Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

Recall that D_k is the little k-disks operad. It acts on $\Omega^k X$ for any topological space X.

Theorem 1 Weak Recognition principle (May 1972, Bordmann Vogt 1973) If X is a path connected topological space such that X is an algebra over D_k , then there exists a space Y so that $X \cong \Omega^k Y$, they are homotopy equivalent

Remark.

- 1. There exists an operad WD_k such that X is an algebra over WD_k if and only if X is homotopy equivalent to a k-fold loop space $\Omega^k Y$.
 - W is basically the free operad construction on D_k in the topological category.
- 2. X is called an infinite loop space if there exists a sequence of spaces X_1, X_2, \ldots such that $X \cong \Omega X_1, X_1 \cong X_2$, and so on. There is a strong recognition principle with the following. A topological operad is called an E_{∞} operad if each O(n) is Σ_n -free and each O(n) is contractible. Now X is an algebra over an E_{∞} operad so that X is an infinite loop space. For example, take D_{∞} to be the direct limit of D_k , where D_k sits inside D_{k+1} . This limit is an E_{∞} operad and so you could, this answers your question.

Let me give small indications for the weak recognition principle. This was first done when k = 1 by Stasheff. Assume that X is a D_1 space. This is the little interval operad. We want to show that X is homotopy equivalent to ΩY . This is in *H*-spaces in Lecture Notes in Mathematics in 1963.

This is in two steps. The first step we show that there are polytopes K_n for $n \ge 2$ and maps $K_n \to D_1(n)$. This is the first example of this W. The K_n assemble to an operad K where $K(n) = K_n \times \Sigma_n$ and K is essentially equal to WD_1 . Spaces over this K are called A_∞ spaces. Whenever you have an algebra over this K you can define the following, let Y be the union for $n \ge 0$ of $K_{n+2} \times X^n / \sim$, so you just, take this realization, put these together, and you divide out by equivalence and glue together and then one can check that X is homotopy equivalent to ΩY . Let me go back to step 1. The second step uses the notion of quasifibration and he builds this up from, starting up to m. This uses a lot of topology machinery. The

nice thing that is really neat are these associahedra. Define K_n as the convex polytope with one vertex for each way of associating n ordered variables x_1, \ldots, x_n . For example, with six variables, I could associate with $x_1((x_2x_3)(x_4(x_5x_6)))$. This is in correspondence with trivalent ordered trees.

What are the low dimensional examples? K_2 is a point. It's just, (x_1x_2) . Now K_3 is, well, you have two points, $(x_1x_2)x_3$ and also $x_1(x_2x_3)$ and you have to connect them and you get an edge. K_4 there are five ways of associating

Better than the convex polytope with this as its hull is to take $\sqcup K_r \times K_{n-r+1} / \sim$ and take the cone on this union L_n , I get something of dimension n-2. One can check that L_n has the homotopy type of the sphere, which is highly nontrivial. This was shown by Adams. I think I will stop here.

[Discussion of \sim]

[Picture of K_5]

Something I want to say is what happens when you take the homology of little disks. Let $F: Top \to Vect$ be a functor respecting $(\times, \sqcup) \to (\otimes, \oplus)$. If you have an operad in \mathscr{C} then define F(O) be the operad in C' given by $F(O) = \{F(O(n))\}$ for $n \ge 1$. You just drag everything through, so that $\circ_i = F(\circ_i)$ and Σ_n action is just $F(\sigma_n)$, and the unit is $F(1_O)$. I should have said that * should map to k, it's a symmetric monoidal functor. If it respects all the structure, then obviously all the relations are satisfied. Then the proposition is

Proposition 1 Let $k \ge 2$ and let $P_k = H_*(D_k)$. Then a graded vector space V is an algebra over P_k if and only if V is a k-1-algebra, where that is to be defined:

Definition 1 To say that V is a (k-1)-algebra means three things.

- 1. V is an associative and graded commutative algebra with product \bullet
- 2. V[k-1] is a graded Lie algebra with bracket $\{,\}$ (the degree of the bracket is 1-k)
- 3. There is a Liebnitz relation with the bracket $\{u, v \bullet w\} = \{u, v\} \bullet w + (-1)^{(|u|+k-1)|v|}v \bullet \{u, w\}$

What are these two operations? Identify two homology elements. Any old point as an element in $D_k(2)$, this is the product. For the bracket, it's a k - 1-sphere of spheres moving around a sphere.

There was one more thing I wanted to say, to clarify how you see an operad as a monoid in a monoidal category. I'm not sure I should do that. Let me do this, it's fairly fast. It's an alternative definition of operads, of what an operad is.

Denote by Σ -Vect the category with objects $A = \{A(n)\}_{n\geq 1}$ where each A(n) has a Σ_n -right action and morphisms are maps $f = \{f(n)\}_{n\geq 1}$ where $f_n : A(n) \to B(n)$ is an equivariant vector space map. There is a monoidal structure called \boxtimes on Σ - Vect such that an operad on vector spaces is the same as a monoid in this monoidal category.

The idea is if you have, for A and B as having n inputs, take $(A \boxtimes B)(n)$ to be trees with trees on them. On the bottom you put A and on the top B. You take the sum over all trees with n inputs, split into two levels with Bs on top. More precisely, you have to go through the following steps. First of all, you extend A(n) to any finite set X as an input, so given X and A in $\Sigma - Vect$ let A(X) be the sum over bijections $X \to n$ of A(n) modulo some Σ_n action. Then in the second step, you can define for n and m at least 1 and an object A, let A(n,m) be the sum over surjective maps $n \to m$ of $A(f^{-1}(1)) \otimes \cdots A(f^{-1}(m))$. Finally, for the third step, you let $A \boxtimes B$ be the sum of $A(m) \otimes_{\Sigma_n} B(n,m)$.

The fact is that this $\Sigma - Vect$, \boxtimes is a monoidal category with unit U = U(1) = k. A monoid in $\Sigma - Vect$ is an object in $\Sigma - Vect$, an object A together with morphisms $\mu : A \boxtimes A \to A$ and $\eta : U \to A$. This should have the usual commutative diagrams for associativity of μ and the unit properties of η . Such a monoid is exactly an operad. Wednesday there is a seminar, Loday, so no class.