Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

Recall. What you need for an operad is a sequence of $\operatorname{spaces} \mathcal{O}(n)$ for $n \geq 1$. You have a right Σ_{n} action on $\mathcal{O}(n)$, a $\circ_{i}: \mathcal{O}(n) \otimes \mathcal{O}(m) \rightarrow \mathcal{O}(n+m-1)$ satisfying associativity and equivariance, and then a unit $\mathcal{O}(1)$ which satisfies a unit condition. The two examples were the endomorphism operad of a vector space and of a topological space. We also did Com with $\operatorname{Com}(n)=k$ for $n \geq 1$ with the trivial action. I want to introduce a couple more operads today, associative and Lie, but before that I should talk about another example.
[What about the sign representation on Com?]
Tensoring with this $\widetilde{C o m}$ gives an operad where A is an algebra over $\mathcal{O} \otimes \widetilde{C o m}$ if ΠA is an algebra over \mathcal{O}. This is in a paper of Tamarkin's.

Let \mathcal{O} be an operad in vector spaces such that $\mathcal{O}(n)=0$ for all $n \geq 2$. So then $\mathcal{O}(1)=V$. This means that we have a right Σ_{1} action. That's vacuous. Then we have an operation $\circ_{1}: V \otimes V \rightarrow V$ satisfying associativity, along with a unit for \circ_{1}. In other words, we get an operad if and only if $(V, \mu, \mathbf{1})$ is an associative algebras. So associative algebras sit inside operads.

Let me make the definition of an algebra over an operad. First, let \mathcal{O}, \mathcal{P} be two operads in \mathscr{C} where this is either Top or Vect. Then a morphism of operads $\mathscr{F}: \mathcal{O} \rightarrow \mathcal{P}$ consists of a sequence of morphisms $\mathscr{F}_{n}: \mathcal{O}(n) \rightarrow \mathcal{P}(n)$ such that

1. $\mathscr{F}_{n}(f) \circ_{i} \mathscr{F}_{n}(g)=\mathscr{F}_{n+m-1}\left(f \circ_{i} g\right)$.
2. $\mathscr{F}_{n}(f \cdot \sigma)=\mathscr{F}_{n}(f) \cdot \sigma$
3. $\mathscr{F}_{1}\left(\mathbf{1}_{\mathcal{O}}\right)=\mathbf{1}_{\mathcal{P}}$

We call V an algebra over an operad \mathcal{O} if we are given a map from \mathcal{O} into the endomorphisms of V.

I guess the first interesting example is that a map $\mathcal{C o m} \rightarrow \operatorname{End}_{V}$ is really for each n a map $\operatorname{Com}(n) \rightarrow \operatorname{Hom}\left(V^{\otimes n}, V\right)$.

So $\operatorname{Com}(n)$ is k so all you do is choose, well, start with $\operatorname{Com}(1)$. This should go into $\operatorname{Hom}(V, V)$ so it should be the identity, the unit maps to the unit. Com(2) maps into $\operatorname{Hom}\left(V^{\otimes 2}, V\right)$. This is the only information, as we'll see in a moment. Take the unit of the field and this maps to $\mu: V^{\otimes 2} \rightarrow V$. There is a σ_{2} action here, and it is trivial. So the product μ is commutative.

All higher ones are generated by this; if you look at 1_{3} in $\operatorname{Com}(3)$, this is $1_{2} \circ_{1} 1_{2}$, which is $\mu_{3}: V^{\otimes 3} \rightarrow 3$. This means that $\mu_{3}\left(v_{1}, v_{2}, v_{3}\right)=\mathscr{F}_{3}\left(1_{3}\right)\left(v_{1}, v_{2}, v_{3}\right)$, which is

$$
\mathscr{F}_{3}\left(1_{2} \circ_{1} 1_{2}\right)\left(v_{1}, v_{2}, v_{3}\right)=\mathscr{F}_{2}\left(I_{2}\right) \circ_{1} \mathscr{F}_{2}\left(I_{2}\right)\left(v_{1}, v_{2}, v_{3}\right)=\mu \circ_{1} \mu\left(v_{1}, v_{2}, v_{3}\right)=\mu\left(\mu\left(v_{1}, v_{2}\right), v_{3}\right)
$$

The outcome is that V is an algebra over Com if and only if (V, μ) is a commutative associative algebra.

Let's get to a more interesting example. The associative operad $\operatorname{Assoc}(n)$ is the vector space spanned by non-commuting monomials in the variables x_{1}, \ldots, x_{n}, containing each x_{i} exactly once. This is the span of $\left\{x_{\sigma(1)}, \ldots, x_{\sigma(n)} \mid \sigma \in \Sigma_{n}\right\}$. So maybe let's do the lowest one. The lowest one is spanned by x_{1}. $\operatorname{Assoc}(2)$ is spanned by $x_{1} x_{2}$ and $x_{2} x_{1}$; Assoc(3) has six permutations. We need a unit, which will be x_{1}. The Σ_{n} action is that $\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \rho=x_{\sigma \rho(1)}, \ldots, x_{\sigma \rho(n)}$. Check that this is an action, that $\left(\bar{x}_{\sigma} \rho\right) \rho^{\prime}=\left(\bar{x}_{\sigma}\right) \rho \rho^{\prime}$.
Composition of $\left(x_{\sigma_{1}}, \ldots, x_{\sigma_{n}}\right) \circ_{i}\left(x_{\rho_{1}}, \ldots, x_{\rho_{m}}\right)$ is the substitution of $x_{\rho_{1}}, \ldots, x_{\rho_{m}}$ at the x_{i} th spot. So $\left(x_{3} x_{1} x_{2} x_{4}\right) \circ_{2}\left(x_{3} x_{2} x_{1}\right)$. This should be in $\operatorname{Assoc}(6)$. It's $x_{5} x_{1}\left(x_{4} x_{3} x_{2}\right) x_{6}$. I put the parentheses to acknowledge the placment. They don't matter.

So what is an algebra over Assoc ? It's $\mathscr{F}_{n}: \operatorname{Assoc}(n) \rightarrow \operatorname{Hom}\left(V^{\otimes n}, V\right)$. So the unit goes to the identity again, and then $x_{1} x_{2} \in \operatorname{Assoc}(2)$ goes to $\mu \in \operatorname{Hom}\left(V^{\otimes 2}, V\right)$. Then $x_{2} x_{1}$ goes to $\tilde{\mu} \in \operatorname{Hom}\left(V^{\otimes 2}, V\right)$. So $\mu\left(v_{1}, v_{2}\right)=\mathscr{F}_{2}\left(x_{1} x_{2}\right)=\mathscr{F}_{2}\left(x_{2} x_{1} \cdot \tau\right)\left(v_{1}, v_{2}\right)=\mathscr{F}_{2}\left(x_{2}, x_{1}\right) \cdot \tau\left(v_{1}, v_{2}\right)=$ $\tilde{\mu} . \tau\left(v, v_{2}\right)=\tilde{\mu}\left(v_{2}, v_{1}\right)$ so $\tilde{\mu}=\mu^{o p}$. So the \circ_{i} operation determine the higher operations in terms of the lower ones, and that the product is associative.

From the Σ_{n} action we see that
$\mathscr{F}_{n}\left(x_{\sigma 1}, \ldots, x_{\sigma n}\right)\left(v_{1}, \ldots, v_{n}\right)=\mathscr{F}_{n}\left(x_{1}, \ldots, x_{n} . \sigma\right)\left(v_{1}, \ldots, v_{n}\right)=\mathscr{F}_{n}\left(x_{1}, \ldots, x_{n}\right) \cdot \sigma\left(v_{1}, \ldots, v_{n}\right)=\mathscr{F}_{n}\left(x_{1}, \ldots, x_{n}\right)\left(v_{o}\right.$

So this is the general scheme. If you have a structure and want to build the operad that governs it, we've done the associative and the commutative. We could do the commutative differently. The associative algebra was x_{1}, \ldots, x_{n} and, well, let's see how I want to write this. Note that we could have also written $\mathcal{C o m}(n)$ to be the span of all monomials with exactly one x_{1} up to x_{n} living in the free symmetric algebra.

Let $\operatorname{Lie}(n)$ be the span of all monomials with exactly one x_{1}, \ldots, x_{n} in the free Lie algebra $L\left(x_{1}, \ldots, x_{n}\right)$. Recall that $(L,[]$,$) is a Lie algebra if [,] : L \otimes L \rightarrow L$ satisfies $\left[\ell_{1}, \ell_{2}\right]=-\left[\ell_{2}, \ell_{1}\right]$ and $\left[\left[\ell_{1}, \ell_{2}\right], \ell_{3}\right]+\left[\left[\ell_{2}, \ell_{3}\right], \ell_{1}\right]+\left[\left[\ell_{3}, \ell_{1}\right], \ell_{2}\right]=0$ (Jacobi) You think of the free Lie algebra as anything you can build out of brackets. Any iterated brackets up to anticommutativity and Jacobi.

Recall that for a vector space V we have the free tensor algebra $T V$, the sum

$$
\bigoplus_{n \geq 0} V^{\otimes n}
$$

satisfying that it is free, namely for all vector space maps $V \rightarrow A$ there is a unique lift $T V \rightarrow A$ such that you have some commutative diagram.

This map just depends on the lowest component. You eventually see that $\tilde{f}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=$ $f\left(v_{1}\right) \cdots f\left(v_{n}\right)$. There is an induced Lie algebra structure on $T V$ given by $[x, y]=x \otimes y-y \otimes x$. Then define $L V$ to be the Lie subalgebra of $T V,[$,$] generated by V$. This is explicitly the intersection of all Lie algebras inside $T V$ containing V. This is $L V$ and one of the goals is to show that this is the free Lie algebra generated by V. For each vector space morphism there is a unique lift to $L V$. It's unfortunately hard to compute or calculate with $L V$.

What I'd like to do is give a characterization of $L V$. This is not done very often. Note that $T V \otimes T V$ is an associative algebra: $(x \otimes y) \bullet(r \otimes s)=(x \cdot r) \otimes(y \cdot s)$ so using $\Delta: V \rightarrow T V \otimes T V$, which maps V to $V \otimes 1+1 \otimes V$, I just gave you a map of V into some algebra. Then using the universal property there is an induced algebra map $\tilde{\Delta}: T V \rightarrow T V \otimes T V$. How does this act? So $\tilde{\Delta}\left(v_{1}, \ldots, v_{n}\right)$ is determined by its lowest components: It's $\Pi \Delta\left(v_{i}\right)$ So this is $\left(v_{1} \otimes 1+1 \otimes v_{1}\right) \cdots\left(v_{n} \otimes 1+1 \otimes v_{n}\right)$, and multiplying this out you get, for each one, v_{i} in one or the other factor. This is called an unshuffle or a shuffle

$$
\sum_{p+q=n} \sum_{(p, q)-\text { shuffles } \sigma}\left(x_{\sigma 1} \otimes \cdots \otimes x_{\sigma p}\right) \otimes\left(x_{\sigma(p+1)} \otimes \cdots \otimes x_{\sigma n}\right)
$$

Where σ is a p, q shuffle if $\sigma(1)<\cdots<\sigma(p)$ and $\sigma(p+1)<\cdots<\sigma(n)$.
Let me state, well, this is commutative. You can shuffle in the opposite order, so this is actually a commutative bialgebra. To continue, this is a Hopf algebra with antipode given by $S\left(v_{1}, \ldots, v_{n}\right)$ is $\left(v_{n} \otimes \cdots \otimes v_{1}\right)$

Now let $\gamma: T V \rightarrow L V$ be given by $\gamma\left(1_{T V}\right)=0$ and $\gamma(v)=v$. Then

$$
\gamma\left(v_{1} \otimes \cdots \otimes v_{n}\right)=\left[v_{1},\left[v_{2}, \cdots,\left[v_{n-1}, v_{n}\right] \cdots\right]\right]
$$

Proposition 1 For $x \in V^{\otimes n} \subset T V$ the following are equivalent:

1. $x \in L V$
2. $\tilde{\Delta}(x)=x \otimes 1+1 \otimes x$ (Friedrichs)
3. $\gamma(x)=n x$ (Dynkin-Specht-Weiner)

I'm out of time.

