
Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

Recall. What you need for an operad is a sequence of spaces O(n) for n ≥ 1. You have
a right Σn action on O(n), a ◦i : O(n) ⊗ O(m) → O(n + m − 1) satisfying associativity
and equivariance, and then a unit O(1) which satisfies a unit condition. The two examples
were the endomorphism operad of a vector space and of a topological space. We also did
Com with Com(n) = k for n ≥ 1 with the trivial action. I want to introduce a couple more
operads today, associative and Lie, but before that I should talk about another example.

[What about the sign representation on Com?]

Tensoring with this C̃om gives an operad where A is an algebra over O ⊗ C̃om if ΠA is an
algebra over O. This is in a paper of Tamarkin’s.

Let O be an operad in vector spaces such that O(n) = 0 for all n ≥ 2. So then O(1) = V .
This means that we have a right Σ1 action. That’s vacuous. Then we have an operation
◦1 : V ⊗ V → V satisfying associativity, along with a unit for ◦1. In other words, we get
an operad if and only if (V, µ,1) is an associative algebras. So associative algebras sit inside
operads.

Let me make the definition of an algebra over an operad. First, let O,P be two operads in
C where this is either Top or V ect. Then a morphism of operads F : O → P consists of a
sequence of morphisms Fn : O(n) → P(n) such that

1. Fn(f) ◦i Fn(g) = Fn+m−1(f ◦i g).

2. Fn(f · σ) = Fn(f) · σ

3. F1(1O) = 1P

We call V an algebra over an operad O if we are given a map from O into the endomorphisms
of V .

I guess the first interesting example is that a map Com → EndV is really for each n a map
Com(n) → Hom(V ⊗n, V ).
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So Com(n) is k so all you do is choose, well, start with Com(1). This should go into
Hom(V, V ) so it should be the identity, the unit maps to the unit. Com(2) maps into
Hom(V ⊗2, V ). This is the only information, as we’ll see in a moment. Take the unit of the
field and this maps to µ : V ⊗2 → V . There is a σ2 action here, and it is trivial. So the
product µ is commutative.

All higher ones are generated by this; if you look at 13 in Com(3), this is 12 ◦1 12, which is
µ3 : V ⊗3 → 3. This means that µ3(v1, v2, v3) = F3(13)(v1, v2, v3), which is

F3(12 ◦1 12)(v1, v2, v3) = F2(I2) ◦1 F2(I2)(v1, v2, v3) = µ ◦1 µ(v1, v2, v3) = µ(µ(v1, v2), v3)

The outcome is that V is an algebra over Com if and only if (V, µ) is a commutative associative
algebra.

Let’s get to a more interesting example. The associative operad Assoc(n) is the vector
space spanned by non-commuting monomials in the variables x1, . . . , xn, containing each
xi exactly once. This is the span of {xσ(1), . . . , xσ(n)|σ ∈ Σn}. So maybe let’s do the
lowest one. The lowest one is spanned by x1. Assoc(2) is spanned by x1x2 and x2x1;
Assoc(3) has six permutations. We need a unit, which will be x1. The Σn action is that
(xσ(1), . . . , xσ(n))ρ = xσρ(1), . . . , xσρ(n). Check that this is an action, that (x̄σρ)ρ′ = (x̄σ)ρρ′.

Composition of (xσ1 , . . . , xσn)◦i (xρ1 , . . . , xρm) is the substitution of xρ1 , . . . , xρm at the xith
spot. So (x3x1x2x4) ◦2 (x3x2x1). This should be in Assoc(6). It’s x5x1(x4x3x2)x6. I put the
parentheses to acknowledge the placment. They don’t matter.

So what is an algebra over Assoc? It’s Fn : Assoc(n) → Hom(V ⊗n, V ). So the unit goes to
the identity again, and then x1x2 ∈ Assoc(2) goes to µ ∈ Hom(V ⊗2, V ). Then x2x1 goes to
µ̃ ∈ Hom(V ⊗2, V ). So µ(v1, v2) = F2(x1x2) = F2(x2x1.τ)(v1, v2) = F2(x2, x1).τ(v1, v2) =
µ̃.τ(v,v2) = µ̃(v2, v1) so µ̃ = µop. So the ◦i operation determine the higher operations in
terms of the lower ones, and that the product is associative.

From the Σn action we see that

Fn(xσ1, . . . , xσn)(v1, . . . , vn) = Fn(x1, . . . , xn.σ)(v1, . . . , vn) = Fn(x1, . . . , xn).σ(v1, . . . , vn) = Fn(x1, . . . , xn)(vσ−11, . . . , vσ−1n) = (vσ−11, . . . , vσ−1n)

So this is the general scheme. If you have a structure and want to build the operad that
governs it, we’ve done the associative and the commutative. We could do the commutative
differently. The associative algebra was x1, . . . , xn and, well, let’s see how I want to write
this. Note that we could have also written Com(n) to be the span of all monomials with
exactly one x1 up to xn living in the free symmetric algebra.

Let Lie(n) be the span of all monomials with exactly one x1, . . . , xn in the free Lie al-
gebra L(x1, . . . , xn). Recall that (L, [ , ]) is a Lie algebra if [ , ] : L ⊗ L → L satisfies
[`1, `2] = −[`2, `1] and [[`1, `2], `3] + [[`2, `3], `1] + [[`3, `1], `2] = 0 (Jacobi) You think of
the free Lie algebra as anything you can build out of brackets. Any iterated brackets up to
anticommutativity and Jacobi.
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Recall that for a vector space V we have the free tensor algebra TV , the sum⊕
n≥0

V ⊗n

satisfying that it is free, namely for all vector space maps V → A there is a unique lift
TV → A such that you have some commutative diagram.

TV

f̃

��
V

i

=={{{{{{{{

f
// A

This map just depends on the lowest component. You eventually see that f̃(v1 ⊗ · · · ⊗ vn) =
f(v1) · · · f(vn). There is an induced Lie algebra structure on TV given by [x, y] = x⊗y−y⊗x.
Then define LV to be the Lie subalgebra of TV, [ , ] generated by V . This is explicitly the
intersection of all Lie algebras inside TV containing V . This is LV and one of the goals is to
show that this is the free Lie algebra generated by V . For each vector space morphism there
is a unique lift to LV . It’s unfortunately hard to compute or calculate with LV .

What I’d like to do is give a characterization of LV . This is not done very often. Note that
TV ⊗TV is an associative algebra: (x⊗y)•(r⊗s) = (x·r)⊗(y ·s) so using ∆ : V → TV ⊗TV ,
which maps V to V ⊗ 1 + 1⊗ V , I just gave you a map of V into some algebra. Then using
the universal property there is an induced algebra map ∆̃ : TV → TV ⊗ TV . How does
this act? So ∆̃(v1, . . . , vn) is determined by its lowest components: It’s

∏
∆(vi) So this is

(v1 ⊗ 1 + 1 ⊗ v1) · · · (vn ⊗ 1 + 1 ⊗ vn), and multiplying this out you get, for each one, vi in
one or the other factor. This is called an unshuffle or a shuffle∑

p+q=n

∑
(p,q)−shufflesσ

(xσ1 ⊗ · · · ⊗ xσp)⊗
(
xσ(p+1) ⊗ · · · ⊗ xσn

)
Where σ is a p, q shuffle if σ(1) < · · · < σ(p) and σ(p + 1) < · · · < σ(n).

Let me state, well, this is commutative. You can shuffle in the opposite order, so this is
actually a commutative bialgebra. To continue, this is a Hopf algebra with antipode given
by S(v1, . . . , vn) is (vn ⊗ · · · ⊗ v1)

Now let γ : TV → LV be given by γ(1TV ) = 0 and γ(v) = v. Then

γ(v1 ⊗ · · · ⊗ vn) = [v1, [v2, · · · , [vn−1, vn] · · · ]]

Proposition 1 For x ∈ V ⊗n ⊂ TV the following are equivalent:

1. x ∈ LV

2. ∆̃(x) = x⊗ 1 + 1⊗ x (Friedrichs)

3. γ(x) = nx (Dynkin-Specht-Weiner)

I’m out of time.
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