Deformation Theory and Operads

Gabriel C. Drummond-Cole

July 9, 2012

Remember that we were talking about functors $F: \mathcal{A} \rightarrow$ Set where \mathcal{A} was the category of Artin local rings. We had a set of conditions:

H0 $F(k)$ is a point
H2' $\alpha: F\left(A \times_{C} B\right) \varnothing F(A) \times_{F(C)} F(B)$ is a bijection for $A=B=\mathbf{k}[\epsilon], C=\mathbf{k}$
$\mathrm{H} 2 \alpha$ is a bijection when $A=\mathbf{k}[\epsilon], C=\mathbf{k}$
H3 $F(k[\epsilon])$ which is the definition of the tangent space T_{F} is finite dimensional.
H4 α is a bijection for $A \rightarrow C$ small with $B=\mathbf{k}$, so that $F\left(A^{\prime}\right) \rightarrow F(A)$ is a bijection

The first two of these say that T_{F} is a vector space; addition comes from $\mathbf{k}[\epsilon] \times{ }_{\mathbf{k}} \mathbf{k}[\epsilon] \rightarrow \mathbf{k}[\epsilon]$
[Discussion broken by H4]

1 Differential Graded Lie algebras

A differential graded Lie algebra, or dgLa, is a triple $(V, d,[]$,$) here V$ is a \mathbb{Z}-graded vector space, $d: V^{i} \rightarrow V^{i+1}$ is a square zero degree one operator, [,] is a degree zero bilinear operator on V which is graded skew symmetric and satisfies graded Jacobi:

$$
\begin{gathered}
{[x, y]+(-1)^{|x||y|}[y, x]=0} \\
{[x,[y, z]]=[[x, y], z]+(-1)^{|x||y|}[y,[x, z]]}
\end{gathered}
$$

The compatibility between differential and bracket is

$$
d[x, y]=[d x, y]+(-1)^{|x|}[x, d y]
$$

I think of this as saying that bracketing with x is a derivation of degree $|x|$ of the bracket, and d is a derivation of the bracket.

If x is even, then $[x, x]=0$. If x is odd, then $[x,[x, x]]=0$. Also, $[x,[x, y]]=[[x, x], y]+$ $(-1)^{|x||x|}[x,[x, y]]$ so that $2[x,[x, y]]=[[x, x], y]$.

If $C=(W, d, \bullet)$ is a graded commutative associative algebra and $L=(V, d,[]$,$) is a dgLa,$ then $L \otimes C$ which is defined as $(V \otimes W, d \otimes 1+1 \otimes d,[]$,$) is a dgLa.$

This could have been discussed in terms of chain complexes. The commutative operad has just one operad in each arity; tensoring with the commutative operad is trivial, and so tensoring with a commutative algebra preserves the type of algebra you started with.

The formula for the bracket in $L \otimes C$ says that $[v \otimes a, w \otimes c]=(-1)^{|a||w|}[v, w] \otimes a b$.
Now I want to define a functor of Artin rings, fixing a dgLa. One may deform d of a dgLa in the direction of an inner derivation. You want the new operator $d_{a}:=d+[a,-]$ to be a square zero degree one derivation of the bracket. It will always be a derivation; for the grading to be correct you want a to be in degree one. If $d_{a}+\frac{1}{2}[a, a]=0$ and $a \in V^{1}$ then d_{a} squares to zero.

$$
d_{a}^{2}(x)=d^{2} x+d[a, x]+[a, d x]+[a,[d x]]+[a,[a, x]]=[d a, x]-[a, d x]+[a, d x]+[a,[a, x]]
$$

If a is odd then this means $\left[d a+\frac{1}{2}[a, a], x\right]=0$. This leads to the equation for an element of degree one satisfying $d a+\frac{1}{2}[a, a]=0$, which is called the Maurer Cartan equation or the classical master equation, or even the deformation equation.

An observation: given a graded Lie algebra and an element $a \in V^{1}$ satisfying the equation $[a, a]=0$, one has a diferential graded Lie algebra $(V, d,[]$,$) where d x:=[a, x]$
Let's look the other way around. Given a dgLa L define a new $d g L a$ by $L^{\prime}=\left(V \oplus k d,[,]_{\text {new }}\right)$ where $[v+\alpha d, w+\beta d]=[v, w]+\alpha d w+(-1)^{|v|} \beta d v$ which lives in $V \subset V \oplus k d$ Then $[d, d]_{\text {new }}=0$ so we have a differential on L^{\prime} defined by $d^{\prime}=[d,-]$. One thing I didn't check was the Jacobi identity here. Let me go on. Now $d^{\prime}(v+\alpha d):=[d, v+\alpha d]_{\text {new }}=d v$. I should have said that the degree of my new piece is 1 . So now I get a new differential graded Lie algebra of the form $L^{\prime}=\left(V \oplus k d, d^{\prime}=[d,-],[,]_{\text {new }}\right)$. The idea is that by extending the Lie algebra, I can think of the differential as being bracketing with a degree one element. So it's an extension of L, which is a subalgebra.

In this context, we have a map $L \rightarrow L^{\prime}$, and I'll give a new map, $a \mapsto a+d$. Notice that, I would like this to be a map of the degree one part of L into the degree one part of L^{\prime}; well, let me say it like this: if $a \in V^{1}$, then $[d+a, d+a]_{\text {new }}=0$ in L^{\prime} if and only if $d a+\frac{1}{2}[a, a]=0$ in L.

Recall that in the Hochschild complex, well, if we have V we have $H C \cdot(V, V):=\bigoplus \operatorname{Hom}\left(V^{\otimes n}, V\right)$. There is a bracket on this complex, making it into a graded Lie algebra. If $\bullet: V^{\otimes 2} \rightarrow V$ is a degree one element, and $[\bullet \bullet \bullet]=0$, then \bullet is an associative product. That was if and only if. Then we obtain a differential graded Lie algebra $(H C \cdot(V, V), d=[\bullet,-],[]$,$) . I sort of think$ of the fundamental equation being $[a, a]=0$.

Now, let's define, well, let L be a differential graded Lie algebra, and define a functor of Artin rings $M C_{L}: \mathcal{A} \rightarrow$ Set by $M C_{L}(A)=\left\{\gamma \in\left(L \otimes m_{A}\right)^{1} \left\lvert\, d \gamma+\frac{1}{2}[\gamma, \gamma]=0\right.\right\}$, which are equal to deformations of the differential d in the direction γ, including parameters from A.

Given an associative algebra (B, \bullet), define a $F_{B}: \mathcal{A} \rightarrow$ Sets by $F_{B}(A)$ are deformations of (B, \bullet) over A. Let $L=(H C(B, B), d=[\bullet],,[]$,$) . Then M C_{L} \cong F_{B}$ as functors of Artin rings. I believe that this statement doesn't need an argument.

Let's look at, let's illustrate the bijection. Start with $\gamma \in M C_{L}(A) \subset H C(B, B) \otimes m_{A}$. So $\gamma: B \otimes B \rightarrow B$. So $\gamma \in \operatorname{Hom}(B \otimes B, B) \otimes m_{A}$, which is equal to, I claim, $\operatorname{Hom}\left(B \otimes B, B \otimes m_{A}\right)$. Then $\gamma\left(b_{1}, b_{2}\right) \in B \otimes m_{A}$. Define a product $\bullet_{\gamma}:(B \otimes A)^{\otimes 2} \rightarrow B \otimes A$ by $\bullet_{\gamma}\left(b_{1}, b_{2}\right)=$ $b_{1} \bullet b_{2}+\gamma\left(b_{1}, b_{2}\right)$ where these pieces are in $B \otimes \mathbf{k}$ and $B \otimes m_{A}$ so their sum is in $B \otimes A$.

Maurer-Cartan equation for γ implies associativity for \bullet_{γ} and the new product when you map down to A gives you the old product. I claim that's a bijection. Remember that a deformation of B over an augmented ring. Modding out by the maximal ideal, you should get the old thing. So it's exactly something of this form. The associativity gets you Maurer Cartan for γ.

