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Recall that Dk is the little k-disks operad. It acts on ΩkX for any topological space X.

Theorem 1 Weak Recognition principle (May 1972, Bordmann Vogt 1973)
If X is a path connected topological space such that X is an algebra over Dk, then there exists
a space Y so that X ∼= ΩkY , they are homotopy equivalent

Remark.

1. There exists an operad WDk such that X is an algebra over WDk if and only if X is
homotopy equivalent to a k-fold loop space ΩkY .

W is basically the free operad construction on Dk in the topological category.

2. X is called an infinite loop space if there exists a sequence of spaces X1, X2, . . . such
that X ∼= ΩX1, X1

∼= X2, and so on. There is a strong recognition principle with the
following. A topological operad is called an E∞ operad if each O(n) is Σn-free and
each O(n) is contractible. Now X is an algebra over an E∞ operad so that X is an
infinite loop space. For example, take D∞ to be the direct limit of Dk, where Dk sits
inside Dk+1. This limit is an E∞ operad and so you could, this answers your question.

Let me give small indications for the weak recognition principle. This was first done when
k = 1 by Stasheff. Assume that X is a D1 space. This is the little interval operad. We
want to show that X is homotopy equivalent to ΩY . This is in H-spaces in Lecture Notes
in Mathematics in 1963.

This is in two steps. The first step we show that there are polytopes Kn for n ≥ 2 and maps
Kn → D1(n). This is the first example of this W . The Kn assemble to an operad K where
K(n) = Kn × Σn and K is essentially equal to WD1. Spaces over this K are called A∞
spaces. Whenever you have an algebra over this K you can define the following, let Y be the
union for n ≥ 0 of Kn+2 ×Xn/ ∼, so you just, take this realization, put these together, and
you divide out by equivalence and glue together and then one can check that X is homotopy
equivalent to ΩY . Let me go back to step 1. The second step uses the notion of quasifibration
and he builds this up from, starting up to m. This uses a lot of topology machinery. The
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nice thing that is really neat are these associahedra. Define Kn as the convex polytope with
one vertex for each way of associating n ordered variables x1, . . . , xn. For example, with
six variables, I could associate with x1((x2x3)(x4(x5x6))). This is in correspondence with
trivalent ordered trees.

What are the low dimensional examples? K2 is a point. It’s just, (x1x2). Now K3 is, well,
you have two points, (x1x2)x3 and also x1(x2x3) and you have to connect them and you get
an edge. K4 there are five ways of associating

(x1x2)(x3x4)

XXXXXXXXXXXXXXXXXXXXXXX
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x1(x2(x3x4))
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((x1x2)x3)x4)
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x1((x2x3)x4) (x1(x2x3))x4

Better than the convex polytope with this as its hull is to take tKr ×Kn−r+1/ ∼ and take
the cone on this union Ln, I get something of dimension n − 2. One can check that Ln has
the homotopy type of the sphere, which is highly nontrivial. This was shown by Adams. I
think I will stop here.

[Discussion of ∼]

[Picture of K5]

Something I want to say is what happens when you take the homology of little disks. Let
F : Top → V ect be a functor respecting (×,t) → (⊗,⊕). If you have an operad in C then
define F (O) be the operad in C ′ given by F (O) = {F (O(n))} for n ≥ 1. You just drag
everything through, so that ◦i = F (◦i) and Σn action is just F (σn), and the unit is F (1O).
I should have said that ∗ should map to k, it’s a symmetric monoidal functor. If it respects
all the structure, then obviously all the relations are satisfied. Then the proposition is

Proposition 1 Let k ≥ 2 and let Pk = H∗(Dk). Then a graded vector space V is an algebra
over Pk if and only if V is a k − 1-algebra, where that is to be defined:

Definition 1 To say that V is a (k − 1)-algebra means three things.

1. V is an associative and graded commutative algebra with product •

2. V [k − 1] is a graded Lie algebra with bracket { , } (the degree of the bracket is 1− k)

3. There is a Liebnitz relation with the bracket {u, v •w} = {u, v}•w +(−1)(|u|+k−1)|v|v •
{u, w}
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What are these two operations? Identify two homology elements. Any old point as an element
in Dk(2), this is the product. For the bracket, it’s a k − 1-sphere of spheres moving around
a sphere.

There was one more thing I wanted to say, to clarify how you see an operad as a monoid in
a monoidal category. I’m not sure I should do that. Let me do this, it’s fairly fast. It’s an
alternative definition of operads, of what an operad is.

Denote by Σ−V ect the category with objects A = {A(n)}n≥1 where each A(n) has a Σn-right
action and morphisms are maps f = {f(n)}n≥1 where fn : A(n) → B(n) is an equivariant
vector space map. There is a monoidal structure called � on Σ− V ect such that an operad
on vector spaces is the same as a monoid in this monoidal category.

The idea is if you have, for A and B as having n inputs, take (A � B)(n) to be trees with
trees on them. On the bottom you put A and on the top B. You take the sum over all trees
with n inputs, split into two levels with Bs on top. More precisely, you have to go through
the following steps. First of all, you extend A(n) to any finite set X as an input, so given
X and A in Σ− V ect let A(X) be the sum over bijections X → n of A(n) modulo some Σn

action. Then in the second step, you can define for n and m at least 1 and an object A, let
A(n, m) be the sum over surjective maps n → m of A(f−1(1))⊗ · · ·A(f−1(m)). Finally, for
the third step, you let A � B be the sum of A(m)⊗Σn B(n, m).

The fact is that this Σ− V ect, � is a monoidal category with unit U = U(1) = k. A monoid
in Σ− V ect is an object in Σ− V ect, an object A together with morphisms µ : A � A → A
and η : U → A. This should have the usual commutative diagrams for associativity of µ and
the unit properties of η. Such a monoid is exactly an operad. Wednesday there is a seminar,
Loday, so no class.
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