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Let mathcalA be the category of local Artin k-algebras with residue field k. Local means one
maximal ideal. This should be commutative, associative, and unital. I have a map k → R
and another map R → R/m. I assume that R/m is isomorphic to k and that the composition
of the reduction with the unit is an isomorphism. I don’t need to say this if k is algebraically
closed.

Artin by definition means that, it’s some finiteness condition on ideals which translates into
the following: Such rings R are isomorphic to k ⊕ mR where mR is finite dimensional and
nilpotent. In fact, there’s a structure theorem giving each R as a polynomial ring in a finite
number of variables modulo an ideal which is nilpotent, where some power of t is zero. As
an example, k[t1, t2, t3]/〈t41 − t22t

3, t120, t23〉. The morphisms are morphisms of k-algebras.

Let ˆmathcalA be the category of complete local Noetherian k-algebras, let me say it this way,
of Noetherian projective limits of local Artin algebras. These are local rings with a maximal
ideal m such that R/m is isomorphic to k and R/mn is in A for each n. In fact R is the
limit of the diagrams · · · → R/m3 → R/m2 → R/m = k. Every chain of ideals stabilizes,
I1 ⊂ I2 ⊂ · · · . Every ascending chain of ideals is finite. Artin means every descending chain
is finite, and that is stronger and implies Noetherian.

Example: k[t]/t5 is Artin. The ideals are spanned by t, t2, and so on. There are only four
nontrivial ideals, and so there is just one chain, which is finite. Now, k[[t]] is Noetherian.
You have the ideals generated by tn. But k[t1, t2, . . .]/〈t2i 〉 is not Noetherian and you don’t
want to consider that. This diagram does not relate well to topology.

Definition 1 A functor of Artin rings is a covariant functor mathcalA → Sets. An element
γ ∈ F (A) is called a deformation of γ0 ∈ F (A/m) where γ0 is the image of γ under the map
F (A) 7→ F (A/m) where this is the induced map.

We define the tangent space to F to be tF = F (k[ε]) where k[ε] means k[ε]/ε2.

Let’s look at some examples. Let (V, •) be an associative k-algebra. Define F (A) to be
F (A) = Deformations of (V, •) over A which is associative products from (V ⊗ mA)⊗A2 →
V ⊗mA. Recall if (A, ε) is an augmented ring, where ε : A → k then a deformation of (V, •)
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over (A, ε) is an associative product µ on V ⊗ A such that the map V ⊗ A → V ⊗ k → V is
a map of algebras.

Given an Artin local ring A we have an augmentation ε : A → A/m ∼= k. So such a
deformation is an associative product µ such that V ⊗ A → V is a map of algebras. Since
A ∼= k⊕m this is V ⊕ V ⊗m → V . The part in the V cannot change, and the map kills the
m side.

How do I define f on morphisms? Given a deformation over A and a homomorphism over
B I need to define a homomorphism over B. We can express µ(v, w) = vw + b(v, w) where
b(v, w) ∈ V ⊗mA. So I can define a new product on V ⊗B by µσ(v, w) = vw + σ(b(v, w)).

The next example would have this be deformations modulo equivalence and I’d also get a
functor. But here’s the example that I like. Fix an R in Â and define h : mathcalA → Sets
by hR(A) = hom(R,A). This defines a functor, and given a morphism σ : A → B then hR(σ)
is defined as homA∼ : hom(R,A) → hom(R,B) which takes f to σf .

Definition 2 A functor F of Artin rings is rpepresntable by R ∈ Â if and only if F is
naturally equivalent to hR for R ∈ Â. Remark: suppose F = hR for some R ∈ Â. Then
F (A) ∼= hom(R,A) for all A ∈ Â. However, any F : mathcalA → Set may be extended to
F̂ : Â → Set by F̂ (S) = lim F (S/mn). This is a sequence. An element in F (S) is a sequence
of elements in F (S/mn)

You end up replacing the set of deformations with a set of ring homomorphisms.

The functors extend naturally to limits of Artin rings, so in particular, F (R) ∼= hom(R,R).

There exists a Γ ∈ F (R) so that Γ corresponds to the identity in hom(R,R).

There’s a particular deformation which satisfies a universal property. Notice that Γ satsifies
a universal property: Given any A ∈ mathcalA and γ ∈ F (A), there exists a unique ring
homomorphism R → A such that F (σ)(Γ) = γ. This is the end of my remark and is a good
stopping place. You come up with this when you chase the diagrams around.
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