)(x \otimes 1 + 1 \otimes x)$$

If you foil this, you get

$$[x,y] \otimes 1 + 1 \otimes [x,y]$$

. So this is a subalgebra of TX as a Lie algebra. So  $LV \subset \tilde{g}$ .

The last implication assumes that  $\dot{\Delta}(x) = x \otimes 1 + 1 \otimes x$ . We will see in a moment that  $n.x = \bullet \circ (\gamma \otimes id_T V) \circ \tilde{\Delta}$ . This is a map from TV to  $TV \otimes TV$  to  $LV \otimes TV$  to TV. Then this is  $\bullet(\gamma \otimes id)(x \otimes 1 + 1 \otimes x)$ . Since  $\gamma(1) = 0$  we have  $\bullet(\gamma(x) \otimes 1) = \gamma(x)$ . The only thing I

owe you is to show that  $nx = \bullet(\gamma \otimes id)\tilde{\Delta}$ . We show this by induction on n. The first couple of pieces are pretty trivial. If n = 0 this is a scalar and will eventually go to 0. If you start with  $v \in V$  you get  $\bullet(\gamma(v) \otimes 1) = \gamma(v)$ .

Let  $n \ge 2$ ; we'll do a little induction here. Assume that, I'm going to show it for homogeneous elements. Let  $x = (v_1, \ldots, v_n)$ . Write  $\tilde{\Delta}$ , apply it to  $(v_2, \ldots, v_n)$ , so this is  $1 \otimes (v_2 \ldots v_n) + \sum_i a_i \otimes b_i$ . The only thing I do is that  $a_i \in V^{\otimes \ge 1}$ .

By induction,  $(n-1)(v_2, \ldots, v_n)$  is  $\bullet(\gamma \otimes id)\tilde{\Delta}(v_2, \ldots, v_n) = \bullet(\gamma \otimes id)(1 \otimes (v_2, \ldots, v_n) + \sum a_i \otimes b_i] = \sum \gamma_i(a_i), b_i).$ 

Then

$$\bullet(\gamma \otimes id)\tilde{\Delta}(v_1,\ldots,v_n) = \bullet(\gamma \otimes id)[v_1 \otimes 1 + 1 \otimes v_1)(1 \otimes v_2 \ldots v_n)] = v_1 \otimes v_2 \ldots, v_n + \sum v_i a_i \otimes b_i + 1 \ldots v_1 \ldots v_n + \sum a_i \otimes v_i \otimes b_i + 1 \ldots v_n + \sum a_i \otimes v_i \otimes b_i + 1 \ldots v_n + \sum a_i \otimes v_i \otimes b_i + 1 \ldots \otimes v_n + \sum a_i \otimes v_i \otimes b_i + 1 \ldots \otimes v_n + \sum a_i \otimes v_i \otimes b_i + 1 \ldots \otimes v_n + \sum a_i \otimes v_i \otimes b_i + 1 \ldots \otimes v_n + \sum a_i \otimes v_i \otimes b_i + 1 \ldots \otimes v_n + \sum a_i \otimes v_i \otimes b_i + 1 \ldots \otimes v_n + \sum a_i \otimes v_i \otimes b_i + 1 \ldots \otimes v_n + \sum a_i \otimes v_i \otimes b_i + 1 \ldots \otimes v_n + \sum a_i \otimes v_i \otimes b_i + 1 \ldots \otimes v_n + \sum a_i \otimes v_i \otimes v_i \otimes b_i + 1 \ldots \otimes v_n + \sum a_i \otimes v_i \otimes v_i \otimes v_i \otimes v_n + 1 \otimes v_i \otimes v_n + 1 \otimes v_n \otimes v$$

$$= \bullet(v_1 \otimes v_2, \dots, v_n) + \sum \gamma(v_1 a_i) b_i + \sum (\gamma(a_i)) v_i b_i$$

The last piece of this is  $[v_1, \gamma(a_i)] - v_1\gamma(a_i) - \gamma(a_i)v_1$  so we get

$$v_1v_2\ldots,v_n+\sum v_1\gamma(a_i)b_i=v_1\ldots v_n+(n-1)v_1\ldots v_n=n(v_1\ldots v_n)$$

**Corollary 1** for all  $\theta : V \to g$  there exists a unique map  $\tilde{\theta} : LV \to g$  a Lie algebra map which extends:



*Proof.* Define  $\hat{\theta}([v_1, [v_2, \dots, [v_{n-1}, v_n] \dots]])$  to be  $\{\theta v_1, \{\theta v_2, \dots, \{\theta v_{n-1}, \theta v_n\} \dots\}\}$  be the unique map induced by the Lie relation. We need to show that for x, y in LV, we have  $\tilde{\theta}([x, y]) = \{\tilde{\theta} x, \tilde{\theta} y\}$  By induction on  $x \in L^n V$  we see for n = 1 that  $x \in V$ . For n > 1 let  $x = [v, \bar{x}]$  Then

$$\tilde{\theta}([x,y]) = \tilde{\theta}([[v,\bar{x}],y]) \underbrace{=}_{\text{Jacobi}} \tilde{\theta}(\pm[v,[\bar{x},y]]\pm[\bar{x},[v,y]]) \underbrace{=}_{\text{induction}} \pm\{\tilde{\theta}v,\tilde{\theta}[\bar{x},y]\}\pm\{\tilde{\theta}\bar{x},\tilde{\theta}[v,y]\} \underbrace{=}_{\text{induction}} \pm\{\tilde{\theta}v,\tilde{\theta}\{\tilde{\theta}\bar{x},\tilde{\theta}y\}\}\pm\{\tilde{\theta}\bar{x},\tilde{\theta}[v,y]\}$$

Back to the Lie operad. Lie(n) is the span of monomials in LV with exactly one  $v_1, \ldots, v_n$ 

**Lemma 1** The brackets  $[v_{\sigma(1)}, [v_{\sigma(2)}, \ldots, [v_{\sigma(n-1)}, v_n], \ldots, ]]$  for  $\sigma \in \Sigma_{n-1}$  form a basis for Lie(n). In particular, the dimension is (n-1)!

You just use anticommutativity to put one thing at the end, and then Jacobi to move the other brackets to this form.

[Discussion of  $Lie \rightarrow Ass \rightarrow Com$ . We agree that the maps don't go in the other direction.]

Let's to another example, the little disks operad. Let  $\mathscr{C}$  be the topological category, and let  $D^k$  be  $\{x \in \mathbb{R}^k | |x| \leq 1\}$  be the k-ball. We define a little disk to be a map  $f : D^k \to D^k$  of the form  $f(x_1, \ldots, x_k) = y_1 + cx_1, \ldots, y_k + cx_k$  so that  $c \leq 1$  and  $f(D^k) \subset D^k$ . The little k-disk operad consists of  $D_k(n) = \{f_1, \ldots, f_n\}$  where each  $f_i$  is a little disk such that their images can touch but not intersect in the interiors.

[What if they can't touch?] I think something breaks but I don't know what.

Let me draw a picture. [picture]

This sits in  $\mathbb{R}^{n(k+1)}$ . Now I need to tell you the structures. The identity in  $D_k(1)$  is the identity of  $D^k$ . I'm using the cartesian product, so  $(f_1, \ldots, f_n) \cdot \sigma = (f_{\sigma}(1), \ldots, f_{\sigma(n)})$ .

You can do this for cubes too, but it's very hard to write a map between the little disks to little cubes.

Let me finish this example. The composition is as follows.  $\circ_i : D_k(n) \times D_k(m) \to D_k(n + m-1)$  takes  $(f_1, \ldots, f_n) \circ_i (g_1, \ldots, g_n) \mapsto (f_1, \ldots, f_{i-1}, f_i \circ g_1, \ldots, f_i \circ g_m, f_{i+1}, \ldots, f_n)$ . So here's an example [picture].

Let (X, \*) be a based topological space. Let  $\Omega^k X = \{r : D^k \to X | r(\delta D^k) = *\}$ . This is the kth iterated loop space. The way I've defined it is already nice. I can do an algebra map. We claim that  $\Omega^k X$  is an algebra over  $D_k$ , so there is an operad map from  $\mathscr{F} : D_k \to End_{\Omega^k X}$  which means that for all n there are maps  $\mathscr{F}_n : D_k(n) \to Hom(\Omega^k X)^n, \Omega^k X)$ .

[Picture describing the map].

So for  $t \in D^k$ , given  $r_1, \ldots, r_n$  from  $D^k \to X$ , t maps to  $r_j \circ f_j^{-1}(t)$  if  $t \in f_j(D^k)$  for some j and otherwise to the basepoint.