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1 Jacob Lurie

So let me begin with ∞− n categories. This is something which has objects X, Y , Z, mor-
phisms 1HomC (X, Y ), two morphisms between the one-morphisms, along with associative
composition for morphisms and all k-morphisms invertible for k > n. For example, an∞− 0
category is an ∞-groupoid, which is something like a homotopy theory. You think of the
objects as points, the two-morphisms as homotopies between paths, and so on.

Let me introduce now the main example about which I want to talk, which is nBord. The
objects, well, let me introduce a convention. All manifolds are smooth, compact, and might
have boundary or corners. The objects in nBord will be 0-dimensional manifolds. The
1-morphisms, if I have two, I can consider bordisms between them. These are then given
by bordisms, one dimensional manifolds with boundary. Similarly the two-morphisms are
given by bordisms between one-morphisms, bordisms of bordisms, which are encoded by
two-dimensional manifolds with corners. Now I will write . . .. The n-morphisms of nBord
will be n dimensional manifolds with corners, and the higher you get in dimension, the more
complicated things get. One way to make this precise, you don’t compose on the nose, but
specify the relation that says that h is a composition of f and g. You care that there is a
contractible choice of compositions, rather than one particular one. Then n + 1-morphisms
are diffeomorphisms, n + 2-morphisms are isotopies of diffeomorphisms, and so on. Let’s
have some variants, like nBordun where they’re unoriented, nBordor where they’re oriented,
nBordSpin where you use Spin manifolds, or nBordfr, where these are framed manifolds.
All of the k-manifolds will have a trivialization of their tangent bundle sum Rn−k.

This is, what you might call a symmetric monoidal ∞− n category. The tensor product is
disjoint union of manifolds.

Now let me introduce the main definition. An extended n-dimensional topological quantum
field theory with values in C is a tensor functor from nBord into C. Here C is another object
which has the same nature as nBord, a symmetric monoidal ∞− n category. For example,
you could take C to be the ordinary category of vector spaces. The higher morphisms aren’t
anything except the identities. In that case, that’s an ∞− 1 category, so you can talk about
1 dimensional quantum field theories in that category. The classification of these is easy.
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A one dimensional topological quantum field theory is specified by a vector space, it’s the
vector space associated to a point.

Theorem 1 (Baez-Dolan Cobordism Hypothesis)
Mike probably stated this for you; Fun⊗(nBord, C) (let me first state this in the framed
setting) is equivalent to the subcategory Cfd, the ∞-groupoid of fully dualizable objects in C.
This is an equivalence with a natural direction from the left to the right, a map which sends
Z a TQFT to Z(∗).

Before I say any more about this, maybe I should just say something about this. Let me say
a few words about why you might believe this. Let’s consider as a warmup the case n = 1.
Let’s suppose Z : 1Bord→ C. To understand Z you might start by applying this to objects.
This is the n-framed version. That’s an orientation here. So here the objects are points,
some with positive and some with negative orientation.

You can evaluate on the empty set Z(∅) will be the unit object 1 ∈ C. You could pick a point

with the positive orientation, and so Z(
+∗) gives X ∈ C. You can also act on a negatively

oriented point, but this gives you nothing new. You can evaluate your field theory Z on a
1-dimensional bordism from two points with opposite orientations to the empty set, the unit.
Similarly, I can evaluate Z on the bordism from nothing to two points.

These maps are compatible in some sense and they exhibit X and Y as “duals” in the category
C. Giving a map X ⊗ Y → 1 is like a bilinear map X × Y to the unit, which is like a map
X → Y ∗, and you learn that this is an isomorphism and both of these are finite dimensional
(in the vector space category, at least). So X and Y are duals which satisfy some finiteness
condition. You can still formulate the finiteness condition. This is formulated in terms of
the existence of a dual satisfying a finiteness condition.

[Uniqueness?] So it only makes any sense here to consider uniqueness up to a contractible
set. To summarize, specifying Z on a negatively oriented point is just a finiteness condition.
It says that there is a dual, and Z on the negative point gives the dual. Now you know what
Z does on a zero manifold. You see that 0-manifolds are made up of the disjoint union of
positive and negative points.

So now for morphisms, you only need to work with those morphisms which are connected.
There are only five, the identity X → X and X

√
← X

√
, the duality maps X⊗X

√ ev→ 1 and
1 coev→ X ⊗X

√
. I can break up the circle, and see that it is the composition of the evaluation

with the coevaluation, which is the dimension of X. So dim X ∈ 1HomC(1, 1). This data
tell you that whatever this object is, once I identify with the dual, this becomes evaluation
and coevaluation. Better to call it X and Y , and say that the whole package is the same as
giving X.

[All of the things we know from the language of categories. Can you add some infinity?]

When n = 1 this is more or less obvious. You can start building a field theory if you are given
a finite dimensional vector space X. Working at the level of ordinary categories, you can
turn that into a proof, but if the target is a higher category, there are more things that you
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need to do. Let me illustrate by showing a phenomenon that you hit even in the 1Bord case.
Now 1-manifolds don’t have much of diffeomorphisms, but for example there are rotations.
So 1Hom1Bord(∅, ∅) is the same as the classifying space for closed 1-manifolds.

Every one-manifold is a disjoint union of circles, so this breaks up into classifying spaces
of n circles. Inside this I have the connected component corresponding to the case where I
have one circle, so I have BDiff(S1) which is CP∞. If you had n-circles, you’d have the
homotopy quotient (CP∞)n/Σn. So now, anyway, what I’m trying to convince you of, you
have morphisms spaces, they’re not so complicated but they’re not discrete.

Now suppose you have a functor 1Bord → C. Then you have maps 1Hom1Bord(∅, ∅), I can
see what this does, and it will go into 1HomC(1, 1), which will be a map of CP∞ into here.
That’s the dimension of X which is a single point. That’s what this map does to a basepoint
of CP∞, because I broke up the circle into a composition of two things. That hom was
supposed to have a circle action. I can’t break a circle up equivariantly, so I broke this up
and only saw what happened to the basepoint. When you have a dualizable object you get a
field theory. You also know that the dimension of C has a circle action, a natural extension
to all of CP∞, so this will be, in the vector space case. If you worked with complexes, you’d
get a complex of sheaves with locally constant cohomology. This predicts that the dimension
of X should have a canonical circle action. You might ask why not take all of CP∞ to this
constant point. What the map is supposed to be is uniquely determined by X and is usually
not a constant map if X is a higher catogory.

Let me give an example. C will be an ∞− 1 category whose objects are commutative rings.
The 1-morphisms in C will be 1HomC(A,B) will be complexes. I should have fixed k, and
had my rings be associative k-algebras, not necessarily commutative. I could write morphisms
to be given by bimodules. I want them to be given by complexes of (A,B)-bimodules. Then
2-morphisms will be quasiisomorphisms between chain complexes. 3-morphisms are chain
homotopies. The punchline is that everything is dualizable, and the dual of A is Aop. I
should say that this is symmetric monoidal with tensor product over k. If I take A I should
be able to write down interesting maps k → A⊗Aop and k ← A⊗Aop. So there’s a natural
thing to put in both of these, and that’s A. These give me one-morphisms in this category,
and give Aop as the dual of A. You compose by taking tensor products, but those have to
be left derived. Let’s compute the dimension of A. This should come from composing the
coevaluation map with the evaluation map. So this should be a morphism from k to itself.

So A is a right and a left module over A ⊗ Aop So I should resolve on the left and get
A ⊗L

A⊗Aop A is a chain complex of k-vector spaces. By definition, this is a chain complex
which computes the Hochschild homology of A, CH∗(A). This has a circle action, which is
something that you see classically if you construct this carefully enough. You also get the
circle action from this general result, and in general it’s nontrivial.

[What does it mean if it is?]

I don’t know.

So that the circle action is nontrivial tells me that there is more work to be done to produce
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the map knowing just the object. If you thought about this calculation, what if I broke this
into n pieces along with cyclic symmetries, you could see that you had some cyclic object
whose geometric realization was giving you this.

[In the case that this is your category C, then the space of these topological field theories
corresponds to the set of As and?]

It would be a classifying space of As, but the theorem would say that the circle action comes
for free, that you just have to specify the A.

Let’s believe the theorem in the general case, focusing on this bogus reason, you take an
arbitrary manifold and decompose it into simple enough pieces; since Z is a functor its
action on a complicated manifold should come from what it does on its simple enough pieces.
If you know what Z is doing on the small bits from what it’s doing on a point, that’s enough.
Why should you be using framed manifolds? Every manifold, locally, looks like its tangent
space at a point. So what you have more canonically is that you can break a manifold into
simple pieces the simplest of which look like the tangent space at a point.

Let me rewrite the Baez-Dolan conjecture. You should have a statement like this in the
framed case, Fun⊗(nBordfr, C) ∼= Cfd, and this has an action of O(n), the automorphism
group of the trivial bundle. So you have an action O(n) on the space of fully dualizable
objects.

In the example where n = 1 O(1) has two objects, there is a natural action on the space of
dualizable objects, which is dualization. Say you have a symmetric monoidal O(n) action. So
O(n) has two components. I will have a fully dualizable objects. I have a map from O(n) into
the fully dualizable objects. I will have the original object and its dual from the components.
When n = 2, if X is a fully dualizable object, you get a map O(2) × {X} → Cfd, so you
have a map S1 → Cfd. The basepoint goes to X. Extending that says you have a certain
automorphism of X. I don’t think that, depending on where these lectures go, I may say
more about what this automorphisms turns out to be.

[Is all of this compatible under reducing n?] Absolutely.

Let me give another example in which you see this O(n) action in which it reduces to some-
thing concrete that you will be familiar with. Let’s take C to be an∞-groupoid, i.e., a space
X. We want symmetric monoidal structures, so a symmetric monoidal ∞-groupoid. So you
have a commutative associative multiplication. So you have an E∞ space. Now further as-
sume that every object of C is fully dualizable. If you think about what this means in this
setting, you see that π0 is commutative and associative on the nose, but this should be a
commutative group, that you have inverses. Now homotopy theory will tell you that such
a space is an infinite loop space, that is, the zeroth space of a spectrum. So you can write
X = ΩnY (n) for all n.

Now an infinite loop space is the same data as a cohomology theory. So this is the same as
giving a cohomology theory. So what’s the set of fully dualizable objects of C? It’s the same,
and so Cfd is just X. Now X has an O(n) action and they are compatible with one another.
This comes from X being an n-fold loop space, X = map(Dn, Sn), (Y, ∗)). So these reduce
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to the J homomorphism in algebraic topology. I don’t see how to make more appear from
the field theory point of view. The J homomorphism sits in the diagram:

O(n)→ lim
→

O(n) = O(∞)→ GL(S) which acts on X

Let me restate the Baez Dolan conjecture a different way. The framed version of nBord is
the free symmetric monoidal ∞− n category on one fully dualizable object.

Let me talk about this hypothesis in the non-framed version. Suppose I have some group G
mapping to O(n). Then I can define a G manifold as a manifold whose structure group I
can reduce to G. When G is a point, nBordG is the framed version. When G is SO(n) it’s
the oriented version of the bordism category. The statement you would make in this context
is that if you look at tensor functors Fun⊗(nBordG, C), well, you can evaluate on a point,
so that point is naturally a homotopy fixed point with respect to the homotopy action of G.
So this goes to (Cfd)G. What does this mean in the simplest possible example, with n = 1
and G = O(1). So I’m dealing with unoriented bordisms. The fully dualizable objects of
C, I want the invariants under the involutions to the dual. So this is the space of self-dual
objects. That equivalence should be equivariant with respect to this action, so it should be
symmetrically self-dual.

[Is there a category where the symmetrically self-dual objects are the closed manifolds?] I
don’t know how to do that. Break? Questions?

2 Lurie, II

Apparently there will be two more of these. I don’t really have a plan. Maybe I should take
a survey of what people would like to hear about. Maybe I’ll take a survey. I formulated the
Baez Dolan hypothesis. Going forward, we could spend some time talking about definitions,
like what is an ∞− n category. Another thing that we could talk about is how to prove the
assertions. Third, we could illustrate this with examples. We could talk about generalizations
to manifolds with singularities. This might not look like as much fun as it is in practice.
We could also talk about generalization to the tangle hypothesis, where the bordisms are
embedded in a Euclidean space. This, you see things like, well, one special case is where
the Euclidean space is dimension three and you’re thinking about one-manifolds, and you’re
talking about tangles. These are some possibilities.

[We have three more talks. Let’s do the first three but not in that order, filling things in as
needed.]

Why don’t I talk about string topology. So thwo dimensional theory in G = SO(2). So
Fun⊗(2Bordor, C) ∼= (Cfd)SO(2). What does it mean for X to be fully dualizable. First it
means that there exists a dual for X. It should be dualizable in the ∞1 sense, subject to
some compatibilities. You can say this without mentioning 2-morphisms, it only depends
on the ordinary category you get by ignoring the higher parts of the ∞− 1 category from
truncating the ∞− 2 category. Next you should demand for finiteness that the evaluation
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and coevaluation have left and right adjoints, as many as needed. Let me say a little bit
about how all this works. Consider the coevaluation map. Imagine this has a left adjoint,
some map (X ⊗X

√
)→ 1 If I look at one-morphisms to the unit, I can move Y

√
on the left

into Y on the right. So these are 1-morphisms X → X and I get such a map S, which is
so called for Serre functor. If finiteness is satisfied you get a natural map from X to itself.
The identity corresponds to the evaluation map. So S is the identity if the left adjoint to the
coevaluation is the evaluation.

I should remark, let me make a claim, if X is fully dualizable then S is invertible. How do
I think about this? The first thing is that given a fully dualizable object X, we get this
natural one-morphism from X to itself. So inside the space of objects I have a point that
corresponds to X, and I have a loop in that space, a one morphism X → X. That loop is
a map from a circle into the space of fully dualizable objects Cfd. This is SO(2), and S is
implementing this action. So there is a map SO(2) ×M → M . What does this mean? It
means that given a point X ∈ M , I have a map SO(2)× {X} → M . So the basepoint goes
to X and I have a loop that starts and ends at X. Applying that in this context, you get an
automorphism which is precisely defined in this way. S is the circle action.

How to think about S? It’s what you get when you unwind the statement that X has
a circle action. Second, you can look at an example, let’s look at 2Bordfr. The fully
dualizable object is a point. Everything has to be framed in dimension two. This comes
with a framing (orientation preserving or reversing). It’s ambiguous to write X

√
, but that

you have an evaluation map X ⊗X
√
→ 1 that exhibits X

√
as a dual to X. Before we only

had orientation in dimension one. Now we have orientation in dimension two. You might
ask which one of these gives the right evaluation map, but that’s wrong. There are maps
X ⊗ Y → 1 and the question is, do these give an identification of Y with X

√
. We should

instead of calling Y the dual, keep track of the map. There are an integers worth of them.

To think about what S is, we’d have to think about which evaluation map to use. There
are coevaluation maps 1→ X ⊗ Y and the same thing is true. These come in pairs, so they
match up exactly. We have the coevaluation map. Does it have a left adjoint? It’s given by
an evaluation map by a shift. That twisting, well, what do those look like? The bordisms
from X to X, considering framings, we see that there is an integer’s worth of possibilities.
Here’s an example of a 1-morphism in the framed one-category. Up to a sign, they differ by
1. The right adjoint differ by 1 in the other direction.

Let me give a reformulation of the Baez Dolan result for n = 2 and G = SO(2). What are
you trying to answer? What does it take to make a tensor functor Z from 2Bordor → C.
The first thing that you need to do is give a tensor functor from 1Bordor → C. Now by the
previous result, this is the same data as a dualizable object X ∈ C.

So there’s a dual object, a coevaluation map, and an evaluation map, and you can com-
pose them and get the dimension of X. What else do we expect? This map S should be
trivial. What’s that saying? The coevaluation, the evaluation should be left adjoint to the
coevaluation.

We expect that the left adjoint of the coevaluation be the evaluation. Then coevL ◦ coev, by
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the definition of an adjoint, this gives something that can be transformed to the identity. So
there should be a natural transformation like this. Since we expect the coevaluation to be
equal to the evaluation, this is equal to the dimension of X. So we expect that we’ll have
a 2-morphism η corresponding to the disk from dim X to idX . There’s a natural action of
SO(2) here. We saw a circle action, we have a circle action on these morphisms. This η
is better than having an element in the space of 2-morphisms. it lives in the fixed points
(homotopy) with respect to this circle action. How do they interact with one another? The
circle action extends over the disk. This says that the class η is an SO(2) fixed point.

Now let me state a analogue to this two dimensional thing. Giving a tensor functor Z :
2Bordor,noncompact → C is equivalent to giving a dualizable object in C and a two-morphism
η ∈ 2Hom(dim X, 1)SO(2) which takes ev ◦coev to id, where η is the counit of an adjunction.

So in 2Bordor,noncompact you have objects oriented 0 manifolds, morphisms bordisms, ori-
ented, and two morphisms bordisms with nonempty incoming boundary. For example you
allow the disk to the empty set but not the empty set to the circle. This allows us to state
the theorem more simply. Without the word noncompact, I’d have to add an additional
condition. In string topology you don’t have an invariant going in the other direction. If
you switch all the arrows around, allow the other disks, you reverse and put things in the
opposite order, you get the same sort of thing.

What I’m going to describe will be in the language of algebras. Let me give an example. So
I’ll let C be an ∞− 2 category (over a field k) where the objects are differential graded k-
algebras, the morphisms are differential graded bimodules, and composition is an appropriate
left derived tensor product. Now I use all maps of bimodules, and then homotopies of maps
and so on. This is symmetric monoidal with respect to tensor product with respect to k.

To give a field theory with values in C, I need to give an object and then the 2-morphism.
So to any object I can associate its dimension. That’s a morphism from the unit object to
itself. The dimension is a complex of k-vector spaces. It’s the Hochschild chain complex of
A but now A is allowed to be a differential graded algebra, either explicitly from Hochschild
chains or from our theorem, abstractly.

Say M is a connected closed manifold with basepoint x, oriented, now I can consider a
differential graded algebra made out of chains on the based loop space of M , A = C∗(ΩM,k),
and if we compute the dimension you get C∗(LM, k). Moreover, there’s a circle action on
the homology, from the circle action on the free loop space, from rotating loops.

To promote this to a 2-dimensional field theory. To get η what we want is a map id1 → dim(A)
which is SO(2)-equivariant. Maps from the unit to itself are chain complexes over k. You
have a map from k to C∗(LM, K). We have to give a map. That’s giving a cycle, but not
just any cycle, an SO(2)-equivariant one. One way that we can produce such a thing is to
start with SO(2) things in the loops, so this receives a map from C∗(LMSO(2), k) and these
are the constant loops. As I’ve set the dimension up, it should be a 0-chain. You want η
to represent the fundamental class of M which lives in the nth cohomology. This η should
satisfy something, working it out in this situation, this class η should satisfy Poincaré duality.
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I’ve actually produced string topology for 0 manifolds. To give real string topology I’d need
to start over with a twisted version. If I give an appropriately twisted version, I can get
arbirtary manifolds.

3 Lurie III

Okay, so let’s talk about another example, with C an ordinary 2-category, objects algebras,
morphisms bimodules, and 2-morphisms maps of bimodules. This is a symmetric monoidal
2-category. This sits inside the other one, and here my chain complexes live only in one
degree. Fully dualizable objects are rare, but there is one object that satisfies it, that’s k.
The unit with respect to the tensor product is always a fully dualizable object. Then there
exists a field theory so that Z(pt) = k. This is very boring.

Now you can ask to extend Z to Z̄ : 2Bordor → C. What does the theorem say here?
Giving this data is equivalent to giving a fully dualizable object of C. This one had the fully
dualizable object k. This was supposed to be a fixed point with respect to the SO(2) action.
It’s trivial on this point. In particular, the unit object in C has the structure of a fixed point,
but making something a fixed point is not a condition, it’s additional data. How does this
spell out in this example? What do you have to do to make this thing a fixed point? You
see that you have, well, how should I say this, the first thing that you have to do, is see you
have a map SO(2)×Cfd → Cfd, and restrict and get a map {X}×SO(2)→ Cfd and what
you need is a nullhomotopy of this map. This is already the constant loop in Cfd taking the
value {X}. So we’re trying to give a nullhomotopy from the constant loop. Up to homotopy
these are identified with elements in π2(Cfd). What is Cfd? The π0 are the isomorphism
classes of fully dualizable objects. The π1 are the isomorphism classes of morphisms. The
automorphisms of that one-morphism are the automorphism group of k as a k, k bimodule,
which is k∗, the multiplicative group of k. There’s not much derived stuff going on here.
Because this peters out, you don’t have to do anything else, but you do need to give an
element of k∗. Using the language of the previous lecture, you have the identity map on
k and you have S, which is just the identity. Then you need to identify S and k so given
λ ∈ k∗ you get a field theory Z̄ and you can evaluate this sort of thing. Now evaluated on
manifolds of high dimension, you can look at what happens on a closed Riemann surface, you
get Z̄(Σ) ∈ k, and this will be λ±χ(Σ). How does this square with what you knew before?
The only framed manifolds are genus one, so Euler characteristic zero, so if the genus of
Σ = 1 then this number is one.

This is an illustration in a very specific situation and an illustration that being a homotopy
fixed point is additional data.

[I have a bone to pick, when I asked if the duality element was extra data, you said no.] That
is not additional data, the η which identified the evaluation and coevaluation as adjoints was
additional data.

[From the 60s we know that to make a Poincaré duality space a manifold you need to choose
Pontrjagin classes. You chose a fundamental class to build this theory, it could have been
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that there was other data to make other theories.]

Well, there was more freedom in the previous lecture. We needed η to be a map k →
C∗(LM ; k)hS1

. You could start on the invariant chains, but you could choose many theories
here.

[There was an interesting conundrum in the case of the 2-sphere. There’s an interesting guess
that gave the wrong 2-sphere. The A∞ structure on the 2-sphere is formal as an A∞ but not
as an A∞ Frobenius algebra.]

All right, so what should we talk about now? λ can be one. [What does η look like in
general?]

That’s a smooth proper dgA. It has to be finite as a module over the ground field and a
bimodule over itself in the derived sense.

[How do you calculate the saddle disk?]

I stated the theorem before to say, to say what a field theory does you only have to specify
what it does on a point and on a disk. If I naturally cut up a two-manifold, I might choose
a Morse decomposition, I cut it into handle attachments. The disk I discussed was of index
zero. I need to be able to attach disks of index 0, 1, and 2. Before, η was what our field
theory did on a disk (empty set to the circle) which gives a map Z(id) → Z(ev) ◦ Z(coev).
So η was supposed to be a map from the identity of the unit into the dimension of X. Now
η should be the unit of an adjunction, which implies that there is a counit. That tells me
that the evaluation map from X ⊗ X

√
→ 1 is right adjoint to the coevaluation. This tells

me that the other composition is equivalent (by the counit of the adjunction) to the identity
on X⊗X

√
. If I compose the coevaluation with the evaluation I get this picture; the identity

corresponds to this one, and this is the picture you get. The compatibility is what you get
by gluing a cap onto this with a half-cylinder. This should be equivalent to a half-cylinder.

[Why is the saddle no more extra information?] If I give you two categories, and a functor,
I can demand that this functor be a right adjoint. Saying that two things are adjoint is
too precise, you should have a reason, the unit is the reason. If you have a pair of adjoint
functors and a unit map, that gives you a counit. If you specified both of them seperately,
you need to specify some compatibility. That’s the sort of thing that I drew here. The saddle
is uniquely determined from the way it interacts with the disk. If you like, one way that you
can, a more precise statement as to uniqueness is these descriptions of field theories. When
you see a basic adjunction, you get a functor from a bordism category, which gives you all
kinds of additional data with cancellation andi various compatibilities, which is like the idea
that adjuncts are unique up to equivalence.

[If I make coevaluation along with choice of 2-morphisms a category, is it contractible?] Yes,
assuming you make all of the demands you should of the situation.

So what do we want to do? [Singularities.] Sounds like fun. I want to go back to the statement
of the Baez Dolan Cobordism Hypothesis. This says that Fun⊗(nBordfr, C) ∼= Cfd, which
says that nBordfr is the free symmetric monoidal ∞− n category on one finite dimensional
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object. What if we want free∞−1 symmetric monoidal category generated by one object X
which is fully dualizable , along with a morphism. What could the morphism be? The objects
are disjoint unions of points, so the only things I can consider are tensor products of X with
its dual. So I could look at X ⊗ X ⊗ X

√
→ X ⊗ X

√
. I can move things around and put

everything on one side. The picture that you might have, here you had five things, three of
them were corresponding to X and two of which to X

√
. Here’s a picture of the kind of thing

you might want to encounter, so you might want things to be allowed to become singular in
some particular way. Here this won’t be a manifold but some sort of singular space. Let me,
let me define the following invariant of 1Bord. This is an example of the kind of bordism.
For objects you’d want oriented 1 manifolds. Now morphisms are smooth bordisms with
singularities like A. I can think of this as a map only among X’s. Now the kind of pictures I
want to consider, before my one dimensional bordisms looked like this. Now I allow finitely
many points where things look like this (valence three picture). This is a picture of the kind
of bordism with singularity I want to allow. Before I had diffeomorphisms of bordisms. These
are stratified diffeomorphisms. What I mean is, they preserve the singularity structure, It
should be a diffeomorphism outside the yellow points and carry those to themselves. The
2-morphisms should be isotopy, and so on.

It might look like this was sort of an ad hoc construction. Let me give an indication that
this is in fact very general. The geometry matches up very nicely to a presentation that you
might want to consider.

Suppose you want to enlarge nBordfr by adding a k-morphism α which is going to go from
F → G, when these guys are two k − 1-morphisms that we have. See that F and G already
live in our universe. Here’s a picture of F , and here’s a picture of G, they have the same
source and target, so the boundaries are diffeomorphic. What is a k-morphism? The ones
we already have are the k-manifolds whose boundary are F and G glued along their common
boundary. If you’re in a situation like this one, you don’t need to think of a k-morphism as
having a source and target, you think of it as having a boundary. The ability to move things
around between the source and the target, that’s what dualizability buys you. In summary,
if you wanted to enlarge nBordfr, you want to adjoin a new manifold which is bounded by
a particular manifold that you are given.

Using this data you can define a new variant of nBordfr where we allow singularities that
look like a cone M × [0, 1]/M × {1}. So nBordfr,C(M) is a symmetric monoidal ∞ − n
category with objects n-framed 0 manifolds, with the usual definition until k, and then the
k−1 morphisms defined as usual, then the k-morphisms, the old ones were k-manifolds, now
I allow spaces which are stratified so that the open strata look like manifolds, but finitely
many points look like cone singularities. The k+1 morphisms should be k-manifolds where I
have an open stratum that looks like a k + 1 manifold and a closed stratum that looks like a
1-manifold stuck together via M . The notion of diffeomorphism once we cross n everything
is invertible. If we take a limit as n→∞ and group complete, we get cohomology theories.
We have ∞− n categories which model these.

Remark: Many variants are possible. Many things can be considered, such as tangential
structures and not only for the ambient manifold but also for the lower dimensional strata.
I could also allow many kinds of singularities. Things could become more complicated, later
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I could cone off singular spaces. I don’t want to consider things that are not iterated cones.

Let me describe the Baez Dolan statement in this setting. Rather than restricting to fully
dualizable things, let me assume that C “has duals”, meaning that it satisfies strong finiteness
conditions. Then Fun⊗nBordfr,C(M), C) is in bijection with objects X in C along with, well,
this determines Z(M) and you need a morphism α : Z(M)→ 1C

I realize this was sort of complicated, but I want to give some simple examples where it
becomes something concrete. This first example is in the case where n = 1 = k and M was a
manifold of dimension n− k and then the kind of pictures I’m thinking about were bordisms
which are sometimes like the cone on three points. This is the free bordism category on an
object X plus a morphism from X ⊗X → X.

Another example which is fun, let n be arbitrary but let k be one and M be a single point.
What kind of singularity do you allow in this point? You have an incoming bordism which
hits the singular point and stops. What does it look like when I cone off this singularity? It’s
a bordism category for manifolds with boundary. What you’re saying is that you want to
consider not smooth manifolds but the open strata of smooth k-manifolds and closed strata
of closed k−1 manifold. In this case, the theorem says that giving a functor from this framed
bordism category into C is the same as giving an object along with a morphism X → 1. To
make this more concrete, let’s go back to the kinds of categories we were thinking about
earlier. If n = 2, we might take C to be an ∞− 2 category where objects are differential
graded categories, morphisms are functors, and two-morphisms are natural transformations.
This is really a generalization of the kinds of two-categories I was talking about earlier. These
functors should be linear in a suitable sense. Formulated appropriately is equivalent to giving,
well, all functors are given in some setting by tensoring over a bimodule so this is just an
enlargement. So a bordism functor is a differential graded category. Now a functor from this
particular bordism category is also a functor to the unit, so by representability an object in
the category. These sorts of things are naturally encoded by bordisms with singularities.

Remark: These theorems are false if we replace smooth manifolds with PL or topological
manifolds. I don’t really think I can give a sense of why these things are false without giving
details about how these are proved. There’s a gap between, if you want, smoothing theory
if you have a manifold with boundary, the smoothing on the manifold and on the boundary
are a little bit different. To smooth a manifold with boundary you lift the structure groups
of the manifold and the manifold with boundary simultaneously and compatibly to different
groups.

Anyway, this may be just a technical point, but I thought I should bring it up.

4 Lurie IV

First, does anyone have any questions about anything? All right, why don’t I say a few words
about definitions that you need to make in order to make sense of these things. The basic
objects are symmetric monoidal∞−n categories. That’s sort of a mouthful. I don’t want to
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get all of the details, and so I’m going to define∞−1 categories. I’m going to give a definition
that generalizes conveniently as to the n case, and then define the bordism categories in ways
that will generalize nicely as well. So (∞, 0)-categories are roughly the same as topological
spaces up to homotopy. This is either a definition or take another definition which you should
say is reasonable to substitute. It’s better for most technical purposes to work with simplicial
sets. The idea is that we have a set of objects, for eery object an ∞− (n − 1)-category of
morphisms, and an “associative” composition.

So for an ∞− 1 category you want for every pair of objects a topological space, so a topo-
logical category. It’s an ordinary category where on each hom set you have topology and the
compositions are continuous.

This is probably the easiest definition, the simplest one to communicate. For many purposes
this is difficult to work with. It’s hard to establish the right notion of functor for these
things. You can always take something associative up to coherent homotopy and straighten
out to get things coherent on the nose, but you need to do the same things with functors.
If the functor is only compatible up to homotopy, you want to allow these, and it’s sort of
inconvenient to do this.

Another reason this isn’t the definition I want to give, even though every∞−1 category can
be so modelled, it’s difficult, you have to do a bunch of work. You don’t quite get something
associative on the nose, it’s inconvenient; easier to tweak your definitions.

Another idea. Let C be an ∞, 1-category. This is Rezk’s theory of complete Segal spaces.
I want to imagine I have a definition and extract things. We don’t have a definition of an
∞− 1 category but we do have a definition of an ∞− 0 category. So we can first extract
that, C0, by discarding noninvertible 1-morphisms. According to this, we can think that C0

is just a topological space. It’s a concrete invariant. It’s not a complete invariant because
I’ve discarded noninvertible 1-morphisms. What is a 1-morphism, I can think of that as
a functor from {0, 1}, the partially ordered set [1] to C, that’s a 1-morphism in C. More
systematically we could consider all functors [1]→ C. I would expect that Fun([1], C) to be
an ∞− 1 category (as both of its pieces are); Now I can discard the noninvertibles and get
a topological space C. The points of C1 are the morphisms of C. It doesn’t know about the
composition of noninvertible morphisms.

Now think of diagrams X → Y → Z in C. Such a diagram is a functor [2]→ C. Then I can
consider functors [2] → C which should be an ∞− 1 category, I can take and discard the
noninvertible morphisms, and I get a space C2. Now I’m going to write ellipsis, and in general
I can consider Fun([n]→ C) as an ∞− 1 category, discard noninvertible 1-morphisms, and
get a space Cn.

Now you might ask, how are these spaces related to one another. Remark: {Cn} should form
a simplicial topological space, i.e., any time I have an order preserving map [n] → [m], this
should induce a map Cm → Cn.

Now the claim that I’d like to make is that knowing the simplicial space C. determines the
category C up to equivalence. This is not precise without a definition of an ∞− 1 category.
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Let me give a plausibility argument anyway. To recover C, first we need to say what the
objects are. These are the points of the space C0. If I have X, Y , I need to tell you what
HomC(X, Y ) are. I have this map C1 → C0 ⊗ C0 which assigns source and target. I have
a pullback diagram here. I should form a homotopy pullback here if I wasn’t assuming
ahead of time that this map was a fibration. A little more surprising is that you can recover
composition of morphisms. For composition you can start with X, Y , and Z. So now let’s
invoke the definition. What is the definition here? I was supposed to take X and Y , cross and
get ((X, Y )×C1)× ((Y, Z)×C1)→ (X, Z)×C1 These should be homotopy fiber products.
Pull these back to (X, Y, Z)×C0×C0×C0 C2, which then factors through to target (X, Z)×C1,
so you can recover composition with C2. You want to say that everything is associative and
okay up to homotopy. The rest of the Cn say that things are associative up to homotopy.

What’s the upshot? We can get from an ∞− 1 category a simplicial space, and vice versa.
Let’s just define an ∞− 1 category to be a simplicial space, but let’s hold on here, we want
the map I’ve just described to be a homotopy equivalence. A simplicial space is a Segal space
if for every n the map Xn → X1 ×X0 × · · · ×X1 is a homotopy equivalence.

What is this condition saying? The Xn should parameterize n composable morphisms. A
point is a sequence of morphsims. To do that I need only give each of them seperately so
that the source of one is the target of the one before it. This is a Segal space, and starting
with an ∞− 1 category I get a Segal space, so you might think that’s the definition. There’s
a further condition that you want to impose. This condition is just the kind of condition
that guarantees that the compositions are well-defined.

You can extract an ∞ − 1 category by this procedure and get a new Segal space but this
might be different than the one that you started with. What is the space C0? Paths in that
space are isomorphisms, which are elements of X1 which satisfy invertibility. If you want that
to recover you need to impose that the only invertible morphisms in X1 come from paths in
X0. I want to forget this because it won’t come up in the most natural bordism category.
You can produce one if you need to by first moving to an ∞− 1 category and then moving
back across.

You want to Hom out of bordism spaces, so if you’re going to something complete it doesn’t
matter.

Instead of talking about ∞− n categories, I want to talk about (n, n − 1)Bord as a Segal
space.

I need to define Xk, the space of k composable bordisms. I will describe it as a set and you
can imagine how to topologise it. If your imagination is precise you may have realized that
you wanted to describe it not as a space but a simplicial set. First it will be a sequence
of real numbers t0, . . . , tk, and second of all it will be M an n-dimensional manifold in
R∞× [t0, . . . , tk]. It should meet ti transversally. This is k composable bordisms. This shows
the compositions of all of the bordisms as well. So, um, this varies nicely with k. Suppose
I wanted to ignore t1. I had drawn a picture in Xk; now I’ve drawn one in Xk−1. This is
a Segal space; I know how to glue things. Generally I couldn’t glue things together because
the angles might be wrong. I just need to glue them up to a contractible ambiguity.

13



So let me remark, in high dimensions this is not a complete Segal space. The invertible
morphisms are not diffeomorphisms, they are like h-cobordisms. That would be to say that
the invertible cobordisms came from h-cobordisms. That fails in high dimension.

[Shouldn’t there be a way to understand the definition where there are no identities?]

You could replace simplicial with semisimplicial. There are problems. You see that there are
identities if you say the definition carefully.

[It’s nice to imagine that you can replace an identity with a derived notion, and only the
notion that d2 = 0.

14


