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We meet this Wednesday, today. Monday there’s no class, and then Wednesday the 10th
will be cancelled. It’s also possible that there will be some cancellations when the Einstein
seminar is running. I don’t know whether we will make things longer on some Mondays or
not. So basically on these two days, I want to talk about deformations of associative algebras.
This will lead into the Hochschild complex and A∞ algebras. This course is meant to be
introductory. I see some experts here. You will have to sit down and have the pleasure of
listening to something that you already understand. We should be assuming no more than
undergraduate algebra and undergraduate topology. Someone asked if we’re going to do the
signs, and I think we’ll do the signs.

As an introduction, I’d like to give you a simple allegory, which I think will illustrate the
goal and the techniques of deformation theory in an oversimplified setting. The goal of
deformation theory is to organize mathematical objects of similar types into natural families
and study variations within the families. This idea goes back, taking things, putting them
in a family, and varying them, seeing how things change in the family, goes back to Poincaré
at least. Here’s a guiding example. Let me call this

1. Act I. A difficult problem is encountered Find the sum S = 1
2 −

1
2(22) + 1

3(23) + · · ·

2. Act II. Put the problem in a family Here I will replace the original problem S with St,
find the sum

t− t2

2
+

t3

3
− t4

4
+ · · ·

The original family was S( 1
2 ) Though I have made this harder in some sense, now I can

3. Act III. Study variations of the problems in the family The family has some structure.
If I think of t as a parameter on the real line, I can study this using the structure of
where the family lives. In this case it is over the real line. In this case, I can take the
derivative with respect to t, and get the expression 1−t+t2−t3+· · · . You can multiply
by (1 + t) and get 1, so then S′(t) = 1

1+t . The original problem had one trivial version
at t = 0, S(0) = 0. So this fact, together with S′(t) implies that S(t) = log(1+ t). Now
you’ve solved every problem, and can specialize your original problem by setting t = 1

2 .
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This is a good analogy. Take a problem, make it harder by putting it in a family, but then
you can use structure, and study how things vary, and then you can solve unsolved problems
and see new structures.

That’s just the introduction.

The first example. Deformations of associative algebras. This isn’t the first example histori-
cally speaking, which was deformations of complex manifolds, which goes back to Riemann.
This is the simplest example. Because this is a beginning course, I’ll define an associative
algebra. The references are Gerstenhaber, the cohomology structure of an associative ring,
volume 78 of the annals in 1963, and on the deformation of rings and algebras. Everyone
is allowed and encouraged to make remarks, they don’t have to be sarcastic. This one is in
volume 79, in 1964.

Fix a ring S. Commutative and associative, and unital.

Definition 1 An associative algebra over S is a pair (A,µ) where A is an S-module and
µ : A×A → A is S-bilinear map satisfying µ(µ(x, y), z) = µ(x, µ(y, z)).

I can also say, you can say it’s a ring and there’s a map from S into A. You can say
µ : A⊗A → A is a map of S-modules. I assume that A is unital; that is, there exists a 1 ∈ A
so that µ(x, 1) = µ(1, x) = x for all x ∈ A. The ring S, for the most part, will be a field of
characteristic zero, and then this will be a vector space.

We say (A,µ) is commutative if µ(x, y) = µ(y, x). The ground ring is always commutative
so that I get a good tensor product, but A will not necessarily be commutative.

An algebra morphism ϕ : A → A′ is an S-module map satisfying ϕ(1A) = 1A′ and ϕ(µA(x, y)) =
µA′(ϕ(x), ϕ(y)). When convenient, and not confusing, I will denote µ(x, y) by x · y or xy.
There may be various algebra structures around and I may have to give them different names.

One last thing. An augmentation of an associative algebra (A,µ) over S is a map εA → S
that is a map of algebras. S is always an algebra over itself. It’s just a way of mapping down
to the ground ring. An example, A = R[x]/x3 is a three dimensional algebra over R. The
map ε defined by evaluation at zero is an augmentation. If you multiply two polynomials
and take the constant term, it’s the product of their constant terms.

Without apology, I think I’ll do five more minutes of additional basic algebra. I need to talk
about the graded version and complexes.

A Z-graded S-module V is an S-module that is a direct sum

V =
⊕
k∈Z

V k

of submodules.

An element x ∈ V k is called homogeneous of degree k. I might write k = |x|, which assumes
x is homogeneous. A linear map ϕ : V → V ′ is graded of degree ` if ϕ(V k) ⊂ V ′k+` for all k.
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So when you have graded modules, you have these two very important constructions that
you want to look at, Hom(V, V ′) and V ⊗ V ′, and you want these to be graded as well.
So Hom(V, V ′) admits a decomposition in terms of graded maps. V ⊗ V ′ is an S-module
already. So V ⊗ V ′ of degree k is defined by V i ⊗ V ′k−i, and you sum over all is. It’s like
chain complexes in topology.

A complex (V, d) is a pair where V is a graded vector space and d is a map from V to V of
degree 1 or −1. I’m not going to be prejudiced, satisfying the additional condition that d2

(under composition) is zero. In this setting d is called a differential.

Given a complex there is an important construction, namely the homology. The homology of
a complex (V, d) is defined to be H(V, d) := ker d/im d. Because d2 = 0, well, the kernel is a
submodule, and the image is a submodule of the kernel, you can take the quotient, and this
is also naturally graded. The kth part of the homology is the kernel of V k → V k+1 modulo
Im V k ∓ 1 → V k.

The kernel, elements in the kernel are called k-cycles, and in the image they are called
k-boundaries.

Okay, the last thing that I should say as far as introductory algebra, is what a graded algebra
is. So

Definition 2 A graded algebra is a pair (A,µ) where A is a graded module and and µ is a
degree zero associative algebra.

Our first sign of the course is that a graded algebra (there are many kinds of algebras. If I
don’t say, I should always say associative. Out of laziness I say algebra.

A graded algebra is commutative provided µ(x, y) = (−1)|x||y|µ(y, x).

So you have to be careful whether you mean commutative in the graded or ungraded world.
You have to break two arbitrary things up into homogeneous pieces.

Already I have poor pedagogy. I’ve already said that a graded algebra is an associative
algebra and said what it means for an algebra to be commutative. So I should call it graded
commutative.

[In what sense are you using the absolute value sign?]

A differential graded algebra (associative algebra) is a triple (V, d, µ) where (V, d) is a complex,
(V, µ) is a graded algebra, and there’s a compatibility between the differential d and the
product µ:

dµ(x, y) = µ(dx, y) + (−1)|x|µ(x, dy)

Now let’s talk about the deformations of an associative algebra. Let me talk about the
intuitive idea of deforming an algebra (A, ·) is to replace x · y by something like µt(x, y)
where µt(x, y) = x ·y+ tµ1(x, y)+ t2µ2(x, y)+ · · · , where µt is associative. This is not precise
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because there’s a change of ground ring. As Gabriel mentioned, what makes it not precise is
that µt is not a product on A, it’s got this parameter t, so let me make the definition.

Definition 3 Let (A, ·) be an associative algebra over a field k of characteristic zero. Then,
a deformation of (A, ·) over a base (B, ε) (where (B, β, ε) is a commutative associative algebra
over k with an augmentation ε : B → k) is an associative algebra structure µ on A ⊗k B

over B such that A⊗B
canon◦id⊗ε→ A is a map of algebras.

In Gerstenhaber’s paper, he does one example, where the ring is k[[t]], which is the same in
the commutative or noncommutative sense. No one asked what to do with a graded base
space. Many tools require the use of commutative base spaces. In terms of geometry, in a
geometric picture, where I have spaces and points in the space, I have the vector space, At

fibered, then I want B to be the space of functions, which are commutative. There’s a whole
noncommutative geometry so you probably want to let these be noncommutative.

[One might want to apply algebraic geometric methods to deformation theory?]

Much of this has been done by Grothiendieck, others

[Where are the dual numbers?]

That’s a particular kind of deformation, it will be called infinitessimal.

Let me do an example. If B = k[t] (this is a nice base ring, the ring of functions on the affine
line), then you have the nice augmentation by evaluation at zero. I’m taking the maximal
ideal corresponding to zero and modding out, which is the augmentation ideal for this map. I
get the ground field, I almost want to require x to be algebraically closed so that you don’t get
an extension. So then what does it mean? Then A⊗k B is isomorphic to (as a vector space)
A⊕tA⊕t2A⊕· · · , so this will be polynomials in t with coefficients in A. Then µ will be a map
from A⊗B⊗B A⊗B → A⊗B which is linear over the polynomials. I only need to define this
on a B-basis of this space, which is A. So I can just take µ(x, y), where x comes from A. The
result will be some polynomial in t, so it will look like µ0(x, y) + tµ1(x, y) + t2µ2(x, y) + · · ·
For a particular x and y it will terminate, just be a polynomial.

Okay, now this is the basic setup and now I want to assume that the map from A⊗B → A
is the projection that kills t, sets t = 0. So then if the map A⊗k B → A is a map of algebras
(over k), that is equivalent to saying, if I multiply and then set t = 0 I get the constant
term of µ; in the other order I get x · y. So µ0(x, y) = x · y. This captures the full range
of Gerstenhaber’s original idea. This corresponds to a sequence of bilinear maps so that the
new thing is associative.

The reason I’m using polynomials is because you have evaluation maps. So B = k[t] has
evaluation maps εα for each α ∈ k, where εα(p(t)) = p(α). For power series you wouldn’t
have evaluation maps. But just to keep things simple, you have these evaluation maps. You
can think of these as being different augmentations. For each α you have the maximal ideal
t− α modding out by which gives you a field isomorphic to the ground field.
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You can define, given a deformation µ of (A, ·) over B = k[t], you can compose with evaluation
maps and define new associative products on A; call them ·α for each α ∈ k using the
evaluations.

So this is εαµ(x, y) =: x ·α y for x, y ∈ A.

So you get the picture, above k the affine line, of a family of algebras fibered over this
line. Over 0 you have the original product ·. That’s guaranteed by saying that the original
augmentation is a map of algebras. So you get a family of algebras over the real line.

I could have started by defining deformations of algebras over spaces. I could use other base
rings, like k[t1, . . . , tn]; if I used this, for every point in Rn I would have an algebra. I could
take, if I can give up my attachment to geometry, is choose power series rings in one or many
variables. Then deformations over k[[t]] are called formal one parameter deformations, and
k[[t1, . . . , tn]] are formal n-parameter deformations. Here I would allow infinite power series
in t, I keep the same picture, and imagine I have evaluation maps, although I don’t have
them. In algebraic geometry, as a scheme, you have one point over zero, where you have an
evaluation map. You keep the picture in mind even if the polynomials are infinitely long.

The word formal refers to formal power series. If k is a topological ring, you could do
something like C{{t1, . . . , tn}}. I would mean, for the next ten seconds, has a positive radius
of convergence. But I’m not using these rings. Here’s a good ring: k[t]/t2. So deformations
over this ring are called infinitessimal. If you’ve seen these before, they might just call this
k[ε] and everyone knows that ε2 = 0 because it’s so small.

The use of base rings is what unites the subject. If you have deformations of complex
manifolds, vector bundles with connections, associative algebras, group representations, you
organize it as families over a space, which gives you the idea of using base rings. It’s functorial
so looking at functors of base rings gives you things all over the board.

I just have three minutes left, so let me do an example. Everyone in here will do this exercise.
If you take a formal one parameter family of deformations, you write down what it means
to be associative, and you get a list of conditions that these things need to satisfy, that’s a
good place to open up the next lecture.

So let’s look at k[x]/x3. Then we can make a table

1 x x2

1 1 x x2

x x x2 0
x2 x2 0 0

of multiplication. Consider B = k[t] and define µ by, well, I want the answer to be k[x, t]/x3−
tx. This is isomorphic to k[x]/x3⊗k k[t] As a k[t]-module. The former has a nice associative
product. You can see in terms of the table:
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1 x x2

1 1 x x2

x x x2 tx
x2 x2 tx tx2

So I’m taking a product that was defined and deforming it in the t direction. That’s an
example to keep in mind. It’s sort of a free algebra on one relation, so that instead of x3 = 0
we have x3 = tx.

For your first homework exercise, are A1 and A2 isomorphic. Is At isomorphic to A0? If
they’re all isomorphic it’s not very good, you’ve arranged your algebras as a fibration over
the real line. So it’s not very interesting if the answers are yes.

For homework two, determine the condition on µ1 implied by µt(x, y) = xy + tµ1(x, y) + · · ·
being associative.
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