Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

Remember that we were talking about functors $F: \mathcal{A} \to Set$ where \mathcal{A} was the category of Artin local rings. We had a set of conditions:

H0 F(k) is a point

H2' $\alpha: F(A \times_C B) \emptyset F(A) \times_{F(C)} F(B)$ is a bijection for $A = B = \mathbf{k}[\epsilon], C = \mathbf{k}$

H2 α is a bijection when $A = \mathbf{k}[\epsilon], C = \mathbf{k}$

H3 $F(k[\epsilon])$ which is the definition of the tangent space T_F is finite dimensional.

H4 α is a bijection for $A \to C$ small with $B = \mathbf{k}$, so that $F(A') \to F(A)$ is a bijection

The first two of these say that T_F is a vector space; addition comes from $\mathbf{k}[\epsilon] \times_{\mathbf{k}} \mathbf{k}[\epsilon] \to \mathbf{k}[\epsilon]$ [Discussion broken by H4]

1 Differential Graded Lie algebras

A differential graded Lie algebra, or dgLa, is a triple $(V, d, [\,,\,])$ here V is a \mathbb{Z} -graded vector space, $d: V^i \to V^{i+1}$ is a square zero degree one operator, $[\,,\,]$ is a degree zero bilinear operator on V which is graded skew symmetric and satisfies graded Jacobi:

$$[x,y] + (-1)^{|x||y|}[y,x] = 0$$

$$[x,[y,z]] = [[x,y],z] + (-1)^{|x||y|}[y,[x,z]]$$

The compatibility between differential and bracket is

$$d[x,y] = [dx,y] + (-1)^{|x|}[x,dy]$$

I think of this as saying that bracketing with x is a derivation of degree |x| of the bracket, and d is a derivation of the bracket.

If x is even, then [x, x] = 0. If x is odd, then [x, [x, x]] = 0. Also, $[x, [x, y]] = [[x, x], y] + (-1)^{|x||x|}[x, [x, y]]$ so that 2[x, [x, y]] = [[x, x], y].

If $C = (W, d, \bullet)$ is a graded commutative associative algebra and L = (V, d, [,]) is a dgLa, then $L \otimes C$ which is defined as $(V \otimes W, d \otimes 1 + 1 \otimes d, [,])$ is a dgLa.

This could have been discussed in terms of chain complexes. The commutative operad has just one operad in each arity; tensoring with the commutative operad is trivial, and so tensoring with a commutative algebra preserves the type of algebra you started with.

The formula for the bracket in $L \otimes C$ says that $[v \otimes a, w \otimes c] = (-1)^{|a||w|}[v, w] \otimes ab$.

Now I want to define a functor of Artin rings, fixing a dgLa. One may deform d of a dgLa in the direction of an inner derivation. You want the new operator $d_a := d + [a, -]$ to be a square zero degree one derivation of the bracket. It will always be a derivation; for the grading to be correct you want a to be in degree one. If $d_a + \frac{1}{2}[a, a] = 0$ and $a \in V^1$ then d_a squares to zero.

$$d_a^2(x) = d^2x + d[a, x] + [a, dx] + [a, [dx]] + [a, [a, x]] = [da, x] - [a, dx] + [a, dx] + [a, [a, x]]$$

If a is odd then this means $[da + \frac{1}{2}[a, a], x] = 0$. This leads to the equation for an element of degree one satisfying $da + \frac{1}{2}[a, a] = 0$, which is called the Maurer Cartan equation or the classical master equation, or even the deformation equation.

An observation: given a graded Lie algebra and an element $a \in V^1$ satisfying the equation [a, a] = 0, one has a differential graded Lie algebra (V, d, [,]) where dx := [a, x]

Let's look the other way around. Given a dgLa L define a new dgLa by $L' = (V \oplus kd, [\,,\,]_{new})$ where $[v+\alpha d, w+\beta d] = [v,w] + \alpha dw + (-1)^{|v|}\beta dv$ which lives in $V \subset V \oplus kd$ Then $[d,d]_{new} = 0$ so we have a differential on L' defined by d' = [d,-]. One thing I didn't check was the Jacobi identity here. Let me go on. Now $d'(v+\alpha d) := [d,v+\alpha d]_{new} = dv$. I should have said that the degree of my new piece is 1. So now I get a new differential graded Lie algebra of the form $L' = (V \oplus kd, d' = [d,-], [\,,\,]_{new})$. The idea is that by extending the Lie algebra, I can think of the differential as being bracketing with a degree one element. So it's an extension of L, which is a subalgebra.

In this context, we have a map $L \to L'$, and I'll give a new map, $a \mapsto a + d$. Notice that, I would like this to be a map of the degree one part of L into the degree one part of L'; well, let me say it like this: if $a \in V^1$, then $[d+a,d+a]_{new} = 0$ in L' if and only if $da + \frac{1}{2}[a,a] = 0$ in L.

Recall that in the Hochschild complex, well, if we have V we have $HC \cdot (V, V) := \bigoplus Hom(V^{\otimes n}, V)$. There is a bracket on this complex, making it into a graded Lie algebra. If $\bullet : V^{\otimes 2} \to V$ is a degree one element, and $[\bullet, \bullet] = 0$, then \bullet is an associative product. That was if and only if. Then we obtain a differential graded Lie algebra $(HC \cdot (V, V), d = [\bullet, -], [,])$. I sort of think of the fundamental equation being [a, a] = 0.

Now, let's define, well, let L be a differential graded Lie algebra, and define a functor of Artin rings $MC_L: \mathcal{A} \to Set$ by $MC_L(A) = \{\gamma \in (L \otimes m_A)^1 | d\gamma + \frac{1}{2}[\gamma, \gamma] = 0\}$, which are equal to deformations of the differential d in the direction γ , including parameters from A.

Given an associative algebra (B, \bullet) , define a $F_B : \mathcal{A} \to Sets$ by $F_B(A)$ are deformations of (B, \bullet) over A. Let $L = (HC(B, B), d = [\bullet,], [,])$. Then $MC_L \cong F_B$ as functors of Artin rings. I believe that this statement doesn't need an argument.

Let's look at, let's illustrate the bijection. Start with $\gamma \in MC_L(A) \subset HC(B,B) \otimes m_A$. So $\gamma : B \otimes B \to B$. So $\gamma \in Hom(B \otimes B, B) \otimes m_A$, which is equal to, I claim, $Hom(B \otimes B, B \otimes m_A)$. Then $\gamma(b_1, b_2) \in B \otimes m_A$. Define a product $\bullet_{\gamma} : (B \otimes A)^{\otimes 2} \to B \otimes A$ by $\bullet_{\gamma}(b_1, b_2) = b_1 \bullet b_2 + \gamma(b_1, b_2)$ where these pieces are in $B \otimes \mathbf{k}$ and $B \otimes m_A$ so their sum is in $B \otimes A$.

Maurer-Cartan equation for γ implies associativity for \bullet_{γ} and the new product when you map down to A gives you the old product. I claim that's a bijection. Remember that a deformation of B over an augmented ring. Modding out by the maximal ideal, you should get the old thing. So it's exactly something of this form. The associativity gets you Maurer Cartan for γ .